
DISTRIBUTED DIMENSONALITY-BASED RENDERING OF LIDAR POINT CLOUDS

Mathieu Brédif, Bruno Vallet, Benjamin Ferrand

Université Paris-Est, IGN/SR, MATIS,
73 avenue de Paris, 94160 Saint Mandé, France

firstname.lastname@ign.fr

Commission III, WG III/5

ABSTRACT:

Mobile Mapping Systems (MMS) are now commonly acquiring lidar scans of urban environments for an increasing number of ap-
plications such as 3D reconstruction and mapping, urban planning, urban furniture monitoring, practicability assessment for persons
with reduced mobility (PRM)... MMS acquisitions are usually huge enough to incur a usability bottleneck for the increasing number
of non-expert user that are not trained to process and visualize these huge datasets through specific softwares. A vast majority of their
current need is for a simple 2D visualization that is both legible on screen and printable on a static 2D medium, while still conveying
the understanding of the 3D scene and minimizing the disturbance of the lidar acquisition geometry (such as lidar shadows). The users
that motivated this research are, by law, bound to precisely georeference underground networks for which they currently have schemat-
ics with no or poor absolute georeferencing. A solution that may fit their needs is thus a 2D visualization of the MMS dataset that
they could easily interpret and on which they could accurately match features with their user datasets they would like to georeference.
Our main contribution is two-fold. First, we propose a 3D point cloud stylization for 2D static visualization that leverages a Principal
Component Analysis (PCA)-like local geometry analysis. By skipping the usual and error-prone estimation of a ground elevation, this
rendering is thus robust to non-flat areas and has no hard-to-tune parameters such as height thresholds. Second, we implemented the
corresponding rendering pipeline so that it can scale up to arbitrary large datasets by leveraging the Spark framework and its Resilient
Distributed Dataset (RDD) and Dataframe abstractions.

1 INTRODUCTION

1.1 Context

In the last decade new sensor technologies and new applications
have caused a drastic upsurge in remotely-sensed data collection
such as image and lidar, which may be acquired from the pedes-
trian, vehicle, UAV, aerial and satellite perspectives. In urban
environments, one of the most well-known and multi-faceted ap-
plication is the reconstruction of a textured 3D city model that
may be used for mapping, for flood or telecommunication sim-
ulation, as a proxy for virtual surveying or for communication
and tourism. Among other applications, underground network
managers are required by law in many countries, such as by the
DT-DICT regulation in France, to provide a detailed mapping
of their network (energy, telecommunications, water...) within
a prescribed accuracy, in order to prevent network degradations
(electricity black-out, gas leak...) caused by constructions. This
often requires the registration of legacy local maps from rela-
tive or imprecise coordinates to a given spatial reference sys-
tem. To assist this registration and provide such a reference map
of the public space, we propose to derive a centimetric terres-
trial orthographic view of the ground of the public space. This
orthophotography-like dataset is proposed to be derived from a
mobile mapping system for its precision and its surveying pro-
ductivity which is similar to regular traffic speeds in urban en-
vironments, without the masking caused by trees and overhang
structures experienced from higher sensor acquisitions (UAV,
aerial...). Lidar was also preferred to images as it provides a
direct certified reading of depth measurements, while meeting
the sampling density requirements of the targeted application.
Apart from this application, this end-product which we denote
the (street-level) ortholidar has proved to be a valuable interme-
diate result that may be visualized very early in the production
pipeline while being easy to interpret. As such its production is
of prime interest for data quality inspection (manual validation of
the dataset georeferencing) and standard image-based interaction,

such as selection of ground control points or tie points for georef-
erencing. Thus, depending on the usage, the ortholidar may either
be produced as (i) an image pyramid during a preprocess for op-
timal throughput or (ii) on-demand for low latency visualization
of a given restricted extent only. While the high throughput qual-
ities of (i) are easy to motivate in terms of a production pipeline,
the low latency of (ii) would enable a user to peek interactively
at intermediate results within the production pipeline without in-
curring the time costs of exporting a whole image pyramid.

