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ABSTRACT: 
For many applications within urban environments the combined use of images taken from the ground and from unmanned aerial 
platforms seems interesting: while from the airborne perspective the upper parts of objects including roofs can be observed, the 
ground images can complement the data from lateral views to retrieve a complete visualisation or 3D reconstruction of interesting 
areas. The automatic co-registration of air- and ground-based images is still a challenge and cannot be considered solved. The main 
obstacle is originating from the fact that objects are photographed from quite different angles, and hence state-of-the-art tie point 
measurement approaches cannot cope with the induced perspective transformation. One first important step towards a solution is to 
use airborne images taken under slant directions. Those oblique views not only help to connect vertical images and horizontal views 
but also provide image information from 3D-structures not visible from the other two directions. According to our experience, 
however, still a good planning and many images taken under different viewing angles are needed to support an automatic matching 
across all images and complete bundle block adjustment. Nevertheless, the entire process is still quite sensible – the removal of a 
single image might lead to a completely different or wrong solution, or separation of image blocks. 
In this paper we analyse the impact different parameters and strategies have on the solution. Those are a) the used tie point matcher, 
b) the used software for bundle adjustment. Using the data provided in the context of the ISPRS benchmark on multi-platform 
photogrammetry, we systematically address the mentioned influences. Concerning the tie-point matching we test the standard SIFT 
point extractor and descriptor, but also the SURF and ASIFT-approaches, the ORB technique, as well as (A)KAZE, which are based 
on a nonlinear scale space. In terms of pre-processing we analyse the Wallis-filter. Results show that in more challenging situations, 
in this case for data captured from different platforms at different days most approaches do not perform well. Wallis-filtering 
emerged to be most helpful especially for the SIFT approach. The commercial software pix4dmapper succeeds in overall bundle 
adjustment only for some configurations, and especially not for the entire image block provided.  
 

1. INTRODUCTION 

Multiplatform image data is very interesting for many 
applications. Unmanned Aerial Vehicles (UAV) are getting 
more mature and fully automatic processing workflows are in 
place which help turning the image set into point clouds or more 
advanced products. At the same time and due to the availability 
of easy-to-use end-user software also hand-held cameras are 
used by researchers from a variety of disciplines to model 
objects. Examples are as-is-modelling of buildings, 
archaeology/cultural heritage, cadastre/city modelling. In order 
to model the outer faces of buildings entirely, with great detail, 
and with a minimum amount of occlusions, the object should be 
photographed from many different viewpoints. Those should be 
at different heights and enclosing a variety of angles with the 
object. In case of complex architectures such as intrusions, 
extrusions (like balconies), a UAV can offer favourable 
viewpoints to avoid or minimize occlusions. In addition the roof 
should be captured from conventional nadir-looking views.  
The processing pipelines proposed and implemented in research 
and commercial products work well, especially when the 
following conditions are met: 
 
• Approximate position and viewing direction of cameras are 

known: to more reliably find matching mates for each 
image and exclude unlikely matches. 

• Sequence of image acquisition resembles overlapping 
configuration (adjacent images also have similar time 
stamp) 

• Viewing direction change between overlapping images is 
small (i.e. perspective distortion is small): because most 
key point descriptors, or image matchers, are not invariant 
with respect to large perspective distortions. 

• Lighting conditions for overlapping images are similar: 
again, some key point descriptors are sensitive to global 
grey value distribution changes 

• Object does not show repetitive patterns: similarity 
between areas in the object will lead to wrong matches. 
Especially in buildings with symmetrical façade-object 
arrangements (windows/doors) this is a problem. 

