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ABSTRACT:

Despite of the popularity of Delauney structure for mesh generation, octree based approaches remain an interesting solution for a first
step surface reconstruction. In this paper, we propose a generic framework for a octree cell based mesh generation. Its input is a set of
Lidar-based 3D measurements or other inputs which are formulated as a set of mass functions that characterize the level of confidence
on the occupancy of each octree’s leaf. The output is a binary segmentation of the space between occupied and empty areas by taking
into account the uncertainty of data. To this end, the problem is then reduced to a global energy optimization framework efficiently
optimized with a min-cut approach. We use the approach for producing a large scale surface reconstruction algorithm by merging data
from ubiquitous sources like airborne, terrestrial Lidar data, occupancy map and extra cues. Once the surface is computed, a solution

is proposed for texturing the mesh.

1. INTRODUCTION

Surface reconstruction from point cloud is an important topic that
has already been greatly studied. One of the reasons is the con-
stantly increasing number of applications that use surface recon-
struction: digital elevation model computation for flood simula-
tion, 3D modelling, robot path planning, etc., and technical ac-
quisitions: Lidar, images, etc. Despite of the important number
of approaches proposed in the state of the art, the ability to handle
the acquisition ubiquity of the data remain a challenging task. It
is even more true in a large-scale context. It is within this context
that (Nexa et al., 2015) has recently provided a benchmark that
covers different relevant tasks as camera calibration and dense re-
construction on challenging data. This benchmark is decomposed
in 3 scenes that contains thousands of images on both airborne
and terrestrials camera coupled with millions of 3D points from
Laser. In the context of data merging, (Fuhrmann and Goesele,
2011) proposes a method for merging depth maps with multiple
scales, this method takes various depth maps at different scales
and produces a piecewise surface.

Thanks to efficient optimization methods such as graph-cuts, global
optimization formulation became very popular for producing wa-
tertight surfaces. The problem can be seen as a volumetric seg-
mentation of a discretization of the space where the resulting sur-
face is represented by the interface between inside and outside
areas. It has been first introduced in (Snow et al., 2000) with a
photometric approach.

In this paper, we propose an approach based on the Dempster
Shafer theory that allows, with an arbitrary number and type of
inputs, a large scale reconstruction of the space. We apply this
model to the lidar point cloud reconstruction case. We also pro-
pose a formulation for texturing the segmentation based on extra
information like laser reflectance.

Figure 2 shows the proposed scheme of the surface reconstruction
in 2D. The input is a set of occupancy function that are merged
with the Demptser Shafer theory. The final function is then seg-
mented into a binary indoor/outdoor partition. In this case, each

pixel is a leaf of the octree. Figure 1 shows the final 3D result of
the algorithm.

2. SURFACE RECONSTRUCTION FORMULATION

The aim of the proposed method is to find, for a set of inputs
1, a segmentation of the space as occupied or empty following a
suitable model. Inputs are given by a set of mass functions m;
defined by (see section 2.3) :

mi(P) — [0,1] o
P (e,o,u) st. e+o+u=1

where e, 0 and u are the occupancy masses for a 3D point P €

R3 to be empty, occupied or unknown. The mass functions are

merged to have a global mass function

m(P) = ® m;(P) 2)

iel

m(P) is the final mass that gives, for a point P € R?, the con-
fidence to be empty, occupied or unknown for the set of mass
function I.

The problem is then defined as a binary segmentation of the space
regarding to m where the label set is L = {0,1} where | = 1
represents the state occupied and [ = 0 the state empry. The
space is discretized with an octree, where V is the set of octree’s
leaves and F' C V2 the set of interface between adjacent leaves.
We note [,, the label of the leaf v € V and Iy = (ly)vev the
labelling [, of all leaf of the octree V.

Finally, the goal is to find, for each leaf, a label /,, that encodes the
fact in being either occupied or empty for a given set of input mass
functions m;. To this end, the problem is formulated as an energy
minimization framework composed of two terms: the data term
Egata(ly), which represents how a label is close to the global
mass function m and the smoothness term Epr;or(lv ), which pe-
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Figure 1: Result of the proposed methods :
surface, then textured with the regularized reflectance of the data.

first the resulting

nalizes solutions with large surfaces. The final energy is :

min Edata(lV) + )\s Ep'rior(lV) (3)
lyeLV

where \; is the weight balancing the prior and data terms. Now
the two terms will be described in details.

