
CLASSIFICATION OF BIG POINT CLOUD DATA USING CLOUD COMPUTING

Kun Liu∗ Jan Boehm

Dept of Civil, Environ & Geomatic Eng, University College London, United Kingdom
{kun.liu, j.boehm}@ucl.ac.uk

Commission III, WG III/5

KEY WORDS: Point cloud, Machine learning, Cloud computing, Big data

ABSTRACT:

Point cloud data plays an significant role in various geospatial applications as it conveys plentiful information which can be used for
different types of analysis. Semantic analysis, which is an important one of them, aims to label points as different categories. In
machine learning, the problem is called classification. In addition, processing point data is becoming more and more challenging due
to the growing data volume. In this paper, we address point data classification in a big data context. The popular cluster computing
framework Apache Spark is used through the experiments and the promising results suggests a great potential of Apache Spark for
large-scale point data processing.

1 INTRODUCTION

Point cloud data is increasingly convenient to obtain due to the
rapid development of remote sensing technologies such as UAV-
based photogrammetry (Pix4D, 2014), indoor mobile mapping
(Viametris, 2014), and low-cost consumer RGB-D sensor (Mi-
crosoft, 2014). These arising methods and systems provide a va-
riety of feasible means for acquiring scenes with varying scales,
and a large volume of data can be generated daily. For exam-
ple, the AHN2 LiDAR data set (AHN, 2014) covering the whole
Netherlands is about half terabyte. However, classical data pro-
cessing approaches are generally performed on a single machine,
they turn out to be not suitable because of the limited comput-
ing and storage capacity. Therefore, it is crucial to figure out a
solution which is able to process such massive data efficiently.

MapReduce (Dean and Ghemawat, 2008) has been extensively
applied in many large-scale applications such as search engine
and recommendation system. As one of its alternatives, Apache
Spark (Zaharia et al., 2010) has been the most popular cluster
computing framework attracting lots of attention from both the
industry and the academia. Besides the nature of scalability, Spark
also supports fault tolerance and in-memory computing. No-
ticeably, the latter property endows Spark with remarkable per-
formance, e.g., outperforming Hadoop (White, 2009)—an open
source implementation of MapReduce—by 10 times in certain
applications (Zaharia et al., 2010). In spite of that, fairly little
research has been conducted on massive point cloud data pro-
cessing using cloud computing technologies, especially Apache
Spark.

Filling this gap we present our work on one of the fundamen-
tal point cloud processing tasks in the geospatial domain - point
cloud classification. While a considerable body of work exists
on point cloud classification, for very large datasets the scale of
data itself becomes a challenge. In this paper, we address the
classification problem in a big data context by applying cloud
computing on very large point clouds. Promising experimental
results are also provided to demonstrate the possibility to apply
cloud computing in large-scale geospatial applications.

The rest of this paper is organized as follows. The method for for
tree crown classification is overviewed in Section 2. The algo-

∗Corresponding author.

rithm is presented in detail in Section 3 as well as the implemen-
tation by means of Apache Spark. In Section 4, the experimental
results are analysed and discussed. This work is concluded in
Section 5.

2 OVERVIEW

Point classification is a typical machine learning problem, con-
cretely, associating each point with a label. The learning proce-
dure in this paper is inspired by (Weinmann et al., 2014) which
aims to interpret point clouds semantically, while our work spe-
cializes in indicating whether a point belongs to a tree crown.
Similar to (Weinmann et al., 2014), our work applies machine
learning to achieve the classified results. The classifier is trained
using random forest (Breiman, 2001) which is a multitude of de-
cision trees. Point features for machine learning are computed
based on the method proposed in (Demantké et al., 2011). Seven
different features (Weinmann et al., 2014) are used in our classifi-
cation problem, respectively encoding linearity, planarity, scatter-
ing, omnivariance, anisotropy, eigenentropy, and change of cur-
vature.

An important difference between our work and the ones afore-
mentioned is that massive parallelism in our implementation is
realized using cloud computing. This endows our method with
a significant scalability. The entire experiment is conducted on a
cluster launched in Amazon EC2 service (Amazon, 2015). The
public available benchmark (Vallet et al., 2015) for urban point
cloud analysis is also used to demonstrate the efficiency and the
robustness of our method.

3 TREE CROWN CLASSIFICATION

In this section, a tree crown classification method is proposed.
First the algorithm using machine learning technique is presented.
The implementation based on Apache Spark is discussed in detail
afterwards.

3.1 Algorithm

The classification method proposed in this work is formulated
as a supervised learning problem (Bishop, 2006). The arising
problem is addressed by three steps, namely, feature computation,
model training, and prediction.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-553-2015

553

3.1.1 Feature computation

Features play a fairly important role in machine learning prob-
lems. Features with high quality can simplify learning models to
interpret the models more easily and enhance algorithm perfor-
mance with respect to both the speed and the accuracy.