In practice, however, an image block configuration might not be 
perfect: GPS which is used to estimate approximate camera 
location might compute largely wrong positions because of 
signal obstruction and multipath effects in urban canyons, or 
close to buildings in general. In addition, when several image 
blocks, taken from different platforms are merged, the valuable 
adjacency information from the image capture time gets lost, at 
least for matches between the blocks. 
When object planes enclose large angles – like right-angled 
building facades – special attention has to be taken when images 
are captured to ensure that the image matcher still finds enough 
valid tie points in adjacent images. The lighting might become 
problematic, as well. First, when we do not have diffuse light, 
parts of the building may be covered by strong shadow, e.g. 
casted by extrusions of the building itself. Second, depending 
on solar elevation angle, building height and camera height, 
glare might lead to underexposure of building details, and third, 
when images from different sensors are matched. Repetitive 
patterns which are standard in many architectural designs are a 
problem especially when images at very high resolution are 
used: single shots then only cover parts of the façade and the 
context might get lost completely: when a single window is 
photographed on two images it might not be possible to decide 
whether this is actually the same or just another window of the 
same type. 
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Figure 1: Overview on benchmark dataset. A,C,D,F: UAV images from different locations and under different angles, B: GPS-
based image position approximations overlaid on google earth view (red dots), GCP/CPs (crosses), magenta and turquoise lines: 
used facades for software test, section 4, subset a and b, respectively, E: terrestrial image. D’, E’, F’: cut outs of the respective 
image.  

A challenging dataset, composed of terrestrial and UAV-based 
images is provided to the research community in the framework 
of the multi-platform photogrammetry benchmark (Nex et al., 
2015), which is supported by the ISPRS scientific initiative 
2014-20151. 
 
One of the released datasets is a combined UAV/terrestrial 
image block, and the task for participants is to co-register the 
images and fine adjust the bundle block using ground control 
points provided. In Fig. 1 some overview is given including 
sample images. Fig. 1 B) shows the approximate positions of 
images around the centre building (municipality hall in 
Dortmund, Germany). In the northern part, where images were 
captured in a narrow street, the positions are largely off the right 
location. Images A,D,E,F show the same part of the building 
from different perspectives. Although the same camera (Sony 
Nex 7) was used for both – terrestrial image captures and on 
board the UAV – the colour and grey value distribution is quite 
different, in particular between terrestrial shots (E) and the 
UAV-based images. In addition, the sky/clouds are reflected in 
the windows in the terrestrial shots. During the terrestrial 
acquisition the weather was very bad – the sky was cloudy and 
the campaign was interrupted frequently by heavy rain. During 
that day it was not possible to operate the UAV. Therefore, the 
acquisition has been conducted about 4 weeks later. Then the 
weather was very good, led to no diffuse light and clear sky 
(compare D and E). As far as the building architecture is 
concerned the window and other elements do not show large 
variations, but large repetitions. Note also that image C) shows 

1http://www2.isprs.org/commissions/comm1/icwg15b/benchma
rk/data-description-Image-orientation.html 

another façade of the building, but actually the window 
elements and their arrangement are similar to the façade shown 
in A,D,E,F. 
 
In this paper we present experiments and their results focussing 
on the issues: how do current state-of-the-art tie point matching 
algorithms perform on this dataset and which influence does 
image pre-processing have? To this end, several image 
combinations (same platform/across platform) are matched. We 
perform outlier removal based on a RANSAC approach 
exploiting the epipolar constraint in stereo matches, using the 
essential matrix. The Wallis filter (Wallis, 1976) was applied in 
a separate experiment. Apart from testing different stereo 
matching techniques we analyse the performance of one 
software package. The entire structure-from-motion workflow 
including image matching and bundle adjustment is tested. The 
solution offered by pix4d (pix4dmapper) is used for those tests. 
 

2. RELATED WORK 

In literature we find a multitude of approaches to tie point 
extraction, description and matching. The aim of this paragraph 
is not to give a comprehensive overview, the interested reader 
might want to refer to (Dahl et al., 2011, Levi and Hassner, 
2015) for some general overview. Urban and Weinmann (2015) 
tested state-of-the-art key point extractors and detectors in the 
context of co-registration of terrestrial laser scans. To this end 
the authors compared the keypoint extractors SIFT, SURF, 
ORB and A-KAZE on depth-images derived from the single 
scans. Used approaches are of a different type in the sense that 
ORB is based on corner detection, and the others extract blobs 
in the scale space. As far as keypoint descriptors are concerned 
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we can distinguish between gradient-based descriptors, finally 
encoded in floating numbers, and descriptors computed from 
intensity differences and encoded as binary strings. The latter 
one is supposed to be more computational efficient, but many of 
those are known to be more sensitive to noise. In addition to the 
aforementioned key point extractors/detectors we add the SIFT-
based ASIFT and the KAZE approaches when we evaluate the 
performance of the methods for the benchmark dataset. One 
pre-requisite for all used descriptors is that they are both, scale 
and rotation invariant.  
 
