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ABSTRACT:  
 
When viewed from distance, large parts of the topography of landmasses and the bathymetry of the sea and ocean floor can be 
regarded as a smooth background with local features. Consequently a digital elevation model combining a compact smooth 
representation of the background with locally added features has the potential of providing a compact and accurate representation for 
topography and bathymetry. The recent introduction of Locally Refined B-Splines (LR B-splines) allows the granularity of spline 
representations to be locally adapted to the complexity of the smooth shape approximated. This allows few degrees of freedom to be 
used in areas with little variation, while adding extra degrees of freedom in areas in need of more modelling flexibility. In the EU fp7 
Integrating Project IQmulus we exploit LR B-splines for approximating large point clouds representing bathymetry of the smooth sea 
and ocean floor. A drastic reduction is demonstrated in the bulk of the data representation compared to the size of input point clouds. 
The representation is very well suited for exploiting the power of GPUs for visualization as the spline format is transferred to the 
GPU and the triangulation needed for the visualization is generated on the GPU according to the viewing parameters. The LR B-
splines are interoperable with other elevation model representations such as LIDAR data, raster representations and triangulated 
irregular networks as these can be used as input to the LR B-spline approximation algorithms. Output to these formats can be 
generated from the LR B-spline applications according to the resolution criteria required. The spline models are well suited for 
change detection as new sensor data can efficiently be compared to the compact LR B-spline representation. 
  
 
 

1. INTRODUCTION 

1.1 Smoothness of topography and bathymetry  

Digital elevation models (DEM) can be considered to consist of 
either digital terrain models (DTM), which represent only the 
underlying topographic or bathymetric terrain, or digital surface 
models (DSM), which also include objects on the surface, such 
as buildings, vegetation etc. Typically DTMs are dominated by 
smooth regions of terrain with details and features occurring 
locally. Consequently, smooth representations are potentially 
well suited to modelling DTM data in a compact and accurate 
way. In order to include all the features that make up a DSM, 
these smooth representations should be complemented with 
alternative representations that are able to model sharp and 
discontinuous features. In IQmulus we have focused on the use 
of LR B-splines as the approach for representing the smooth 
background shape. In this paper, we propose a hybrid model for 
representing DEM data, which also includes triangulated 
irregular networks and point clouds.  
 

2. REPRESENTATION OF DIGITAL ELEVATION 
MODELS 

We will in this paper concentrate on locally refined spline 
representations; however, as such representations are not 
traditionally used for the representation of geospatial data we 
will first provide a short discussion of different approaches for 
the representation of digital evaluation models, and relate the 
locally refined spline representations to these. 
 

2.1 Triangulated irregular network 

The data used for building digital elevation models most often 
come from remote sensing in the form of sets of big point 
clouds. A triangulated irregular network (TIN) can be created 
directly from the point clouds. To reduce the data bulk the 
triangulation can be locally adapted to the complexity of the 
shape to reduce the data size and represent the shape within 
guaranteed tolerances. A TIN is composed of a data structure of 
irregularly distributed vertices (x,y,z) connected by edges that 
are boundaries of triangles. Algorithms using TIN-
representation require traversing of the data structure of the 
triangulation, a process that is resource consuming.  
 
2.2 Raster representation 

A commonly used approach is to represent the digital elevation 
as a regular structure with vertices defined by a raster of points. 
The regularity of the raster grid contributes to speeding up 
algorithms. A raster, however, does not have local adaptation, 
thus important details might be lost if the resolution of the data 
is too low. On the other hand, high resolutions result in large 
amounts of data, much of which is often redundant. The shape 
inside a gridded element can be defined by a bilinear 
interpolation of the elements four corner points, or by splitting 
the element into two or more triangles.  
 