1.2 Geospatial bigdata

Eldawy and Mokbel (2014) note the explosion of geospatial
datasets and the need for a distributed computing, analysis and
visualization. The acquisition of lidar datasets in particular is in-
creasing drastically both in terms of the number of surveys and
in terms of the number of points per survey. It is thus natu-
ral to consider distributed computing frameworks in order to be
able to cope with the volume of data and be able to guarantee a
given velocity, either in terms of latency (for navigation and ex-
ploration purposes) or in terms of throughput (for postprocessing
data quicker than they are acquired). van Oosterom et al. (2015)
recently benchmarked a number of possible management sys-
tems for point clouds in standard relational databases, distributed
NoSQL databases and a file-based alternative. They emphasize
the respective strength and limitations of these systems.

A comparatively new framework for distributed computing is
Spark1, which extends the standard map-reduce Hadoop paradigm
for in-memory processing. Spark introduced recently a Dataframe
API into its Spark SQL library, which enables a columnar SQL
handling of Spark’s resilient distributed dataset (RDD) and per-
forms Just-in-time SQL execution plan optimizations such as pred-
icate pushdown (Armbrust et al., 2015). Point cloud visualiza-
tion, also known as point-based rendering, is an entire field of

1Apache Spark project, http://Spark.apache.org

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-559-2015

559

Figure 1: Proposed orthographic visualization of MMS lidar point cloud (about 12 million points).

research in itself. For instance, Richter et al. (2015) recently pro-
posed to the geospatial community a lidar point cloud visualiza-
tion approach that scales thanks to an out-of-core approach.

1.3 Contributions

This paper claims two contributions:

1. First, we propose a rendering of point clouds which lever-
ages both local geometry and reflectance attributes. This
rendering has been guided by user requirements.

2. Second, this rendering pipeline of point clouds is a first ex-
ample of a new library that builds on the Spark framework
to distribute the processing of a lidar survey on a cluster of
machines.

The remaining of the paper is organized as follows. Section 2
analyses the visualization requirements and propose a styling for
ortholidar visualization of (x, y, z, i) point clouds (claim 1). Sec-
tion 3 develops the proposed approach and implementation of
the distributed computing of the ortholidars (claim 2). Section 4
presents some results while section 5 draws conclusions and dis-
cusses future work.

2 ORTHOLIDAR STYLING

2.1 Ortholidar styling requirements

After discussing with end users and operators, we have collected
the following set of requirements for the orthographic visualiza-
tion of (x, y, z, r) lidar point clouds where (x, y, z) is the posi-
tion and r stands generically for a radiometric attribute such as in-
tensity, reflectance or the non depth-corrected amplitude attribute,
radiometric correction being out of the scope of this paper:

• The rendering should degenerate to a simple gray-image of
the radiometric attribute r when the scene is flat and hori-
zontal, so as to imitate the optical panchromatic orthopho-
tography users and operators are used to interpret.

• Vertical structures such as façades, walls, road signs, and
tree trunks should be highly distinguishable and have a pre-
cise localization, as they are used to provide some 3D con-
text of the scene and some understanding of its vertical di-
mension which was lost during the orthographic projection.
Furthermore, these features are highly recognizable and may
be used by operators to input points on these features for
vectorization or registration purposes.

• Trees should be rendered in green. They are important cues
for contextualization and scene understanding, but their de-
piction should not interfere with the understanding of the
scene which lies below them. Thus they should not influ-
ence the texture.

• The ortholidar image should be highly compressible for easy
management and handling and its no-data background would
rather be white as hard-copy printing is still the dominant
use case today.

In order to meet these requirements, we propose the following
general guidelines:

• Hue: local geometry, shape, conveying the lost z dimension.

• Saturation: confidence in the shape determination for points
that are not locally mostly horizontal surfaces.

• Luminance: radiometric texture of horizontal surfaces.

