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ABSTRACT: 
 
Since 2013, the EU FP7 research project “IQmulus” encourages the participation of the whole scientific community as well as 
specific user groups in the IQmulus Processing Contest (IQPC). This year, IQPC 2015 consists of three processing tasks (tracks), 
from which “Water detection and classification on multi-source remote sensing and terrain data” is introduced in the present paper. 
This processing track addresses a particular problem in the field of big data processing and management with the objective of 
simulating a realistic remote sensing application scenario. The main focus is on the detection of water surfaces (natural waters, 
flood, inland excess water, other water-affected categories) using remotely sensed data. Multiple independent data sources are 
available and different tools could be used for data processing and evaluation. The main challenge is to identify the right 
combination of data and methods to solve the problem in the most efficient way. Although the first deadline for submitting track 
solutions has passed and the track has been successfully concluded, the track organizers decided to keep the possibility of result 
submission open to enable collecting a variety of approaches and solutions for this interesting problem. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

1.1 Introduction 

The IQmulus EU FP7 project (http://www.iqmulus.eu) 
encourages the participation of the whole scientific community 
as well as specific user groups and research teams in the 
framework of IQmulus Processing Contest (IQPC) since 2013. 
Software performance is evaluated through the creation of 
benchmarks and evaluation methodologies specific for selected 
processing tasks (IQmulus Tracks). Beside the selection of test 
datasets with a ground truth, IQPC supports the usage of a 
common infrastructure where the executables submitted are run 
and results are collected and evaluated. 
 
In 2015, IQPC is a theme of a Special Session in the ISPRS 
Geospatial Week in the GeoBigData Workshop and track 
reports will be reviewed to be included in the conference 
proceedings (ISPRS Archives). At the IQPC Special Session 30 
minutes presentations will be held by the track organizers to 
report about the proposed solutions about each submission as 
well.  
 
This paper introduces the track named “Water detection and 
classification on multi-source remote sensing and terrain data”. 
This track has been defined by the Institute of Geodesy, 
Cartography and Remote Sensing, Hungary (FÖMI), a 
consortium partner in the IQmulus project. The challenge is to 
address the problem of detecting water surfaces and different 
categories of water-affected soils and vegetation based on a 
variety of remotely sensed data of different resolutions. 

 
1.2 Background 

Detection and monitoring of various water surfaces has been a 
challenge for a long time in remote sensing data processing. A 
large number of studies are available in the relevant literature 
dealing with water and wetness detection and monitoring for 
land management and conservation (e.g. Li et al. 2013; Rokni et 
al. 2014). Numerous different types of RS data are useful for 
some kind of water detection; however the accuracy is highly 
dependent on the input source, the processing methodology and 
in particular the combination of the two. 
In real-life situations, a balance is achieved by creating a 
processing chain consisting of different methods and input 
sources and spatially aware algorithms are used to combine the 
tools to provide a result of sufficient information content. 
However a very challenging task is to optimize the resources 
for the tasks. 
 
1.3 Objectives 

The goal of this track is to detect water-related thematic classes 
in a specific area in Hungary. The track leader provides a wide 
array of remote sensing data covering the area in concern, 
including: 
 

1. High-resolution aerial hyperspectral imagery 
2. High-resolution visible (RGB) orthophotos 
3. Terrain model (DTM) and surface model (DSM) 
derived from airborne LiDAR point clouds, 
4. Medium-resolution (Landsat 8) satellite imagery. 
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The participants have to provide thematic maps with a set of 
pre-defined categories. A set of calibration and validation 
samples will be provided to train and validate the various 
processing chains, and final evaluation will be carried out by 
the track leader (FÖMI) using independent samples. 
Competitive solutions have to fulfil the below criteria: 
 

1. Create the best possible classification using the simplest 
set/combination of input sources 

2. Try to reduce the number of input data for the processing 
3. Develop algorithms that are fast to run 
4. Find the best balance of complexity and accuracy 

(maximize efficiency) during the data processing 
 

2. DATA DESCRIPTION 

2.1 Study area description 

The study area is located in the North-East part of Hungary, 
along the river Bodrog (Figure 1) which is a tributary to the 
river Tisza. The river Bodrog is crosses the Slovak–Hungarian 
border at the village of Felsőberecki (near Sátoraljaújhely) in 
Hungary, and continues its flow through the Hungarian county 
Borsod-Abaúj-Zemplén, until it joins the river Tisza in Tokaj 
city. The lowest point of the study area is on 77,19 m, while the 
highest point is on 258,73 m above the sea level. The study area 
is often affected by floods and inland excess water by the two 
rivers.  

 
Figure 1. The location of the study area in Hungary 

 
The study area is divided into three parts (Figure 2): 
 

1. Area A: the full study area with medium-resolution 
Landsat 8 coverage 
 

2. Areas B and C: two sub-areas with full high-resolution 
data coverage (hyperspectral and multispectral airborne 
data, DTM and DSM). 
 