2.3 Tensor product B-splines 

A piecewise bilinear interpolated raster of points can be 
reproduced exactly by interpolating the values at the raster 
points with a tensor product B-spline surface with uniform 
knots. As B-splines can have any polynomial degree the raster 
of point can alternatively be interpolated or approximated with 
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bi-quadratic or bi-cubic B-splines. If the raster represents a very 
smooth shape interpolation may give very good shape 
descriptions. However, bi-quadratic or bi-cubic interpolation 
will be disturbed by distortions from a smooth behaviour. 
Consequently B-spline approximation methods that don't 
reproduce all small distortions will be more feasible. Similar to 
raster representation tensor product B-splines using uniform 
knots does not allow local adaptations of the granularity of the 
representation to the complexity of the shape of addressed. 
Tensor product B-splines with non-uniform knot vectors does 
not solve this problem as the topological structure of the 
polynomial elements remains a regular grid. 
 
 
2.4 Locally refined splines 

There are three main approaches to the local refinement of 
splines: 
 
1. Hierarchical B-splines (Forsey et al., 1988) introduced a 

wavelet like approach for shape representation using a 
hierarchical structure of B-splines at different refinement 
levels. Conditions that ensure linear independence of the 
resulting B-splines were introduced by (Kraft, 1996). 
Truncated Hierarchical B-Splines (Giannelli et al., 2012) 
provide an alternative formulation for Hierarchical B-
splines with improved numerical properties. 

2. T-splines (Sederberg et al., 2003) provide designers novel 
functionality in creative freeform design. The approach is 
an algorithmic approach to local refinement of the B-spline 
vertex mesh, replacing the regular B-spline vertex mesh 
with a vertex mesh allowing T-junctions. However, until 
the introduction of Isogeometric Analysis (IGA) in 2005 
(Hughes et al., 2005) locally refined splines got little 
attention. In IGA B-splines replace the shape functions of 
traditional finite elements, and thus allow higher order 
elements and allow higher order continuity between 
elements so reducing the data bulk of the representation. 

3. Locally Refined B-splines (LR B-splines), (Dokken et al., 
2013) builds a theory for locally refined splines compatible 
with the traditional univariate Non-Uniform B-splines. The 
approach of LR B-splines provides a richer set of 
refinements than Hierarchical B-splines and T-splines, and 
includes with some few exceptions the spline spaces 
generated by the other approaches. 

 
The main advantage of local spline refinement is that detail can 
be added locally, without increasing the amount of data 
globally. This contrasts with both raster and tensor-product 
spline formats in which data amounts increase globally with 
increased resolution. Locally refined splines also provide 
compact representations of smooth shapes, and are thus well 
suited to smooth terrains. The first results of the use of LR B-
splines for the representation of geospatial data are presented in 
(Skytt et al., 2015). 
 
2.5 Hybrid representations 

Smooth and none smooth regions in a geospatial data set cannot 
efficiently be described using a single representation method. In 
addition geospatial point clouds occasionally contain outliers 
that are not part of the geospatial shape. A hybrid representation 
consisting of the following components can consequently be 
very attractive: 
 
• LR B-spline representation for the smooth components 

(e.g., underlying terrain); 

• triangulations for none smooth components (e.g., buildings 
and sharp features); 

• point sets representing that cannot be represented by LR B-
splines or triangulations, within the tolerance required. 

 
This approach has the potential to efficiently represent the 
information embedded in geospatial point clouds. As the 
representation keeps all points outside the tolerance there is no 
need at this stage in to decide which are real points and what are 
outliers.  
 
In the examples we show in this paper we do not use 
triangulations, rather we use LR B-spline surface 
approximations for modelling the underlying terrain from point 
cloud input. The points are then classified according to their 
distance from the surface and those that remain out-of-tolerance 
can be passed to algorithms for further processing. This is a first 
step in the implementation of our planned hybrid representation.  
 
We have observed that frequently the points that remain outside 
the approximation tolerance are clustered locally. These clusters 
can represent different geometric configurations: 
 

• Smooth shapes that are not detected by the current 
implementation of the LR B-spline approximation. 
Here we foresee that future improvements in the 
approximation algorithms will reduce the number of 
points in this category. 

• None smooth shapes that are well suited for 
representation by triangulations. 