In our problem, we aim to efficiently differentiate tree crown
points and other points by means of features. Points in the neigh-
borhood of a tree crown point tend to be scattered uniformly
along all rays from the central point, which indicates a homo-
geneous distribution. On the other hand, other points generally
reveal either the nature of 2D planes such as building facets or
the nature of 1D lines such as light poles. In such scenario, eigen
values of covariance matrix of points are suitable measures to
characterize the dimensional information, which is comprehen-
sively discussed in (Demantké et al., 2011). Concretely, seven
3D features based on eigen values are used through our classifi-
cation method as shown in Table 1.

Linearity (λ1 − λ2)/λ1

Planarity (λ2 − λ3)/λ1

Scattering λ3/λ1

Omnivariance 3
√
λ1λ2λ3

Anisotropy (λ1 − λ3)/λ1

Eigenentropy −
∑3

i=1
λi lnλi

Change of curvature λ3/(λ1 + λ2 + λ3)

Table 1: 3D features of points

3.1.2 Random forest

Given an input point cloud with computed features described in
Table 1 and correct labels, a classifier is trained using random for-
est. Once the classifier is generated, the prediction process can be
conducted on input data with feature information.

Random forest (Breiman, 2001) is a widely applied learning method
which can be used for both classification and regression prob-
lems. A random forest is a combination of several decision trees
(Bishop, 2006) which perform the prediction by traversing the
tree structure. Overfitting occurs often within decision trees due
to hard value split of each tree node (Bishop, 2006) , which is a
significant disadvantage. As an ensemble of decision trees, ran-
dom forest overcomes such problem by virtue of weighted votes
from multiple decision trees. Moreover, random forest also ex-
plicitly performs feature selection as each decision tree is created
using different random features. Therefore, good features can be
selected from a variety of input features so that the prediction
accuracy can be improved significantly.

3.2 Implementation

We implement the classification method presented in Section 3.1
by means of Apache Spark (Zaharia et al., 2010) which currently
is the most popular cluster computing engine for large-scale data
processing. The final results are visualized using Potree(Potree,
2015) which is a WebGL point cloud viewer for large data sets.
The entire pipeline is web-based.

3.2.1 Parallel computing in cloud

We utilize Apache Spark to fulfill the parallelization of our method
in cloud. Apache Spark is a fast and general-purpose cluster com-
puting library. Similar to Hadoop (White, 2009), it supports the
well-known MapReduce (Dean and Ghemawat, 2008) paradigm.
In addition, it introduces the resilient distributed dataset (RDD)

which can be persisted in memory. This feature can dramatically
enhance the performance of Apache Spark over Hadoop espe-
cially for applications with iterative operations. It has become
the most popular cluster computing system for large-scale data
processing in the industry. In Apache Spark, several convenient
built-in modules are available including Spark SQL for SQL and
structured data processing and MLib for machine learning. The
implementation of random forest exists in the module MLib as
well. Unlike Hadoop, Apache Spark offers APIs in Java, Scala,
Python and R. For point cloud data processing, the Python API is
more convenient, due to plenty of existing Python packages for
numerical computing and less effort to create a Python binding
for C++ libraries. This strength allows us to easily reuse exist-
ing libraries in Apache Spark applications. Therefore, the Python
API of Apache Spark is used and the entire code for our method
is written in Python as well.

As the primary abstraction in Apache Spark, the resilient dis-
tributed dataset (RDD) plays a key role to organize data and achieve
parallel computation An RDD is simply a list of elements which
have same types. Usually each RDD has multiple partitions dis-
tributed to cluster nodes and each partition has several copies
in different nodes in order to realize the feature of fault toler-
ance in Apache Spark. Our implementation can be summarized
as a series of manipulations of RDDs including creating new
RDDs, transforming existing RDDs, and performing operations
on RDDs to generate results. In the directed acyclic graph (DAG)

Figure 1: The directed acyclic graph (DAG) in our implementa-
tion using Apache Spark.

as illustrated in Figure 1, the first RDD RDD 1 is initialized from a
list of file name strings through the operation parallelize. RDD 1

is partitioned and is distributed over cluster nodes. Point cloud
data is loaded as RDD 2 by applying flatmap on RDD 1. RDD 2 can
be regarded as a list of point elements and each element is a 3D
vector representing the point coordinate. Features for learning are
computed from RDD 2 and saved as RDD 3, and then predicted re-
sults are generated by applying pre-trained model on RDD 3. The
classification results are outputted into file system by perform-
ing groupByKey and foreach on RDD 5 which is a combination of
RDD 2 and RDD 4,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-553-2015

554

3.2.2 Visualization

Potree (Potree, 2015) is an open source WebGL based point cloud
render especially for large point data sets. As illustrated in Fig-
ure 2, its user interface is similar to common computer graph-
ics software, e.g., Blender or Autodesk 3D Max. Since multi-
resolution octrees are applied in potree, it supports level of de-
tail rendering. Our experiments also demonstrate its outstanding
performance by interactively manipulating a data set of 3 million
points such as rotating, translating and scaling with about 60 FPS.

