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ABSTRACT: 

 
Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point 
clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a 
methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main 
steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of 
the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge 
length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is 
around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by 
comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. 
Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements 
of collision detection. 
 

                                                                 
*  Corresponding author. 
 

1. INTRODUCTION 

Beaches, ports, piers, and marinas must be protected from 
ocean waves and storms. Rubble mound breakwaters are one of 
the typical structures used for this purpose (Corredor et al. 
2013; Altomare et al. 2014). Breakwaters are usually 
constructed by armour units, such as cubes, cubipods, tetrapods, 
dolos, etc. The energy of the ocean induces movements on the 
armour units that degrade the structure. One of the common 
techniques to monitor the movements of the armour units is the 
LiDAR survey that provides dense and accurate point clouds 
from the emerged part of the structure (Puente et al. 2014). 
LiDAR can be combined with hydrographic techniques such as 
multibeam echo sounders allowing the acquisition of the 
underwater geometry and, thus, completing the 3D point cloud 
from the structure. 
 
LiDAR point clouds are massive amount of unorganized data 
that is difficult to handle. Thus, the generation of simplified 
CAD models based on the parameterization of the surfaces is a 
commonly proposed strategy (Remondino 2003; Lindenbergh 
2005). In the case of cube armoured rubble mound breakwaters, 
the 3D reconstruction of a simplified model is achieved from 
the vertexes of the unit. Several types of algorithms are 
proposed in the literature for surface reconstruction and shape 
modelling. Some techniques look for sets of points in the scene 
that fit planes and primitives for surface identification in 
cluttered scenes while other involve edge detection approaches 
to define the bounds of given geometric shapes. Region 
growing techniques segment points in different geometric 
shapes or surfaces based on common features in neighbouring 
areas (Huang et al. 2001). Normal vectors are popular feature 
descriptors used for point cloud segmentation, especially for 
planar surfaces (Yoon et al. 2007; Rusu 2010). 
 
The aim of this work is to present an algorithm for the 
extraction of an eight-vertex model from each armour unit. A 
data-driven method is used, although a model based procedure 
could also be applied. It uses the neighbourhood region 

information to obtain the normal vectors, which are the basis for 
point segmentation. Segmentation results are subsequently 
grouped in perpendicular planes. The main idea is to use the 
geometric characteristics of the cube primitive to reconstruct 
the armour units of the structure. The proposed algorithm 
operates semi-automatically and requires some user-defined 
parameters: the number of neighbours (K) needed for 
computation of normal vectors, the radius distance search (D) 
for the segmentation, and the length of the armour units (L). 
 
The manuscript is organized as follows: materials and methods 
(section 2), algorithm explanation (section 3), performance and 
error measurements (section 4), and conclusions (section 5). 
 

2. MATERIALS AND METHODS 

2.1 Study area 

 
A rubble mound breakwater located in Baiona (Northwest of 
Spain) was used for testing the developed algorithm (Figure 1). 
The breakwater is made of a single layer of cubes of 1.25 m 
length each. It shows a length of 340 m, a crest width of 8.4 m, 
a crest height of 8.5 m, structure base width of 21.7 m, and 
slope of 49º (González-Jorge et al. 2014).  
 

 
 
Figure 1. Baiona breakwaters image (left) and orthoimage with 
the port highlighted in red (right). 
 

2.2 Data acquisition 

Data acquisition was performed using a terrestrial LiDAR Faro 
Focus 3D and five scan positions to provide a complete point 
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cloud from the structure. Scan positions were selected on the 
breakwaters shoulder at a distance of approximately 10 m. 
LiDAR was tilted to improve the visibility. The point cloud 
resulting after registration shows around 13 million points. 
Manual point picking was used for coarse registration and ICP 
for fine registration. The point cloud was used in a raw format, 
without applying any method as those based on voxel 
techniques. Figure 2 shows a point cloud crop from the 
breakwaters. 
 

 
 
Figure 2. Point cloud crop from the breakwaters. 
 

3. ALGORITHM DESCRIPTION 

The algorithm uses the point cloud previously scanned and 
registered as input data. The algorithm consists of three main 
steps: normal vector computation, plane segmentation, and cube 
reconstruction. 
 
3.1 Normal vector computation 

 
Normal computation is done based on principal component 
analysis (PCA) of the K nearest neighbours (KNN) of a target 
point pi used (Liang et al. 2013). The process starts by 
searching the K-nearest neighbour (KNN; K is an input 
parameter to the algorithm defined by the user; 50 in this case). 
Once all the KNNs are found, the normal vectors for each point 
pi in the point cloud are computed. The value of each 
coordinate from the KNN is extracted, preparing the data for the 
PCA evaluation. The covariance matrix of the points is 
computed and the eigenvectors and eigenvalues calculated. The 
normal vector is the eigenvector that corresponds to the smallest 
one eigenvalue. 
 