2.2 Dimensionality attributes for local shape visualization

The dimensionality analysis of a point cloud over a fixed or adap-
tive (Demantke et al., 2011) neighborhood yields for each point
new attributes. Depending on the exact method the point weight-
ing and neighborhood shape and size vary but, in the end, a Prin-
cipal Component Analysis (PCA) is usually performed to pro-
duce for each lidar point a symmetric 3x3 covariance matrix which
encodes the scattering of points in its vicinity. From the singu-
lar value decomposition (SVD) of that covariance matrix, we can
define a local frame with its eigenvectors (e1, e2, e3) which come
with positive eigenvalues λ1 > λ2 > λ3 expressing the local
point scattering in their respective directions. Using standard de-
viations σi =

√
λi, Demantke et al. (2011) define dimensionality

features (d1, d2, d3) as:

d1 =
σ1 − σ2

σ1
d2 =

σ2 − σ3

σ1
d3 =

σ3

σ1
(1)

(d1, d2, d3) have the nice properties of defining a partition of
unity

(∑
i di = 1, di ≥ 0

)
and expressing the local shape of a

point to be locally linear (d1 ' 1), surfacic (d2 ' 1) or volu-
metrically scattered (d3 ' 1). We further refine the linear d1 and
surfacic d2 classes by distinguishing horizontal (d1h, d2h) and
vertical (d1v, d2v) features.

d1v = d1.|e1z| d1h = d1 − d1v (2)
d2v = d2.|e3z| d2h = d2 − d2v (3)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-559-2015

560

3

2v

2h

1h

1v

Figure 2: From left to right: (a) the schematic legend depicting the 5 geometric cases (b) the white track is a hot-spot like effect due
to the specularity of the pavement that is not taken into account. Note that the cubes and façades are highly discernible and may be
positioned accurately due to their red outlines. (c) The tree structure and horizontal extent is easy to interpret but has minimal impact
on the reading of the objects below the vegetation (pavement, cars...). (d) This section has been acquired twice, the ”ghost” car was not
parked here during both acquisitions.

This defines for each point a 5-vectorD = (d1h, d1v, d2h, d2v, d3)
which is positive (since e1 and e3 are normalized, their z com-
ponent is in [−1, 1]) and sums up to 1. D can thus be inter-
preted as the discrete probability vector accounting for the clas-
sification of a point into one of the 5 dimensional cases. The
proposed point visualization style tries to address the easily inter-
pretable communication of both the local geometry and the lidar
texture measured by the radiometric attribute r. To convey the
shape, we directly use the dimensionality vector D as barycen-
tric coordinates to interpolate between 5 user-selectable colors
C = (c1h, c1v, c2h, c2v, c3). For easy human interpretation the
c3 color corresponding to volumetric points should be green such
that the trees which correspond to the majority of points with a
high d3 probability show up green in the final rendering.

2.3 Proposed ortholidar styling

The radiometric texture is highly informative and easily inter-
pretable on horizontal surfaces as it resembles a single channel
orthophotography. The radiometric values of vertical features
will project vertically in few pixels, such that their vertically ag-
gregated value is less informative and distracts the user from a
straightforward interpretation. Lastly we have found that the ra-
diometric values of linear and volumetric points (d2 ' 0) have a
high level of noise, due to partial footprints caused by silhouettes
and occlusions. Thus their projected radiometric texture presents
a high frequency content which is not as easily interpretable as the
a horizontal surfacic texture. Thus, we propose to use the radio-
metric value only for horizontal features, which is luckily aligned
with the user requirements. In order to prevent artifacts, the av-
erage radiometric value is weighted by d2h, which leads to the
following equation for the color of the ortholidar pixel c(x, y):

c(x, y) = f

∑

p∈Pxy

d2h(p) r(p)

ε+
∑

p∈Pxy

d2h(p)

∑

p∈Pxy

D(p) · C

∑
p∈Pxy

1
(4)

where ε is an infinitesimal term preventing a division by 0, Pxy

is the set of lidar points projecting to pixel (x, y), D · C denotes
the scalar product in R5 and f(·) is a tone-mapping function that
maps the range of radiometric values r to [0, 1], such as a clamped

linear mapping r 7→ min
(
1,max

(
0, r−rmin

rmax−rmin

))
.