• Collections of points that are not well suited for spline 
and triangle approximation. Some of these points will 
be outliers. Other might represent small features with 
too few points to be represented by a triangulation. 

 
Combining a smooth locally refined spline representation with 
detailed modelled by TIN has the potential to provide a compact 
and accurate shape representation for digital elevation models. 
Access to cadastral data can help separate natural shapes from 
human made structures and shapes thus giving guidance 
concerning what should be represented by LR B-splines and 
what should be represented by TIN. 
 
2.6 Compression of digital elevation representations 

For the purposes of data storage and transfer, the various 
representations of digital elevation models use different 
methods of compression. For example, raster formats, such as 
USGS DEM, are often transferred using lossless compression 
formats such as ZIP files. Both TIN and locally refined splines 
in a sense provide a natural data compression by increasing the 
amount of data only in the positions where it is needed – the 
size of the data should be directly related to the complexity of 
the terrain. TIN data is typically represented by a list of vertices 
and a list of triangles together with connectivity information. An 
overview of compression methods for TIN representations, both 
direct and progressive, can be found in (De Floriani et al., 
2000). Formats for representing LR B-spline data include a list 
of 'knot-values' that determine the resolution in the x,y-plane, 
together with the mesh data determining the local data structure, 
and a list of coefficients corresponding to B-spline basis 
functions. As it is still in its infancy, the current LR B-spline 
format stores more information than is strictly necessary. Future 
revisions are expected to provide much more compact 
representations. Existing formats can also benefit from lossless 
compression. 
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2.7 2.5D and 3D data representation 

Typically elevation models are represented as 2.5D, meaning 
that for each horizontal point in the 2D plane, there is a single 
corresponding height value. It is also possible to model the full 
3D representation. Triangulations provide the easiest way to 
model overhanging features such as cliffs and caves, and 
features of non-trivial topology such as bridges and tunnels. For 
visualisation purposes, triangular meshes can be smoothed 
using subdivision techniques (Pfeifer, 2005). Spline 
representations can also provide fully parametrized surfaces that 
can model overhanging features, but features of complex 
topology are more difficult. In the context of hybrid 
representations one could expect that any such features would 
be modelled by triangulations with a 2.5D LR B-spline 
representing the lowest terrain point.  
 

3. APPROXIMATION OF SMOOTH SHAPES 

Polynomial interpolation of degree 𝑑𝑑 of a function that is at 
least (𝑑𝑑 + 1)-continuous has an error that is 𝑂𝑂(ℎ𝑑𝑑+1), i.e., the 
error is limited by a constant multiple of the width of the 
interval ℎ to the (𝑑𝑑 + 1)-power. Thus for linear interpolation 
(𝑑𝑑 = 1) halving the interval will reduce the error by 1/4, for 
quadratic interpolation (𝑑𝑑 = 2) halving the interval will reduce 
the error by 1/8, and for cubic interpolation (𝑑𝑑 = 3) halving the 
interval will reduce the error by 1/16. The same is true for 
piecewise polynomial (spline) interpolation where the ℎ now 
refers to the maximum length of the polynomial segments. 
Consequently a piecewise cubic interpolation or approximation 
of a smooth function will be much more compact than a 
piecewise linear approximation. Moving from one to two 
variables the convergence related to the polynomial degree is 
maintained both for piecewise polynomials and splines. 
 
When using the 𝑂𝑂(ℎ𝑑𝑑+1) convergence on locally refined splines 
the accuracy of the approximation is checked to find regions 
that are already represented within the specified tolerance, and 
regions that are approximated outside the tolerance. For the 
regions outside the tolerance the representation is refined and 
the approximation recomputed. This iterative refinement will 
terminate when a stop criteria is reached. In practical use, the 
stop criteria will include a maximum number of refinement 
levels as well as stopping when all points are within the 
required tolerance. The latter criteria will often not be reached 
as in many data sets there are outliers that do not belong to the 
smooth shape. 
 