2.1 SIFT/ASIFT 

The Scale Invariant Feature Transform SIFT (Lowe, 2004) 
became a standard in computer vision and photogrammetry. It 
works in scale space which is derived by image convolution 
with a Gaussian kernel. Extrema in the DoG (Difference-of-
Gaussian) constitute keypoint candidates. After removing 
candidates along edges or in low contrast regions, a higher order 
function is fitted to derive sub-pixel accuracy. Scale invariance 
is achieved implicitly through the realisation of a scale pyramid. 
The keypoint descriptor is derived  by computing gradient 
histograms in all directions. The area around the point is 
subdivided into 4x4 regions and in each region the orientation 
histogram is computed in 8 angular bins. Those 4x4x8 bins are 
concatenated and stored as a 128-dimensional descriptor, along 
with the dominant scale. Since the main gradient direction is 
derived as well and rotations are normalised accordingly, the 
descriptor is rotation invariant.  
Morel and Yu (2009) extended the SIFT approach in order to 
achieve invariance under affine image transformations (ASIFT-
affine SIFT). To this end, the images are stepwise rotated 
around both axis. For each of such re-projections SIFT points 
are computed and described.  
 
2.2 SURF 

In contrast to SIFT, the Speeded-Up Robust Features SURF 
detector (Bay et al., 2008) does not work with the DoG, but 
with the Hessian matrix in the scale space pyramid. Local 
maxima of the matrix determinant in image- and scale space 
constitute candidates for keypoints. Similar to SIFT, uncertain 
hits are removed and accuracy is increased through sub-pixel 
interpolation. Rotation invariance of the descriptor is also 
derived by first computing the dominant gradient direction. 
Image subdivision in 4x4 regions is also done similar to SIFT, 
but in this case Haar wavelets are computed to describe the 
local gradients in the frequency domain. Four descriptors per 
sub region are computed, leading to 4x4x4=64 entries per point. 
 
2.3 ORB 

The full name of the acronym ORB (Rublee et al, 2011), 
namely Oriented FAST and rotated BRIEF, already tells that 
this is a combination of an improved version of the FAST 
feature detector (Rosten and Drummond, 2005) and the 
rotational invariant BRIEF (Calonder et al., 2010) descriptor.  
The FAST (Features from Accelerated Segment Test) descriptor 
finds keypoints basically by comparing intensity differences 
around each pixel in the image of interest, where the pattern of 
tests has a circular shape. The two main extensions within ORB 
are that those detections are done in scale space, i.e. adding 
scale invariance, and that rotation angle information is added. 
As far as keypoint description is concerned, the authors of ORB 
added rotation invariance and unsupervised learning to select an 
ideal pairing of pixel samples to the BRIEF descriptor. 
 

2.4 KAZE/A-KAZE 

One basic idea behind the KAZE (Alcantarilla et al., 2012) 
point extractor is to use a non-linear scale space to enable scale 
invariance. Compared to the Gaussian scale space derivation as 
done by other approaches, a non-linear scale space, in this case 
realized by nonlinear diffusion filtering, preserves edges while 
reducing noise at the same time. In terms of computational time, 
however, it is reported that the employed additive operator 
splitting (AOS) is quite inefficient. Therefore, in Alcantarilla et 
al. (2013) the authors propose A-KAZE, where the A stands for 
accelerated. Here, the fast explicit diffusion (FED) is used to 
compute the scale representation.  
Similar to SURF, in both cases, the Hessian matrix is employed 
to find salient points. For KAZE, point description is 
undertaken by a modified variant of SURF (M-SURF, Agrawal 
et al., 2008) adapted to the non-linear scale space. AKAZE, 
however, utilizes a binary description based on a modified 
version of the Local Difference Binary method proposed by 
Yang and Cheng (2012). 
 