Next step is the point classification based on the normal vectors. 
The variance of the normal vectors is small on a planar region 
(cube faces) and large on the edges and corners of the cubes. 
The points with smaller variance act as seeds in further steps. 
 
3.2 Plane segmentation 

 
Once the normal vectors are computed it is possible to initiate 
the reconstruction process. The algorithm starts on a seed (small 
variance) and searches for points that lie inside a radius D and 
the normal vectors present a difference lower than a threshold T 
(region growing approach).  These parameters are introduced by 
the user. In this case D = 0.5·L (L  = 1.25 m) and  T = 0.1 (10 % 
difference between the normalized normal vectors). Once the 
points that fulfil the segmentation criteria are found a 
representative plane is computed by least square fitting. The 

plane is parameterized by a centroid and a normal vector. It is 
necessary to work only with the planes that have enough 
amount of points to perform an accurate enough least square 
fitting.  
 
If the seed point is not around the centre of the face of the cube, 
the segmented plane is probably incomplete, since the searching 
radius D is not covering all the face length of 1.25 m (Figure 3 
and 4). Thus, the segmentation process will segment two or 
more incomplete planes. Due to this reason, a grouping of the 
contiguous segmented planes is performed. This is done by 
searching for the planes that show a distance between the two 
centroids smaller than D and parallelism between the normal 
vectors of the planes. 
 

 
 
Figure 3. Plane grouping example. Points in blue and in red are 
grouped in the same plane after first segmentation. 
 

 
 
Figure 4. Plane segmentation of the whole point cloud. Red 
points are segmented points to calculate planes. Blue points are 
the remainder points not used for plane fitting. 
 
3.3 Cube reconstruction 

The cube reconstruction starts from the segmented planes, their 
centroids, and normal vectors. The distances between the 
centroids of the planes and the angles between their normal 
vectors are used. Cube reconstruction uses three perpendicular 
planes. 
 
The process starts searching for three perpendicular planes, with 
the centroids located within at a predefined distance. Once the 
three planes are detected, their intersection is computed. This 
computation allows the evaluation of the first vertex of first 
cube. It is important to notice that complete planes are not 
required for the process. Even if the LiDAR is able to scan only 
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a small part of the cube, the intersection of the three planes 
ensures that the vertex is reconstructed. Once this vertex, P1, is 
calculated, the reconstruction of the other vertexes is a 
geometric problem. The main drawback is that the actual 
direction of the normal vector is unknown, so first the algorithm 
needs to check on which side of the plane the vertex is 
physically placed. This can be done calculating the distance 
between the points on one of the planes and the two possible 
vertexes. The first step is to calculate the two possible vertexes 
with the normal vectors and the distance L (P21 and P22). In the 
left of Figure 5 this situation is presented. The magenta star is 
P1, the intersection between the planes. The green arrow and 
the black arrow are the normal vectors that will force the 
direction of the tentative second vertex. The two possible 
vertexes are the two small triangles. If the distance between the 
centroids of red or blue planes and the triangles is computed, 
the lowest value indicates the correct vertex (the cyan triangle 
in this example). The process is repeated with the rest of the 
vertexes until all of them are obtained. 
 
Once the eight vertexes for each cube are calculated, the cube 
proper location is checked to avoid cubes collision. If no 
collision is detected, the candidate cube formed by eight 
vertexes is plotted, saved, and the used planes marked to avoid 
reuse (Figure 5: right).  
 
 

 
 
 
Figure 5. Vertexes reconstruction from the segmented planes 
(left). Cube reconstruction (right); P1 is the magenta star and 
P2 the yellow triangle. 
 
3.4 Collision detection 

 
Incorrect reconstruction of cubes can produce collision of units 
(overlapping), which is physically impossible. Therefore, once 
the algorithm obtains a cube as candidate, it should be checked 
if there are no other cubes available for the same position. This 
cube cannot be plotted and saved until this condition is tested. 
The collision detection is assessed in two steps: first of all, the 
distances between the centroids of the cubes are computed. If 
such distance is larger than L, the cube is then placed and saved. 
The second step only takes place if the first one fails. If the 
distance between the cube candidate and at least one of the 
cubes already stored is smaller than L then the overlapping is 
quantified. A small amount of overlapping does not mean that 
the cube is in a bad position or is a ghost cube. In this case the 
threshold is defined on 50 intersected points. 
 