By choosing c2h to be white, and other colors to be saturated, we
address all but the last user requirements and approximately fol-

low our guidelines regarding hue, intensity and saturation, with
a cost-effective computation. In the figures, we used c1h =
(0, 1, 1): yellow, c1v = (0, 0, 1): blue, c2h = (1, 1, 1): white,
c2v = (1, 0, 0): red, c2v = (0, 1, 0): green.

3 DISTRIBUTED PROCESSING OF POINT CLOUDS

Lidar surveys are typically encoded in a number of files and may
be seen as an ordered collection of records (the lidar point mea-
surements) with both implicit attributes (Point ordering, filename
...) and explicit attributes (position in sensor coordinates, position
in georeferenced coordinates using the sensor trajectory and cal-
ibration, amplitude, distance corrected reflectance, time...). They
are thus a perfect fit for database view where a table corresponds
to a survey (possibly spanning multiple files), columns corre-
spond to attributes and rows to lidar point samples. A naive
RDBMS approach is likely not to be tractable for these huge
datasets as RDBMSs tend to not scale well for tables consisting
of billions of rows. A first approach (Ramsey, 2014) is to pack
coherent patches of points into a single row to limit the number
of rows and scale to larger datasets. NoSQL databases have also
been considered to manage huge lidar surveys (van Oosterom et
al., 2015).

3.1 Spark Lidar IO

In this work, we are exploring an alternative approach of using
the Spark framework to scale out and distribute the processing of
huge lidar datasets in a cloud computing context. Spark is a rising
technology with a large momentum which is built on the Resilient
Distributed Dataset (RDD) abstraction which distributes datasets
in the distributed memory of a cluster, possibly spilling out to
disk. RDDs are resilient to lost tasks or hosts due to its func-
tional programming approach and their representation of a job as
a Directed Acyclic Graph (DAG) of tasks. It provides 4 higher
level distributed libraries: Streaming for micro batch process-
ing, GraphX for graph computation, MLlib for machine learn-
ing which is used by Liu and Boehm (2015) for lidar point cloud
classification, and SQL. Spark SQL enables SQL operations on
RDDs and external data sources by introducing a Dataframe API
which is a columnar database-like view of a RDD which con-
struction is analyzed and optimized at run-time. To enable the
reading of a set of lidar files as a Spark Dataframe, we developed
a scala library which provides:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-559-2015

561

• Header readers for the commonly used PLY and LAS file
formats. This enables the loading of the file metadata, the
point record schema (name, types and offset of each at-
tribute), and the binary section definition (given by a byte
offset, a record count, and record length and stride in bytes).
Note that extending this to other uncompressed binary for-
mats is trivial and only requires the implementation of the
specific header reader.

• A PLY writer to write a partition (a portion of a RDD resi-
dent in the memory of a single node) to a (distributed) file
system.

• A splittable Hadoop InputFormat that may be used to read
such a binary section in a file-format agnostic manner given
its point record schema.

• A Spark Relation provider that enables the construction of
Spark Dataframes, reading only attributes that are used in
the subsequent computations. Further work will use the
Spark ability to project filters to prune entire file sections
at loading time if a prior indexing scheme is available.

3.2 Point and tile aggregation for pixel styling

Since points contributing to a given output pixel may come from
multiple file splits / partitions, the resulting pixel is the result of
aggregating both within partitions and across partitions. Equa-
tion 4 may be computed by accumulating a vector A ∈ R7:

c(x, y) = f

(
Ar

ε+Ah

)
AD · C∑

AD
(5)

with A = (Ar, Ah, AD):

Ar =
∑

p∈Pxy

d2h(p) r(p) ∈ R (6)

Ah =
∑

p∈Pxy

d2h(p) ∈ R (7)