2.5 Matching and inlier filtering 

In order to match keypoints for each candidate in an image the 
closest mate in terms of descriptor-space distance is searched 
for. This descriptor-based matching is then followed by the so-
called ratio test. The distance in descriptor space between the 
best and second best match is computed, and the ratio should 
not exceed a certain threshold. In this way outliers can be 
removed since the assumption is that also in the descriptor space 
a valid match should not be isolated. 
In order to enhance filtering inliers, a two-step approach is 
pursued, exploiting the perspective camera model: since the 
camera models are known for the benchmark description, a 
RANSAC-based filtering is done using an estimation of the 
essential matrix E. To this end, the image coordinates are first 
normalized employing the camera calibration matrix K (Hartley 
and Zisserman, 2008). The essential matrix can be computed 
using the 5-point algorithm by Nistér (2004) or Li and Hartley 
(2006). We used the MATLAB implementation provided by the 
latter. In a second step the filtered points are again processed by 
a RANSAC-based filtering using the fundamental (F)-matrix 
estimation. We found out that using only F-matrix-based 
filtering in cases with a large number of outliers might not 
converge. In those cases the geometric constraints imposed by 
the essential matrix help. However, since the camera calibration 
might not be known too well, we also observed that still a 
significant number of outliers are present afterwards. Therefore, 
an F-matrix-based filtering applied to the remaining matches 
reduces the number of outliers considerably.  
 
2.6 Image enhancing prior to point extraction 

As far as image pre-processing is concerned Jazayeri and Fraser 
(2008) reported that an image enhancement with the Wallis 
filter (Wallis, 1976) helped to significantly improve corner 
point detection. Therefore, after testing the tie point matching 
with the original images we will perform the same with Wallis-
filtered images on selected pairs. This filter is an adaptive 
contrast filter, working in local windows. In contrast to many 
other global filters, image details will remain and contrast and 
brightness is balanced over the entire image. 
 

3. TIE POINT MATCHING 

In order to test the 6 point extractor/descriptor combinations for 
the benchmark test data, a setup has been defined as follows. 
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We selected 10 different image combinations which reflect all 
the challenges we are facing in this dataset as mentioned in 
section 1. In Figures 2 and 3, the four selected terrestrial and 
UAV images, respectively, are shown.  
 

  
2315 2342 

  
2392 2793 

Figure 2: Terrestrial images used for the tests 
 
3.1 Stereo pair matching in original images@25% 

The images are resampled to 25% of the original size. This is 
simply done for practical reasons: the computation time we 
need to perform all the experiments can be reduced. We may 
assume that the number of matches is smaller compared to a 
higher resolution, so the visualization of matches is better 
legible. Anyhow, we believe that this reduction of resolution is 
valid since we are only interested in the relative performance 
between the approaches, given several typical stereo image 
combinations. 
However, in a later step we will show experiments with full 
resolution images for selected stereo pairs. We also add results 
from matching of pre-processed images, in particular after 
Wallis filtering. 
All experiments have been conducted with the 
Matlab/OpenCV2 implementation of the approaches used. An 
exception is ASIFT for which we use the C-implementation 
provided by the authors (Morel and Yu, 2009). 
 

  
7055 7106 

  
7126 7156 

Figure 3: UAV images used for the tests 
 
Pair 1 – within terr-1: 2315- 2342 (standard) 
In Fig 4., the upper part the matches of SURF are displayed 
while in the lower part for each approach the number of inlier 

2 OpenCV 3.0, including the API MEXOpenCV to use OpcnCV 
functions in Matlab: https://github.com/kyamagu/mexopencv 

matches after E-/and F-based filtering (blue) is shown and 
compared to the real number of inliers (from visual inspection). 
Compared to all other pairs, this is the simplest case for 
matchers: a similar scale, similar viewing direction, just small 
baseline, same time of capture, i.e.  no illumination changes. In 
terms of the number of reliable matches, the SURF approach 
outperforms all the others; however, all methods would give 
enough reliable matches for practical applications. 
 