 
 

Figure 2. Study area 
 

The participants have to provide thematic maps for each of the 
areas (A, B and C) with the below categories: 
 

1. Water surfaces (code: 1) 
2. Wet/waterlogged soils (code: 2) 
3. Soils not directly affected by water (code: 3) 
4. Vegetation standing in water (code: 4) 
5. Vegetation not directly affected by water (code: 5) 
6. Other (code: 0) 
 

For each area, a set of training and verification samples being 
provided by the track leader in vector format, covering each of 
the above thematic categories. The participants can use the 
samples to train the classification algorithms and to verify the 
results. Areas with both high- and low-resolution data coverage 
(B and C) can be used to tune the algorithms for better 
performance on the larger area with only Landsat data (area A, 
Figure 3).  
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Figure 3. Distribution of categorized point dataset (reference) 
for the study area A. 

 
2.2 Input data description 

For area ‘A’ Landsat 8 data is provided, whereas hyperspectral 
images, LiDAR-derived Digital Surface (DSM), Terrain Model 
(DTM) and orthophotos (RGB) are additionally provided for 
areas ‘B’ and ‘C’. 
 
2.2.1 Hyperspectral images 
 
Hyperspectral images are provided as georeferenced 
(UTM34N/WGS84) radiance data in *.dat (ENVI) format (16 
bit BSQ) containing 128 bands (Figure 4). Additional technical 
details on spectral and spatial resolution and accuracy are the 
follows: 

1. Instrumentation / camera: aerial hyperspectral 
instrument (AISA Eagle) 
2. Spectral range: approx. 400-1000 nm (visible and 
reflected (near) infrared, VIS / VNIR) 
3. Spectral resolution: 5 nm 
4. Spatial resolution: 1.5 m / pixel 
5. Spatial accuracy: 2.5 m (RMSE) 

 

 
 

Figure 4. Hyperspectral image 

 

2.2.2 Digital orthophotos 
 
Multispectral (visible, RGB) orthophoto is provided as 
georeferenced (UTM34N/WGS84) and radiometrically 
corrected TIFF (Figure 5). The spatial resolution is 15 cm/pixel 
with spatial accuracy of 30 cm (RMSE)  
 

 
 

Figure 5. Orthophoto 
 

2.2.3 Digital Terrain Model (DTM) 
 
The Digital Terrain Model is generated from aerial laser 
scanner (ALS) data, with gap filling by appropriate 
interpolation. Data is provided as georeferenced 
(UTM34N/WGS84), unsigned long integer TIFF. Data content 
is height values in cm, interpreted over Baltic Sea level. The 
Spatial resolution is 1 meter / pixel with spatial accuracy of 30 
cm. 
 

 
 

Figure 6. Digital Terrain Model for the conjunction of River 
Tisza and Bodrog at the city of Tokaj 

 
2.2.4 Landsat 8 Data 
 
For the whole area of interest we provide a subset of Landsat 8 
imagery. The data is processed as standard Level-1 
(orthorectified, terrain corrected), and provided as 
georeferenced (UTM34N/WGS84) and radiometrically 
corrected TIFF (unsigned integer 32 bit). Landsat 8 Operational 
Land Imager (OLI) images consist of nine spectral bands with a 
spatial resolution of 30 meters for Bands 1 to 7 and 9. New 
band 1 (ultra-blue) is useful for coastal and aerosol studies. 
New band 9 is useful for cirrus cloud detection.  
The resolution for Band 8 (panchromatic) is 15 meters.  
Thermal Infrared Sensor (TIRS) bands 10 and 11 are useful in 
providing more accurate surface temperatures and are collected 
at 100 meters, resampled to 30 meters. 
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3. EVALUATION 

Participants had to submit the following material: 
 
1. Georeferenced thematic rasters in GeoTIFF format, 
containing the codes of thematic categories as described above 
2. Concise description of the whole methodology and 
processing chain (including algorithms and parameters, with 
references to relevant literature wherever available) 
 
Evaluation and scoring was based upon the complexity, time- 
and resource efficiency of the methodology and the data 
requirement for processing.  
 

4. TRACK RESULTS 

Due to the deadline of the admission for the IQPC 2015 we 
have received one application to be presented at the 
GeoBigData Workshop. It was submitted by the team of the 
Department of Physical Geography and Geoinformation 
Systems, University of Debrecen. The team consist of three 
members: Zoltán Kovács, Boglárka Balázs and Szilárd Szabó. 
From this point on, in this paper we refer to them as “the 
Debrecen team”. 
As several possible participants have shown interest we are 
open to receive more solutions for the task published in Track 2 
until the end of 2015 (but outside of the scope of the 
GeoBigData Workshop and IQPC 2015).  
 
4.1 Solution provided by the Debrecen team 

4.1.1 Introduction 
 
The aim of this contest track was to detect water surfaces using 
remotely sensed data. In our research we attempted to reduce 
the number of input data, therefore this task was approached 
from multispectral data source, so the medium-resolution OLI 
multispectral bands of Landsat 8 satellite imagery was used 
exclusively. Decreasing the processing time and human 
interaction, most of the steps were programmed in python and R 
programming languages. 
 