AD =
∑

p∈Pxy

D(p) ∈ R5 (8)

given that
∑

p∈Pxy
1 =

∑
AD since

∑
D(p) = 1. This en-

ables a constant-memory per pixel accumulation to compute its
final color in the ortholidar. Note that we could have accumu-
lated only 6 quantities by accumulating the color AD · C ∈ R3

and the cardinality
∑
AD ∈ R instead, but we would then be

unable to dynamically change the color palette C after the fact.
In order to improve locality and to prevent the need for a fi-
nal shuffle to group pixels by tiles for writing images to disk
or over the network to the client, we group pixels by tiles in
the distributed memory using a RDD[Tile]. We experimented
both with dense and sparse tile encoding and found that sparse
encoding of the accumulation image yielded best result due to
the low relative overhead of storing the within-tile pixel offset
which is a small integer compared to the 7 accumulated floating
point values, and to the presence of scattered points measured at a
long range that make many tiles contain few measurements only.
Implementation-wise, Tile(w,h) initializes a sparse empty ac-
cumulative tile of dimension (w,h), while its _:+_ and _++_

operators accumulate a tile with respectively a single point or an-
other tile. This enables the pre-shuffle aggregation (combiner)
using _:+_ within a file split, the shuffling of these partially ag-
gregated sparse tiles and the post-shuffle reduction using _++_

across file splits. A call tile.setRGB(canvas,f,C) imple-
ments equation 5 to write to a canvas its pixel colors given the
tone-mapping function f and the palette C.

3.3 Single tile computation

Given an input axis-aligned extent [x0, x1]× [y0, y1] and a target
resolution (w, h), it is easy to leverage the lidar point cloud Spark
loader to compute independently for each point whether it falls
into the computed tile and if so in which pixel it falls, then to
accumulate tiles and render the final ortholidar image. Note that
D3 is not selected as it is redundant and equal to 1-D1-D2.

1// loading of a HDFS directory PLY files

2val location = "HDFS://ip:port/path/*.ply"

3val tile = sqlContext.plyFiles(location)

4// selection and renaming of relevant attributes

5.select(’x, ’y, ’reflectance as ’r, ’D1, ’D2,

abs(’eigenVector1z) as ’z1,

abs(’eigenVector3z) as ’z3)

6// box filtering

7.where((’x >= x0) && (’x < x1))

8.where((’y >= y0) && (’y < y1))

9// transformation in tile coordinates

10.map {case Row(x: Float, y: Float, r: Float,

d1: Float, d2: Float, z1: Float, z3:

Float) =>

11Point(w*(x-x0)/(x1-x0), h*(y-y0)/(y1-y0),

r, z1, z3, d1, d2) }

12// local and global aggregation in a sparse tile

13.aggregate(Tile(w,h))(_:+ _, _ ++ _)

14// write tile to a canvas using eq. 5

15tile.setRGB(canvas,f,C)

3.4 Tile pyramid computation

A tile pyramid is a standard approach to preprocess raster images
to provide precomputed versions at discrete zoom levels. In order
to generate such a tile pyramid, relatively few modifications have
to be performed to the previous algorithm. By starting at the base
level, composed as an array of tiles, a pixel is then referred to by
a tile id and a pixel id within that tile. Line 11 should be modified
to output the tile id as the key of the output record for it to be
routed to the given tile while the x, y coordinates still point to the
in-tile pixel id. Line 13 is then modified to an aggregateByKey

call to aggregate independently the different base tiles. Finally,
line 15 is replaced by an iterative loop that hierarchically writes
the tiles to disk, aggregate down tiles into quarter tiles and shuffle
quarter tiles to merge all its 4 children to a parent tile. Iterations
terminate at the first level where a single tile is written to disk. As
a side effect, metadata informations may be written to enable easy
usage of the generated tile pyramid such as geolocation metadata
files for single files (.pgw, .prj...) or per pyramid level (.vrt...)
or a simple HTML page presenting a webmapping interface (e.g.
leaflet).