 

 
Figure 4: pair-1 results. Upper: SURF matches, lower: for each 
number of matches after E-/and F-based filtering (blue) and 
real inliers (red)3 
 
Pair 2 – within terr-2: 2392-2342 (perspective/rotation) 
This pair is a bit more challenging than the first one in two 
respects: the viewpoint and image rotation changes in a way to 
include the 2nd facade. The rotation is quite small, though. In 
addition the orientation of one camera changes from landscape 
to portrait mode. This is done in close range projects for two 
reasons. Sometimes the opening angle of the camera in 
landscape mode does not allow for acquiring the façade in the 
entire vertical direction. Additionally, by rotating the camera by 
90° the self-calibration of interior parameters is supported, in 
particular the estimation of the principal point.  

 

 
Figure 5: pair-2 results. Upper: SURF matches, lower: for each 
number of matches after E-/and F-based filtering (blue) and real 
inliers (red) 
 
The result (see Figure 5) show that all matchers yield much 
fewer valid tie point connections compared to pair 1. Again 

3 A visualization of matches from all six approaches for all 10 
matching pairs is available as additional material on research 
gate, see http://www.researchgate.net/profile/Markus_Gerke  
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SURF delivers most inliers, but especially the A-KAZE inliers 
might be too few in a practical setup. 
 
Pair 4 – within UAV-1: 7106 -7126 (standard) 
In this case, we test a pair similar to pair 1 in the sense that it 
resembles a simple situation: Similar viewing direction of 
images, with another viewpoint shifted in façade direction. 
Similar to pair 1, SURF and ASIFT provide the most matches, 
but SURF only achieved a comparable result to SIFT (Fig. 6).   
 

 

 
Figure 6: pair-4 results. Upper: ASIFT matches, lower: for 
each number of matches after E-/and F-based filtering (blue) 
and real inliers (red) 
 
All other matchers provide a similar number of valid matches as 
in the example of pair 1. Another remarkable observation is that 
the ORB and A-KAZE matches are not as well distributed as 
the matches from the other methods 
 
Pair 5 – within UAV-2: 7106-7055 (oblique- horizontal) 
This pair is typical for UAV image blocks in the context of 3D 
building modelling: the camera is tilted to include different 
angles with the nadir direction. In this way, horizontal views 
(for façades) can be connected to vertical views (for the roof). 
In addition more complex object structures like in- or extrusions 
can be modelled since occlusions get minimized.  
 

 

 
Figure 7: pair-5 results. Upper: ASIFT matches, lower: for 
each number of matches after E-/and F-based filtering (blue) 
and real inliers (red) 
 
Again, the ASIFT result is significantly better than the others 
(Fig. 7). While standard SIFT still yields around 50% of the 
number of ASIFT matches, the number of real inliers from the 

others is much less. Especially (A)KAZE do not deliver valid 
matches at all.   
 
Pair 6 – within UAV-3: 7106-7156 (oblique-vertical) 
Again, this dataset is typical for 3D building modelling, like 
pair 5, but this time a nadir view is connected to the slanted one.  
 

 

 

 
Figure 8: pair-6 results. Upper: SIFT, middle: ORB, lower: for 
each number of matches after E-/and F-based filtering (blue) 
and real inliers (red) 
 
Although the nature of perspective transformation imposed by 
the different camera nick is similar as in the previous case, here 
many more matches in general can be found – all methods yield 
around 100 valid matches, around double compared to SIFT. 
Remarkably SIFT delivers more matches than ASIFT. 
However, it is also visible from the match visualization (Fig. 8) 
that the distribution of matches from (A)SIFT is much better 
than that one from the other approaches – ORB, AKAZE and 
KAZE just return matches in a very small area of the scene. 
 
Pairs 3 and 7 – within terr-3: 2315 -2793  and within UAV-
4: 7055-7336 (wrong pair) 
The object arrangement is quite similar to pair 2 and pair 5, 
respectively. However, the images of the pair show different 
parts of the building, so each match is a false match. Therefore 
in the bar chart (Fig. 9) the “real” inliers are omitted since there 
cannot be any real inliers.  
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Figure 9: pair-3 results. Upper: SIFT matches for terrestrial 
wrong matches, lower: for each number of matches after E-/and 
F-based filtering (blue) (left: terrestrial, pair-3, right: UAV, 
pair-7) 
 
Although all extractor/descriptor combinations deliver only a 
few inlier matches after E-/F-filtering, it is remarkable that for 
instance AKAZE does not produce fewer matches compared to 
pair-2 where a valid image combination was used. When the 
matches are visualized (Fig. 6), one can see that most of the 
matches are at window frame corners, and columns. For the 
airborne case, however, ASIFT-based matching did not result in 
inliers. 
 