According to the Track 2, the following categories were 
distinguished: 
 

 Water surfaces (code: 1) 
 Wet/waterlogged soils (code: 2) 
 Soils not directly affected by water (code: 3) 
 Vegetation standing in water (code: 4) 
 Vegetation not directly affected by water (code: 5) 
 Other (code: 0) 

 
4.1.2 Data processing 
 
During data processing the training and two test datasets were 
available as ESRI point shape files, which were used to train the 
classification methods and verify the performance of the 
predictions. Intensity values of these pixels were extracted from 
the OLI multispectral bands (Band1-Band7, Band9) in ArcGIS 
10.2. and saved as *.csv text files by using our python script. 
The *.csv files were imported into an Excel workbook, where 
data was processed by HypDA (Hyperspectral Data Analyst) 
MS Excel add-in which was developed at Department of 
Physical Geography and Geoinformation Systems, University 
of Debrecen (Kovács & Szabó, 2013). It is being specially 
developed and designed for multispectral and hyperspectral 

data processing. HypDA is able to conduct hypothesis testing 
(e.g. Kruskal-Wallis test), separability testing (e.g. Jeffries-
Matusita distance) and some classification procedures (e.g. 
minimum distance, Mahalanobis distance) for distinguishing the 
predefined classes by using self-generated spectral indices. 
HypDA workbooks contains specific worksheets, where the 
first two contains the intensity values and nominal or scale 
properties, the others the processing chain; one of them 
calculates matrices with all possibilities of bands to get the best 
available spectral indices, the other worksheets store the best 
values of matrices and show the detailed statistical background 
of the investigations of that certain models. In this case these 
methods were used to create spectral indices for each category 
for further investigations (classification in R). Our HypDA-
based spectral indices were the following for the Landsat 
image: 
 

 Code 1 <- (B5 - B3)/(B5 + B5) 
 Code 2 <- (B9 - B1)/(B5 + B5) 
 Code 3 <- (B7 - B2)/(B4 + B4) 
 Code 4 <- (B7 - B1)/(B5 + B5) 
 Code 5 <- (B5 - B3)/(B2 + B7) 

 
R is free statistical software with command line interface (R 
Core Team, 2014). It is becoming more and more popular 
among scientific environments. It has many downloadable 
libraries providing widespread field of application. One of 
them, the Rattle was especially developed for data mining 
(Williams, 2011). Decision tree (DT, Mingers, 1989), Random 
forest (RF, Ho, 1995), Support Vector Machine (SVM, Nguyen 
and de la Torre, 2010) and Generalised Linear models (GLM, 
Bishop, 2006) can be used on training set to set classification 
rules for predicting classes for test sets and validation sets. For 
these models the target variable was the “gridcode” variable 
from shape files, the input variables were the spectral indices 
determined by HypDA. These indices were calculated for all 
test sets, training set and for the whole Landsat dataset. In order 
to verify the applied models, kappa indices and overall 
accuracy were calculated for all applied methods and all test 
sets (test1, test2 and test1+test2) from the confusion matrices of 
the models. 
In order to create a classified geotiff map, the Landsat image 
was exported as ASCII file storing all intensity values of pixels. 
The lines of file represented individual pixels with the same 
structures as the training and test sets, therefore it was able to 
use as validation dataset for our investigations and Rattle was 
able to assign classes for each pixel. Beside the predicted 
classes, R can also determine the probabilities of classes for 
each pixel. In this way not only the classified pixels can be 
exported into text files, but the maximum probabilities of 
classes can be also saved and probability maps can be created 
for each method. Probabilities were cut by a predefined critical 
value (0.95), thus pixels with smaller probability were classified 
as “Others”.  
Classification procedure was summarized in the Fig. 7. 
Besides masking the values having <95% classification 
probability, we masked the areas covered by clouds, too. 
Altogether 125 test data point fell in cloud covered areas; 
therefore, we provide two solutions for the accuracy 
assessment: 
 

- (1) calculations including all test points (test1, test2 
and test1+test2) 

- (2) calculations omitting the cloud covered areas. 
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In our understanding, solution (2) is more reliable, as pixels 
covered by clouds are biased and have distorted intensity 
values. 
 

 
 

Figure 7. Classification procedure by the Debrecen team 
 
4.1.3 Accuracy assessment 
 
We compared the performance of the classification techniques 
based on Kappa values and found the GLM (General Linear 
Model) having the best performance. Confusion matrix and the 
accuracy statistics are shown on Figure 8.  
 

 
 

Figure 8. Confusion matrix and accuracy statistics of the 
solution provided by the Debrecen team 

 
 

5. CONCLUSIONS 

The Debrecen team has provided an elegant solution to the 
challenge raised in the context of water detection and 
classification in the frame of IQmulus Processing Contest 2015. 
Their solution is based on Landsat-8 imagery and does not use 
any other input data, yet provides very accurate results for the 
desired categories. 
Although the first deadline for submitting track solutions has 
passed and the track has been successfully concluded, the track 
organizers decided to keep the possibility of result submission 
open to enable collecting a variety of approaches and solutions 
for this interesting problem. Potential additional solutions 
would also be presented in the frame of the track summary 
presentation at the GeoBigData workshop and published at the 
project homepage. 
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