4 RESULTS AND DISCUSSION

4.1 MMS Dataset

The proposed approach has been deployed on a 10km long MMS
dataset acquired by the IGN’s Stereopolis vehicle (Paparoditis et
al., 2012). This represents 339 tiles of 3 million points, thus 1017
million points in total. The tiles have already been processed by
the dimensionality analysis, yielding uncompressed binary PLY
files with many extra-attributes. In total, this dataset occupies
81.439 GB on disk, 28.476 GB of which are actually relevant
for our processing (7 attributes (x, y, r, e1z, e3z, d1, d2) in single
precision float format gives 28 bytes for each of the 1017 million

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-559-2015

562

Figure 3: 800x800 screenshots with respective pixel scales of 256, 32, 4 and 1 cm. The hue denotes the local geometry analysis as being
vertical (blue) / horizontal (cyan) linear structures, horizontal (gray) / vertical (red) surfaces or scattered points typically originating
from vegetation (green). Saturated pixels are due to a majority of points having a non horizontal-surfacic neighborhood of homogeneous
local geometry (dimensionality and horizontality). The brightness is given by the weighted reflectances on horizontal surfaces.

points). This dimensionality analysis has been performed using a
standalone unoptimized C++ executable that processes indepen-
dently each tile in less than 3 minutes. This overall preprocessing
took 2 hours when dispatched over 8 nodes. Considering that
this analysis is usually a basic preprocessing that is performed
for subsequent processing steps, using it for visualization does
not increase the overall computing costs. It however introduces a
latency for visualization during its computation. Reducing or hid-
ing the computing costs of this preprocessing is subject to future
work, possibly by only performing this analysis on point clouds
that have already been filtered by the viewing extent and undergo
a pre-aggregation of point clusters.

This dataset was uploaded to a HDFS distributed file system ac-
cessible by a Spark cluster with 8 slaves. We devoted 6 GB of
memory to the driver and the executors to prevent out-of-memory

issues. The overall computation of the tile pyramid took 41 min
at a resolution of 1cm and 17min at a resolution of 2cm. Sub-
linearity is due to the data-dependent nature of the algorithm,
where tiles without points are not even considered. The cloud in-
frastructure provided by the IQmulus European project proposes
an authenticated HTTP access to the HDFS directories. Thus
the resulting PNG tiles may be served using a standard javascript
webmapping html page for easy navigation in a web browser.

We experimented the embedding of this Spark application in a
scala http server using spray2. Contrary to the Web-Map-Tile-
Service (WMTS) style approach of the tile pyramid, the goal was
to build an on-demand single image query service (similar to a
Web-Map-Service - WMS). All the files were read at applica-

2Spray: http://spray.io/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-559-2015

563

tion start-up to compute the per-partition bounding boxes as a
primary form of indexing in order to entirely cull partitions that
are not visible in the query extent. Once cached the Spark SQL
Dataframe effectively prunes out unneeded partitions which yield
query completion times between 30s and 5 minutes depending on
the query extent. Further work is needed here to achieve interac-
tive response times through a tighter Spark SQL integration.

4.2 User feedback

Users gave a very positive feedback when presented the results.
They found the provided ortholidar easy to interpret and to work
with in their application, providing enough context (trees, build-
ings, cars...) while showing details on the ground (pavement, road
markings...). Turning back to their initial requirements, we had to
discuss that a white background exhibits unwanted artifacts: long
range lidar returns tend to have low reflectance and thus appear
as sparse dark dots which is disturbing on a white background.

4.3 Limitations

The primary limitation expressed by users is the lack of interpo-
lation between points when zoomed in. The proposed approach
only uses a form of nearest neighbor filtering for the output or-
tholidar, which may produce aliasing artifacts and is not able to
cope with situations where the lidar sampling is lower density
that the ortholidar resolution. As a side effect, the output ortholi-
dar has high frequency content in these regions and is thus poorly
compressible using standard image compression techniques. To
address this concern and produce a smoother more compressible
ortholidar (up to a to-be-defined smoothing extent parameter),
multiple solutions have to be explored. For high quality at the
cost of computation, a Laplacian smoothing approach (Vallet and
Papelard, 2015) may be employed, but getting artifact-free tile
boundaries is not straightforward to achieve. More simply, a lin-
ear filtering or a radial basis function filtering with a limited sup-
port may be added, which will only incur more network overhead
due to the necessity to shuffle boundary pixels to all the tiles that
fall into their filter extent. Addressing these filtering issues is left
for future work.