Pair 8 – across terr/UAV-1: 2315-7055 (similar viewing 
direction) 
From a geometrical point of view this pair is standard and thus 
comparable to pair 1. The building façade is photographed with 
the same camera, from the same direction, only the UAV took a 
higher altitude as the terrestrial shot. However, this pair is 
special in the sense that the illumination of the scene is quite 
different, see the description of the acquisition campaign in 
section 1.  

 

 

 
Figure 10: pair-8 results. Upper: SURF, middle: SIFT, lower: 
for each number of matches after E-/and F-based filtering 
(blue) and real inliers (red) 
 
Achieved results are poor, cf. Fig. 10: although in all cases 
inliers remain after RANSAC-based filtering, all of them are 
invalid, except for the SURF results which are still acceptable. 
However, with about only 20 inliers, this result is worse 
compared to pair 1 (more than 600). 
 
Pair 9 – across terr/UAV-2: 2315-7106 (horizontal- oblique) 
This combination is similar to pair 5 (within UAV-2): a 
horizontal view is combined with a slanted view from the air. 
Here, basically all matches fail. Almost all remaining inliers 
after RANSAC filtering (10 to 15) are actually wrong matches. 
When comparing to the previous pair, this result is reasonable 
since the geometric transformation imposed by the camera tilt 
makes the task not easier, and in addition the images show the 
same unfavourable radiometric differences as in pair 8.  

 
Pair 10 – across terr/UAV-3: 2315-7126 (horizontal- 
oblique) 
The idea for this combination is the same as for pair 9: a 
classical terrestrial view is combined with a slanted oblique 
view. This pair, however, is even more challenging than the 
previous one since the common area is more towards the 
background of the UAV image. Hence, the scale difference 
between both images is quite large. As one could expect, no 
approach produced usable results. 
 
3.2 Alternative setups 

In order to experimentally analyze the impact of image 
rescaling and Wallis filtering, we performed the same 
experiments with a selected pair (pair 8) again. We selected pair 
8 because on the one hand it seems to be challenging as the two 
images were captured by the two different platforms at different 
days, but on the other hand - from a geometrical point of view -  
it should not be too difficult (see description above).  
 
Full resolution matching 
In practical projects it is important to reach the highest 
geometric accuracy, therefore it is advised to match full 
resolution imagery. In our experiments, however, we found out 
that – at least in the used setups and implementation – there is 
no significant improvement in terms of real inliers. Although 
the number of keypoints grows almost linearly with the image 
resolution, the absolute number of inliers, i.e. not the inlier 
ratio, remains somewhat stable for all approaches. 
 
Wallis filtering  
After Wallis filtering, the matching result for pair 8 improved 
significantly, but only for SIFT matching. While SIFT does not 
produce a single real inlier in the original images (cf. Fig. 10, 
middle), it results in more than 100 real inliers in the Wallis-
filtered images, see Fig. 11. 

 
Figure 11: pair-8 results: SIFT matching in Wallis-filtered 
images.  
 
 
3.3 Summary of tie point matching results 

The results give some interesting insights to the performance of 
the selected tie point extractors and matchers. Since in terms of 
outlier removal and image scale we used the same settings for 
all approaches, we can at least compare the results relatively to 
each other. For the standard case, namely to match images taken 
from the same sensor and platform, and showing similar 
illumination conditions, all matchers perform satisfactorily, see 
pairs 1 and 4. Under certain image transformations other than 
similarity, most approaches show difficulties. In those cases 
ASIFT and SURF performed best, but also SIFT works well, 
especially when nadir UAV images are combined with slanted 
UAV views. When it comes to image pairs across platforms, 
and in this case being taken under quite different illumination 
conditions, the number of inliers drops drastically. Only in the 
simplest combination, when the geometry of image acquisition 
is similar (pair 8), a fairly decent result was obtained from 
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SURF only. We might suspect that the employed Hessian 
matrix is less sensitive to large illumination changes. 
After Wallis-filtering, only the SIFT result improved 
significantly – from no real inliers in the original image to 
around 100 in the Wallis-case. To use the full resolution of the 
original image, in turn, does not lead to an improvement of 
descriptor-based matching. 
 