To be able to address big point data sets we are currently in the 
process of implementing a version of the LR B-spline 
approximation that works on geometric tiling of the data. In 
each tile two approximation methods can be used (Skytt et al., 
2015). 
 
The first method is a least squares approximation with 
smoothing terms. It is a global approximation method which 
covers a rectangular region, even in regions where data are 
missing. After a number of refinement levels using the least 
squares method, a local approximation method is used based on 
the approach of multi-level B-splines (Sulebak et al., 2003). The 
method has been adapted to LR B-splines, which gives a more 
compact representation than the original implementation. 
 
Methods for LR B-spline approximation and representation of 
big geospatial data are still in their infancy. However, as the 
examples in the next section show, the approach already 

demonstrates the reduction of geospatial big data to data 
volumes suitable for efficient visualization and data analysis. 
 

4. EXAMPLES 

4.1 Example 1: HRW Bathymetric data set 

In this example we consider the dense bathymetric data set 
pictured in Figure 1, courtesy HR Wallingford. The aim of this 
example is to show that the LR B-spline approximation (of a 
specified tolerance and number iteration levels) is relatively 
stable regardless of the density of the input point set.  
 

 
Figure 1: Bathymetric survey, containing ~58 million points. 

Data courtesy HR Wallingford: SeaZone. 

The original data set contains 58 578 420 points. We 
approximate this with a tolerance of 0.5 m and maximum 
number of iteration levels 6. The quality of the output 
approximation can be seen in the first row of Table 1. In 
particular, the proportion of points that are out-of-tolerance 
(OOT) after six iterations is approximately 0.56%.  
 
In each row of the table, we successively thin the point cloud 
and approximate with LR B-spline surfaces of the same 
tolerance and number of levels (0.5 m and 6 levels). It can be 
seen that the resulting numbers are fairly constant. The 
proportion of OOT points reduces very slightly with thinning 
until the point cloud is thinned to 1/16th of its original size, at 
which point, significant details begin to be lost. 
 
There are some subtleties in the refinement algorithms that 
mean that in this example more refinements are added with 
fewer points. However, this does not affect the significance of 
the results. This example demonstrates that the resulting data 
size of LR B-spline approximations has more relation to the 
topographic features of the data set than the density of the input 
points. 
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58 578 420 59 458 5.55 0.092 0.66 0.56 % 
29 289 210 58 993 5.39 0.092 0.66 0.54 % 
14 644 604 59 210 5.39 0.092 0.65 0.52 % 
7 322 302 59 701 5.33 0.093 0.65 0.50 % 
3 661 151 60 967 5.25 0.093 0.65 0.41 % 

Table 1: Approximation data for thinned point cloud 
approximation (OOT = out-of-tolerance). 
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4.2 Example 2: Liguria 

This second example considers topographic data from Liguria, 
Italy, courtesy Regione Liguria and CNR-IMATI. The data set 
contains 3 045 671 points. The region covered by the data is 
dominated by mountainous terrain and sharp features such as 
buildings. Although spline representations are typically best 
suited to modelling smooth data, our algorithms are capable of 
providing an approximate representation of the underlying 
terrain that can be used to classify points according to their 
distance from the surface. In this example we use a tolerance of 
0.5 m, and stop the iteration after six levels. This avoids the 
surface picking up the finer details by restricting the number of 
refinements, but provides sufficient accuracy to show the trends 
of the underlying terrain.  
 

 
Figure 2: LR B-spline approximation of Liguria dataset and the 
point classification coloured according to the distance from the 

surface approximation. White points lie close to the surface, 
whereas green points lie below the surface tolerance level and 

red points above. 

The resulting surface contains 85 206 coefficients with 2 453 
333 points out-of-tolerance. The average distance between the 
points and the surface is 2.6 m and the maximum distance is 
88.9 m. Though the maximum may seem large, it is caused by a 
outliers that are positioned high above the other surface points. 
 