4. RESULTS AND DISCUSSION 

One of the main interests of modelling rubble mound 
breakwaters is the evaluation of movements in the units 
composing the structure. Therefore, the algorithm accuracy 
needs to be ensured. The accuracy assessment was performed 

comparing the automatic reconstruction of a number of vertexes 
with those obtained from manually reconstructed drawing lines 
and vertexes over the point cloud using 3D CAD software. The 
accuracy is evaluated computing the distance from each vertex 
point in the ground truth to the vertexes computed by the 
proposed algorithm. Then, the results for all vertexes under 
study are averaged to obtain a single representative value of 
accuracy (Figure 6). The authors have chosen an approach 
based on vertexes, not based on planes, because they are easy to 
be manually marked. 
 
It is important to notice that the proposed algorithm reconstructs 
a perfect vertex, while the ground truth is not a perfect one. As 
can be seen in the pictures taken from the breakwaters, the 
cubes present rounded vertexes and edges. Three point clouds 
cropped form the structure are used for the evaluation, 
presenting accuracies of 7 cm, 8.6 cm, and 15 cm respectively. 
This methodology has been used instead of using the complete 
point cloud to make it more manageable from a computational 
point of view. 
 
Figure 7 shows the model comparison between the original 
point clouds and the reconstructed models. The original point 
clouds are showed with the normal vectors to facilitate the face 
detection of the cubes. As can be seen in Figure 7, the 
reconstruction of point cloud 1 represents a high quality in 
terms of number of cubes reconstructed and accuracy. Point 
clouds 2 and 3 show poorer results. The main reason for the 
missed cubes in these point clouds is that the planes detected do 
not fulfil all the conditions described in 3.3 to reconstruct the 
cubes. 
 

 
 
Figure 6. Accuracy for three point clouds under study. In blue 
the accuracy for each vertex and in orange the average accuracy 
value. 
 

 
 
Figure 7. Point clouds model comparison. (a) Original point 
cloud 1, (b) point cloud 1 reconstructed model, (c) original 
point cloud 2, (d) point cloud 2 reconstructed model, (e) 
original point cloud 3, and (f) point cloud 3 reconstructed 
model. 
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The proposed algorithm needs to be also analysed in terms of 
the time elapsed in the different steps and the number of cubes 
detected. The algorithm was implemented in MatLAB on a 
Quad Core CPU @ 2.44 GHz with 4 GB RAM.  
 
Table 1 represents the different performance of analysed 
parameters. The number of cubes detected against the number 
of cubes on ground truth is around 90 % and 96 % for point 
clouds 1 and 2 respectively, where the point density is higher 
and the scanned data seems to be more complete. Point cloud 3 
shows a result around 80 % on the 3 planes ground truth. The 
total relationship between the detected cubes and the ground 
truth data is around 56 % for point clouds 1 and 2, and 32 % for 
point cloud 3. In any case, the number of cubes is consistent 
and the main target of the algorithm could be achieved. On the 
analysis of the points used and classified the three point clouds 
present similar results. There is a mean of 50 % of points that 
were useful to the reconstruction of the 3D model. The 
computation time increases when the number of cubes 
increases, due to the collision detection, which at this stage 
takes a big amount of time to work since it checks the collision 
against all the cubes for each candidate. If the time elapsed per 
cube reconstruction is evaluated, in the worst case is around 7 
minutes. 
 
 Point 

cloud 1 
Point 

cloud 2 
Point 

cloud 3 
 
Number of planes 
detected 
 
Detected cubes 
 
Scanned 3 planes 
cubes 
 
Physical cubes 
 

 
79 
 
 
9 
 

10 
 
 

16 

 
247 

 
 

25 
 

26 
 
 

42 

 
264 

 
 

16 
 

20 
 
 

50 
 

 
Total number of 
points 
 
Classified points 
 
Unused points 
 
Points used in 
reconstruction 
 
Classified points (%) 
 
Used points (%) 

 
637572 

 
 

437911 
 
 

199661 
 

374100 
 
 

68.68 
 
 

58.68 

 
1950556 

 
 

1377943 
 
 

572613 
 

1090801 
 
 

70.64 
 
 

55.92 

 
1476380 

 
 

1029732 
 
 

446648 
 

699729 
 
 

69.75 
 
 

47.40 
 

 
Computing time (s) 

 
578.5 

 

 
6716.7 

 

 
8018.2 

 
Table 1. Performance of analysed parameters. 

 
CONCLUSIONS 

An algorithm for reconstructing the armour cubes from rubble 
mound breakwaters using LiDAR data is presented. A key 

property of the algorithm is the minimal user interaction 
needed. It works with a few input parameters and is able to 
extract accurately well-defined cube primitives. The algorithm 
is divided in three main steps: normal vector computation, plane 
segmentation, and cube reconstruction. 
 