5 CONCLUSION

Through this experiment, we have proved the possibility of han-
dling massive point clouds using the Spark bigdata framework.
While computing times are not ground-breaking compared to op-
timized distributed C++ code, we show that the abstraction pro-
vided by the Spark framework allows to express simply in a few
lines of code algorithms that run distributed on a cloud in a re-
silient manner (e.g. robust to partition and executor losses).

Future work will further investigate the coupling of the two pro-
posed approaches to get the best of both: efficient direct ac-
cess of huge precomputed areas using the tile-based approach
and efficient and memory-efficient access to subsets using the
partition-filtering approach. Furthermore, integrating this work
with Geotrellis (Kini and Emanuele, 2014), a Spark-based geospa-
tial raster library, would open new possibilities. Lastly, on-demand
or Just-In-Time processing is another promising outlook so as to
only compute and store intermediate results (such as the dimen-
sionality features) when required and only temporarily cache the
results.

ACKNOWLEDGEMENTS

This material is based upon work supported by the FP7 IQmulus
Integrating Project, FP7-ICT-2011-318787, A High-volume Fu-

sion and Analysis Platform for Geospatial Point Clouds, Cov-
erages and Volumetric Data Sets, and the TerraMobilita Project
of the Cap Digital Business Cluster. We also thank Electricité de
France (EDF) for their discussions and feedbacks on the proposed
ortholidar visualization.

References

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley,
J. K., Meng, X., Kaftan, T., Franklin, M. J., Ghodsi, A. and
Zaharia, M., 2015. Spark sql: Relational data processing in
spark. In: Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’15,
ACM, New York, NY, USA, pp. 1383–1394.

Demantke, J., Mallet, C., David, N. and Vallet, B., 2011.
Dimensionality-based scale selection in 3D lidar point cloud.
International Archives of Photogrammetry Remote Sensing
and Spatial Information Sciences, Volume XXXVIII-5/W12
pp. 97–102.

Eldawy, A. and Mokbel, M. F., 2014. The Era of Big Spa-
tial Data. In: Proceedings of the International Workshop
of Cloud Data Management CloudDM 2015 co-located with
ICDE 2015, Seoul, Korea.

Kini, A. and Emanuele, R., 2014. Geotrellis: Adding
Geospatial Capabilities to Spark. http://spark-
summit.org/2014/talk/geotrellis-adding-geospatial-
capabilities-to-spark.

Liu, K. and Boehm, J., 2015. Tree Crown Classification Using
Cloud Computing. International Archives of Photogramme-
try Remote Sensing and Spatial Information Sciences, Volume
XL-3/W5.

Paparoditis, N., Papelard, J.-P., Cannelle, B., Devaux, A., So-
heilian, B., David, N. and Houzay, E., 2012. Stereopolis II:
A multi-purpose and multi-sensor 3D mobile mapping system
for street visualisation and 3D metrology. Revue Française de
Photogrammétrie et de Télédtection 200, pp. 69–79.

Ramsey, P., 2014. A PostgreSQL extension for storing point
cloud (LIDAR) data. https://github.com/pramsey/pointcloud.

Richter, R., Discher, S. and Döllner, J., 2015. Out-of-core visu-
alization of classified 3d point clouds. In: 3D Geoinformation
Science: The Selected Papers of the 3D GeoInfo 2014, Cham:
Springer International Publishing, pp. 227–242.

Vallet, B. and Papelard, J.-P., 2015. Road orthophoto/DTM gen-
eration from mobile laser scanning. International Annals of
Photogrammetry Remote Sensing and Spatial Information Sci-
ences, Volume II-3/W5.

van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer,
M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M. and Go-
nalves, R., 2015. Massive point cloud data management: De-
sign, implementation and execution of a point cloud bench-
mark. Computers & Graphics 49, pp. 92 – 125.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: M. Brédif, G. Patanè, and T. Dokken
doi:10.5194/isprsarchives-XL-3-W3-559-2015

564