In Figure 2 the surface approximation is pictured together with a 
classification of the points according to their distance from the 
surface. It is worth remarking that this point classification could 
potentially be a useful tool for feature detection. For example, 
as can be seen by the close-up view of the classified points in 
Figure 3, features such as building footprints can be 
distinguished. This could be useful for automating the 
extraction of building features, especially in the absence of 
supporting cadastral data. However, to what degree building 
footprint extraction and can be automated via our approach, and 

to what level of accuracy, is subject for future research. 
Typically when processing geospatial data, the amount of user 
input required for reconstructing building models increases with 
the level of detail required (Tack et al., 2012). Thus, any tools to 
support automation could be useful in a big data context. 
Vegetation and other objects such as electricity cables are also 
highlighted by the point classification method. 
 

 

Figure 3: Close-up view of the classified Liguria point set using 
the surface from Figure 2(a). Features of the data set can clearly 

be distinguished. 

As the classification of points in this example utilizes the lower 
quality surface approximations, the removal of features that do 
not belong to the terrain surface can be performed dynamically 
in the algorithm. Points that are not part of the underlying 
surface can be filtered and passed to other algorithms for 
processing (e.g., as building triangulations or vegetation), whilst 
the remaining terrain points can be included in higher level 
surface approximations. Such a workflow could provide the 
basis for an automated algorithm for a hybrid solution, as 
discussed in Section 182.5.  
 
4.3 Example 3: HRW Bathymetric data set containing 
several surveys 

In this example we show how varying the parameters of the 
approximations affects the outcome of a data set containing 8 
968 616 data points. The size of the original .las file is 172 Mb. 
The input tolerance and the maximum levels of iteration are 
varied. Roughly speaking, the tolerance can be considered to 
control the vertical resolution and the maximum number of 
iteration levels can be considered to control the horizontal 
resolution.  
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1 6 52470 0.15 7.89 83198 3.6 
1 7 116450 0.12 7.33 24652 8.1 
1 8 176794 0.11 6.32 9603 13.0 

0.5 6 57011 0.13 9.00 409897 3.9 
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0.5 7 142237 0.09 7.10 165596 9.8 
0.5 8 323012 0.08 6.40 81587 24.0 

0.25 6 58112 0.13 9.01 1264136 4.0 
0.25 7 147612 0.09 7.33 615763 11.0 
0.25 8 369438 0.07 7.22 355006 27.0 
Table 2: Results of LR B-spline surface approximations of the 

combined bathymetry data set (Figure 4) for various input 
tolerances and iteration levels 

 
 

 
Figure 4: An LR B-spline surface approximation of the HRW 

combined bathymetry data set with tolerance 0.5 m and 
maximum iteration levels six. 

As can be seen from the results in Table 2, reducing the 
tolerance has most effect on the average error. It results in more 
refinements at each approximation level so that the resulting 
number of coefficients is also increased. The maximum error is 
reduced by allowing the approximation algorithm to continue to 
higher levels of refinement; however when outliers are present, 
the maximum error will remain high unless very high iteration 
levels are chosen. Generally, the higher the chosen iteration 
level, the more detailed are the features included in the surface 
approximation.  
 
It may be noted that for the smaller tolerances, the amount of 
data in the resulting surface approximately doubles. This 
indicates that there are many local regions with points that lie 
out-of-tolerance. However, depending on the accuracy of the 
original data and the characteristics of the terrain, it may not 
always be necessary to model with such small tolerances. 
 
The number of iteration levels chosen should also reflect the 
extent of the region to be modelled. If a large region is to be 
modelled, higher levels of refinement are required to achieve a 
given accuracy than if the region is relatively small. In cases 
where the region is so large that a very high approximation level 
would be required to model the surface to a given accuracy, 
tiling may be appropriate. This involves splitting the data into 
regular patches and approximating each patch separately. This 
can be followed by a post processing step that ensures the 
patches connect with the required degree of continuity given by 
the degree of the spline representation. An example of tiled 
approximation is shown in Figure 5. Tiling allows the size of 
each surface patch to remain relatively small, but will result in 
increased amounts of data across patch boundaries. 
 