Figure 2: The user interface of potree.

4 EXPERIMENTAL RESULTS

We launch a Spark cluster with one master node and ten slave
nodes with help of Amazon EC2 service (Amazon, 2015). For
each node, m4.large instance is used and the operation system is
Ubuntu 14.04. All our experiments are performed using Apache
Spark 1.4.0.

The training data acquired by mobile mapping system is from
(Vallet et al., 2015) and is manually annotated correctly. The ra-
tio between the numbers of tree crown points and others in the
original annotated data from (Vallet et al., 2015) is adjusted to
1:1 in order to prevent generating a biased learning model. The
testing data is mobile mapping data of street scenes in Toulouse.
100 different point clouds are used in our experiments and each
one contains 3 million points. Figure 4 displays the visualized
results of six point clouds. As shown in the figure, the results
are fairly promising – most of tree crown points are labeled out
from complex street scenes consisting of various objects such as
buildings, vehicles, pedestrians, sign boards and so forth.

We also explore the scalability of our implementation by exe-
cuting the same test using different data sets of varying sizes as
shown in Figure 3. The x axis represents the number of point
clouds used for testing and each point cloud contains 3 million
points. The y axis represents the running time of the experiments
on different data sets. The first two times have only a 7 seconds
difference due to the small data sizes – most of time is caused by
system overhead. The latter three times express an approximate
linear increase depending on the data sizes. Therefore, theoreti-
cally the growing data size can be offset by increasing the number
of cluster nodes.

5 CONCLUSION

In this paper, a tree crown classification method is proposed and
implemented in cloud platform. Apache Spark is adopted to ful-

5 10 20 50 100

Number of point clouds

0

500

1000

1500

2000

2500

3000

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

324 331

593

1579

2607

Figure 3

fill the parallel computing. The experimental results demonstrate
its promising performance for large-scale point cloud data pro-
cessing.

ACKNOWLEDGEMENTS

The authors would like to thank IGN to provide the mobile map-
ping data. This research work is supported by EU grant FP7-ICT-
2011-318787 (IQmulus) and Amazon AWS grant.

References

AHN, 2014. AHN2, http://www.ahn.nl/pagina/

open-data.html.

Amazon, 2015. Amazon EC2, http://aws.amazon.com/

ec2/.

Bishop, C. M., 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Breiman, L., 2001. Random forests. Machine Learning 45(1),
pp. 5–32.

Dean, J. and Ghemawat, S., 2008. Mapreduce: Simplified data
processing on large clusters. Commun. ACM 51(1), pp. 107–113.

Demantké, J., Mallet, C., David, N. and Vallet, B., 2011. Di-
mensionality based scale selection in 3d lidar point clouds. The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences 38(Part 5), pp. W12.

Microsoft, 2014. Kinect, https://www.microsoft.com/

en-us/kinectforwindows/.

Pix4D, 2014. Pix4Dmapper, https://pix4d.com/products/.

Potree, 2015. Potree, https://github.com/potree/potree.

Vallet, B., Brdif, M., Serna, A., Marcotegui, B. and Paparodi-
tis, N., 2015. Terramobilita/iqmulus urban point cloud analysis
benchmark. Computers & Graphics.

Viametris, 2014. Viametris iMMS, http://viametris.info/
iMMS/EN/.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-553-2015

555

http://www.ahn.nl/pagina/open-data.html
http://www.ahn.nl/pagina/open-data.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://www.microsoft.com/en-us/kinectforwindows/
https://www.microsoft.com/en-us/kinectforwindows/
https://pix4d.com/products/
https://github.com/potree/potree
http://viametris.info/iMMS/EN/
http://viametris.info/iMMS/EN/

Weinmann, M., Jutzi, B. and Mallet, C., 2014. Semantic 3d
scene interpretation: a framework combining optimal neighbor-
hood size selection with relevant features. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences,Volume II-3.

White, T., 2009. Hadoop: The Definitive Guide. 1st edn, O’Reilly
Media, Inc.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and
Stoica, I., 2010. Spark: Cluster computing with working sets. In:
Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10, USENIX Association, Berke-
ley, CA, USA, pp. 10–10.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-553-2015

556

(a) (b)

(c) (d)

(e) (f)

Figure 4: The classification results of six point clouds acquired by mobile mapping system.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-553-2015

557

	Introduction
	Overview
	Tree crown classification
	Algorithm
	Feature computation
	Random forest

	Implementation
	Parallel computing in cloud
	Visualization

	Experimental Results
	Conclusion