2.1 Data term

The data term models how a label [ fits to the global mass func-
tion m defined in equation 2. The confidence of a label [ to be
occupied is decomposed into 2 functions pe (1), po (1) defined as:
1—-1 ifi=e

pill) = { l if i=o

“

Finally, the data term is the integral of the difference between the
function p; (1) and the mass function m; for each label ¢ € (e, 0)
over the volume of the leaf, which gives:

Eiata(l) = Z Z

vEV ic{e,0} Y

Ipi(lv) — mi(x)|dz 6)

2.2 Prior term

The prior term generally forces solutions with a small surface.
This leads to the following term:

Bprior(l) = Y area(ts Nta)|l, — b, | (6)

t1,to€F?

where area(t1 Nt2) returns the area of the interface t1 Nt2. When
l¢, is equal to l;,, the score is equal to 0. Inversely, it is equal to
1 when Iy, is different to l¢,.

a) Scene

b) Database ¢) Lidar

d) Merging

e) Segmentation

Figure 2: 2D example of the main scheme. The captured scene
(a). The function related to the space occupancy : from a database
(b), from ground and airborne laser information (c) (Red is out-
side, green is inside). Merging of source (d). inside/outside seg-
mentation (e).

2.3 Mass function definition

All that remains is to define the function m., m, and m,, for an
input set of data. With lidar data, when the center of the sen-
sor is known, the visibility prior tells that cells crossed by the
beam formed by the sensor center and the 3D point have great
confidence to be empty and those right after the 3D point have
great confidence to be occupied. This idea is encoded here in
the independent definition of a mass function for each input mea-
surement, which will be merged into a single over function using
DST.

Figure 3: Mass function in R? for a beam defined by the sensor
center O and the 3D point ). The parameters are: the incertitude
on the angle oy, on the data o, and the thickness of the scene 0.

2.3.1 Beamfunction A ray is defined by the 3D detected point
(Q and the sensor center O. First, an occupancy mass along the
ray direction is defined (e,,0r,u,). Let P € R? be the measured

3D point and P’ the orthogonal projection of P on @
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06, 0, r represents the relative position of the point P where

00.0P

0 = arccos —————=— @)
10G|I.I0P|

is the angle formed by O? and Oﬁ and

—
r=[lOP|| - |0G]] ®)

is the signed distance of the projected point P’ to Q. When r <
0, P is between O and @), this is empty. Consequently, when
|r| is important, the mass e, is equal to 1 and the occupied mass
oy is equal to 0. Inversely, when r > 0, P is behind @), this is
occupied, then the mass e, is equal to 0 and the occupied mass o,
is equal to 1. When P is close to O, o, and e, tends to 0.5. When

r < —|0OQ)|, r is behind O, this is unknown, then e, = o, = 0.

Finally, behind @, o, is represented by decreasing function from
1 to O that models the thickness of the scene. The resulting mass

functions when r > —|@| are :
—(lrly2 —(lmly2 o (Irly2
r>0:e,=05e n) 10, =(1—-05e on))e (or)
—(h? ~(
r<0:e,=1-05¢e ‘on’ ;0,=05e ‘on
©))

where o, is the scale of the uncertainties related to the sensor and
o the scale of the scene thickness prior.

The mass of occupancy is important on the ray while decreasing
as it moves away from the ray. Following this assumption, the
occupancy function is represented as
,(L)2
f(O)=e "7 (10)

where oy is the scale of the angle uncertainty. The mass function
of a 3D point for a ray is then defined by:

e f-er
mi(P)=4 o ¢ =14 f-o (1
u l—e—o

If the normal 1Tq> at () is known, it can be added as an extra pa-
rameter. 7 is then redefined as the orthogonal distance from P’ to
the plane defined by the point () and the normal ﬁq) . The figure 3
shows the mass function for a beam in 2D.

Figure 4: Example of fusion. First, four rays with an important
uncertainty. The confidence at the intersection is much higher.
Then, a fusion with both a strong confidence to be empty and
occupied. The confidence at the intersection is equal to 0.5 for
both input, the unknown label remains small.

2.3.2 Global mass : Dempster-Shafer theory The DST is
used to combine all inputs and gives the final mass m. Let m,
mo two mass functions, the fusion can be computed with the DST

as following:

{ e1 } { €2 } 1 { e1-ez+er-uz+up-e }
01 D 02 =1 K 01 -02 +01-u2 +ujp - 02
ul u2 uy - u2

(12)

where K = 01 -e2 + €1 - 02 represents the conflict term. It means
that when K is equal to O, there is no conflict between inputs.

The combination rule is commutative and associative, enabling
an order-independent aggregation of the measurements. At a lo-
cation P for a set of mass functions m; € I, the overall mass is
computed following the equation 2. Figure 4 shows two examples
of mass merging.

3. REFLECTANCE ESTIMATION FORMULATION

Extra information as reflectance can be used for texturing the re-
sulting mesh. Contrary to the image intensity, there is no straight-
forward way to texture the mesh with the lidar reflectance. To
tackle this problem, we propose to labelize each leaf of the octree
with the reflectance of the data and use a global formulation ap-
proach in order to regularize the reflectance where no information
is provided. Finally, the reflectance of a facet is the reflectance of
leaves on the surface that are labelized as inside.