In future research we will consider to what extent the choice of 
the approximation parameters can be automated based on the 
characteristics of the input data.  
 

 
Figure 5: An example of the pattern of a tiled approximation 

where each tile represents one surface. 

 
ACKNOWLEDGEMENTS 

The results presented in this paper are results of the research in 
the IQmulus project. The IQmulus project has received funding 
from the European Union’s Seventh Framework Programme 
under grant agreement No 318787. We would like to thank HR 
Wallingford, Regione Liguria and CNR-IMATI for providing 
access to the data sets used in the examples. 
 

REFERENCES 

De Floriani, L., Paola M., and Enrico P.. "Compressing 
triangulated irregular networks." Geoinformatica 4.1 (2000), pp 
67-88. 

Dokken T., Lyche T., and Pettersen K.F., Polynomial splines 
over locally refined box-partitions, Computer Aided Geometric 
Design, 30(2013), pp 331–356. 

Forsey D.R., and Barrels R.H., Hierarchical B-Spline 
Refinement, Comput. Graphics, 22(1988), pp. 205-212. 

Giannelli C., Jüttler B., and Speleers H., THB-splines: the 
truncated basis for hierarchical splines. Computer Aided 
Geometric Design, 29(2012), pp. 485-498. 

Hughes T.J.R., Cottrell J.A., and Bazilevs Y., Isogeometric 
analysis: CAD, finite elements, NURBS, exact geometry, and 
mesh refinement, Comput. Methods Appl. Mech. Engrg., 
194(2005), pp. 4135--4195. 

Kraft R., Adaptive und linear unabhangige multilevel B-splines 
und ihreAnwendungen, PhD thesis, Math Inst A, University of 
Stuttgart, Germany, 1998. 

Pfeifer, N. "A subdivision algorithm for smooth 3D terrain 
models." ISPRS journal of photogrammetry and remote sensing 
59.3(2005), pp. 115-127. 

Skytt V., Barrowclough O., and Dokken T., Locally refined 
spline surfaces for representation of terrain data, Computers & 
Graphics 49 (2015), pp. 48-58.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: M. Brédif, G. Patanè, and T. Dokken 
doi:10.5194/isprsarchives-XL-3-W3-565-2015 

 
569



Sederberg T.W., Zheng J., Bakenov A., and Nasri A., T-splines 
and TNURCCS, ACM Transactions on Graphics (TOG), ACM 
Trans. Graph.,22 (2003), pp. 477-484. 

Sulebak J.R, and Hjelle Ø., Multiresolution Spline Models and 
Their Applications in Geomorphology, in Concepts and 
Modelling in Geomorphology: International Perspectives, Eds. 
Evans I. S., Dikau R., Tokunaga E., Ohmori H., and Hirano M., 
TERRAPUB, Tokyo, Japan, 2003, pp. 221–237. 

Tack, F., Gurcan B., and Rudi G.. 3D building reconstruction 
based on given ground plan information and surface models 
extracted from spaceborne imagery. ISPRS Journal of 
Photogrammetry and Remote Sensing 67(2012), pp. 52-64. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: M. Brédif, G. Patanè, and T. Dokken 
doi:10.5194/isprsarchives-XL-3-W3-565-2015 

 
570


	LOCALLY REFINED SPLINES REPRESENTATION FOR GEOSPATIAL BIG DATA
	1. Introduction
	1.1 Smoothness of topography and bathymetry

	2. Representation of digital elevation models
	2.1 Triangulated irregular network
	2.2 Raster representation
	2.3 Tensor product B-splines
	2.4 Locally refined splines
	2.5 Hybrid representations
	2.6 Compression of digital elevation representations
	2.7 2.5D and 3D data representation

	3. ApprOXimation of smooth shapes
	4. Examples
	4.1 Example 1: HRW Bathymetric data set
	4.2 Example 2: Liguria
	4.3 Example 3: HRW Bathymetric data set containing several surveys

	Acknowledgements
	References