Normal vector computation is done using PCA analysis of the 
k-nearest neighbours.  
 
Plane segmentation starts with a seed point located in a region 
with small variance and searches for the points inside 
predefined radium with normal vector differences lower than a 
predefined factor. 
 
Cube reconstruction is based on the intersection of three planes 
to obtain the first vertex. Planes can be complete or not. The 
other seven vertexes of the cube are defined using the length of 
the armour cube. It takes into account the distances between the 
vertexes and the centroids of the segmented planes. 
 
Accuracy assessment was performed by comparison with 
manually drawn cubes of three point clouds cropped from the 
original one. Differences range between 7 cm and 15 cm. The 
number of detected cubes is around 56 % in point clouds 1 and 
2 and 32 % in point cloud 3. A monitoring of more than 50 % 
of the cubes of the breakwaters seems to be a powerful tool to 
improve maintenance operations in rubble mound breakwaters. 
 
Computing time is evaluated resulting in 578.5 s for point cloud 
1, 6716.7 s for point cloud 2, and 8018.2 s for point cloud 3. It 
typically increases with the number of detected cubes: 9 cubes 
in point cloud 1, 25 cubes in point cloud 2, and 16 cubes in 
point cloud 3. However, the number of points is not the only 
parameter and other aspects as those related with the number of 
cubes that collide must be taken into account. 
 
The curved area of point cloud 3 does not show good 
performance in cube reconstruction. This fact probably comes 
from the cubes that are aligned with each other. 
 

ACKNOWLEDGEMENTS 

Authors want to give thanks to the Xunta de Galicia 
(CN2012/269; R2014/032) and Spanish Government (Grant No: 
TIN2013-46801-C4-4-R; ENE2013-48015-C3-1-R; FPU: 
AP2010-2969). 

 

REFERENCES 

Altomare, C., Crespo, A., Rogers, B., Domínguez, J., Gironella, 
X., and Gómez-Gesteira, M. 2014. Numerical modelling of 
armour block sea breakwaters with smoothed particle 
hydrodynamics. Computers and Structures 130, 34 – 45. 
 
Corredor, A., Santos, M., Peña, E., Maciñeira, E., Gómez-
Martín, E., Medina, J. R. 2013. Designing and constructing 
cubipod armored breakwaterse in the ports of Malaga and Punta 
Langosteira (Spain). Proceedings of Coasts, Marine Structures, 

and Breakwaters 18 – 20. 
 
González-Jorge, H., Puente, I., Roca, D., Martínez-Sánchez, J., 
Conde, B., Arias, P. 2014. UAV photogrammetry application to 
the monitoring of rubble mound breakwaters. Journal of 

Performance of Constructed Facilities. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsarchives-XL-3-W3-9-2015 

 
12



 

Huang, J. and Menq, C. H. 2001. Automatic data segmentation 
for geometric feature extraction from unorganized 3D 
coordinate points. IEEE Transactions on Robotics and 

Automation 17(3): 268 – 279. 
 
Liang, J., Park, F., and Zhao, H. 2013. Robust and efficient 
implicit surface reconstruction for point clouds based on 
convexified image segmentation. Journal of Scientific 

Computing 54(2-3), 577 – 602. 
 
Lindenbergh, R., Pfeifer, N., Rabbani, T. 2005. Accuracy 
analysis of the Leica HDS3000 and feasibility of tunnel 
deformation monitoring. Proceedings of the ISPRS Workshop of 

Laser Scanning 36, 1 - 6. 
 
Puente, I., Sande, J., González-Jorge, H., Peña-González, E., 
Maciñeira, E., Martínez-Sánchez, J., Arias, P. 2014. Novel 
image analysis approach to the terrestrial LiDAR monitoring of 
damage in rubble mound breakwaters. Ocean Engineering 91, 
273 – 280. 
 
Remondino, F. 2003. From point cloud to surface: The 
modeling and visualization problem. International Archives of 

Photogrammetry, Remote Sensing, and Spatial Information 

Sciences 34(5), W10. 
 
Rusu, R. B. 2010. Semantic 3D object maps for everyday 
manipulation in human living environments. KI-Künstliche 

Intelligenz 24(4), 345 – 348. 
 
Yoon, M., Lee, Y., Lee, S., Ivrissimtzis, I., Seides, H. P. 2007. 
Surface and normal ensembles for surface reconstruction. 
Computer Aided Design 39(5), 408 – 420. 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: S. Oude Elberink, A. Velizhev, R. Lindenbergh, S. Kaasalainen, and F. Pirotti 

doi:10.5194/isprsarchives-XL-3-W3-9-2015 

 
13