The problem is defined as a multi-label segmentation of the space
regarding to the reflectance r of the data where the label set is
L = {0,..,n}. The actual reflectance of our data is between
—20 and 40. We thus do a linear mapping between the reflectance
intensity and the label set.

We note I, the reflectance label of the leaf v € V and lry =
(ly)vev the labelling I, of all leaves of the otree V.

Two terms are used: the data term Fqqta_re s (I7yv ), which repre-
sents how a label is close to the reflectance of a leaf (v) and the
smoothness term Eprior(I7v ), Which penalizes solutions with a
large reflectance difference in the neightbourhood. The energy is :

min EdataJ'efl (ZTV) + >\7‘ Ep'r'iov':refl (lTV) (13)

lryeLV

3.1 Data term

The data term is the difference between the reflectance label [r
and the reflectance information in each leaf r. For each leaf v,
the reflectance average r(v) of all points that remain in the same
cell is computed. The data term is then :

Edata,refl(l) = Z ‘lt - T(’U)l (14)

tev*

Where V™ is the set of leaves where the reflectance r is defined.
3.2 Prior term

The prior term generally forces solutions with closes neighbors
labels. This leads to the following term:

Eprior,refl(l) = Z a-rea(tl n tZ) ‘ltl - lt2| (15)

ty,to€F2

Thank to the metric function on the quadratic term, this energy
remains sub-modular and thus, can be optimized in polynomial
time.
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4. ALGORITHM

The algorithm is decomposed into four steps : First, the scene is
segmented with the octree. Then for each leaf of the octree, the
equation 5 is computed. The energy 3 is minimized with graphcut
approach to compute the indoor/outdoor labeling. Finally, the
reflectance of each leaf is computed and the solution regularized.

4.1 Octree

Thanks to the previous formulation, any 3-space partitioning could
by used to discretize the aggregated mass function in order to
yield a tractable combinatorial optimization problem. Ideally,
this tessellation should be driven directly by the behaviour of the
mass function itself, with lower densities where it is homoge-
neous and facets orthogonal to its gradients. For that, the space
is discretized with an octree. For each 3D point, the octree is
sub-divised until the maximum depht at the 3D point location is
reached. The octree is also subdivided in the 8 neighbors of the
point leaf in order to allows a good local estimation of the surface.

4.2 Score computation

Equation 5 requires to compute the integration of the mass func-
tion on each octree’s leaf.

The integral [, |pi(l:) —my(s)|ds can be approximated using

: . 1 *|p; (le)— P .
MC integration as ) . o Yolume(v) ‘plLS(‘t) 7P where S is a

set of |:S| uniformly sampled points in the leaf v. Volume(v) is
the volume of the leaf v. The mass function of each point P is
computed with the equation 2.

4.3 Surface optimization

As mentioned in (Boros and Hammer, 2002), in our case where
the quadratic function on the two labels is a metric, the equa-
tion 3 can always be solved globally in polynomial time in the
binary case with a min-cut reduction. We use the graph-cut code
introduced in (Boykov and Kolmogorov, 2004) to solve the bi-
nary problem.

4.4 Reflectance optimization

According to (Boykov et al., 2001), the equation 13 with a metric
function on the prior term 15 is sub-modular and thus, the global
minimum can be reached in polynomial time. One of the most
efficient ways to solve this problem is the a-expansion algorithm
first introduced in (Boykov et al., 2001). It is fast and converges
in practice on a good local minimum which is guaranteed to have
an energy at most twice the globally optimal energy.

5. RESULT

We tested the proposed method with lidar data where 3D posi-
tions and reflectance are available. Figure 5 shows the result on
different scene. Each scene has a 128 x 128 x 128 meter bound-
ing box. The deepest leaf has a size of 0.03m which leads to a
12 levels of depth octree. A\, = A = 0.02. We can see that
where 3D data are avialable, the surface is composed of small
facets and are well estimated. Areas that have not been scanned
are regularized with bigger leaf because of the lack of data. Chal-
lenging objects like gate and wire are also well estimated thanks
to the higher level of detail. The regularized reflectance allows a
good visualisation of the current mesh. The volumetric estima-
tion of the reflectance allows modification like carving without
extra computation.

6. CONCLUSION

A octree based framework is proposed for the watertight surface
reconstruction of ubiquitous data in the same scene. The problem
is formalized as a global optimization problem that is efficiently
solved with a graph-cut approach. Results on real data shows the
efficiency of the proposed method on challenging scenes.
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Figure 5: Result of the proposed method. Left column : the resulting mesh. Right column : the mesh textured with the regularized
reflectance of the data.
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