4. STRUCTURE-FROM-MOTION TESTS 

When end-users are working with software packages they often 
have no influence on the entire workflow. Especially the 
keypoint extraction and description is normally hard coded and 
the algorithm behind is not disclosed. We tested the initial 
performance of such software, in particular with the challenging 
data of this benchmark. To this end, the pix4dmapper by Pix4d4 
has been analysed. For all experiments we did not use the 
ground control point information provided in the benchmark 
dataset in order to be independent from external tie information.  
 
We undertook the following experiments with this software. 
First, we defined three sub-datasets, considering only terrestrial 
or UAV images as well as both datasets:  
a) all images showing only one façade of the building (East 
façade, the same side as used for the tie point matching 
experiments); 
b) three façades: all terrestrial images except for North side 
where the largest problem with initial GPS location is observed. 
This set, however, includes already all UAV images; 
c) entire dataset. 
The location of subsets for a) and b) are also indicated in Figure 
1, B).  
 
By analyzing subset a), we can focus only on the across-
platform matching and bundle adjustment performance since the 
approximate GPS location is reasonable for all images. Also for 
subset b), the GPS locations are good, but the geometry of 
buildings is more challenging since multiple oriented façades 
plus roof and ground planes are involved. The full dataset 
(subset c)), finally, is the most challenging since the poor GPS 
locations from the terrestrial images showing the North façade 
are included. For all subsets we performed several software 
runs: only terrestrial, only UAV, combination terrestrial and 
UAV. This was done twice: on original and Wallis-filtered 
images, and on the first pyramid (half image resolution) only.   
 
Configuration original Wallis 
UAV only   
UAV_set a) – East Facade   
UAV_set c) – all   
Terrestrial only   
Terrestrial_set a) – East Facade   
Terrestrial_set b) – East, South, West   
Terrestrial_set c) – all   
Combinations   
UAV_set a) and Terrestrial_set a)  () 
UAV_set c) and Terrestrial_set b)   
UAV_set c) and Terrestrial_set c)   
Table 1: Experimental results with pix4dmapper on several 
image block subsets. 
 

4 http://www.pix4d.com 

Table 1 gives an overview on the results obtained. The tick 
mark indicates that all images are adjusted in one connected 
bundle block. The cross mark is used when the block got 
divided into sub blocks. There is one case (first combination 
with Wallis-filtered images), where pix4dmapper resulted in a 
stable block, but 5 UAV images got excluded from the solution. 
 
The software had no problems when only the UAV images were 
used. The quality report reveals that images are well connected, 
see Figure 12. The results shown are from set c (all UAV 
images), using the original images. Using the Wallis-filtered 
images yields a similar result. 
 

  
Figure 12: Image connectivity (left), tie point cloud and camera 
locations (right), all UAV images 
  
The terrestrial image set was solved without bigger problems as 
expected in the one-façade-only case (set a). The next 
challenging set b was only solved as one image block when the 
original images got employed. The entire terrestrial image 
block, however, (set c) was not adjusted successfully at all. This 
observation might support the assumption that good GPS 
location observations are necessary to support the entire 
matching and adjustment process. 
 
A typical block configuration is shown in Figure 13: the 
terrestrial block got separated; in particular the images from the 
North façade are not connected to the others.  

  
Figure 13: non-connected terrestrial image-block, Wallis-
filtered images 
 
For the combined UAV- and terrestrial image configurations, 
only the most simple one (set a) got solved, but only for the 
Wallis-filtered images and even in that case some cameras are 
not included in the block, cf. Fig. 14. This observation 
somehow backs up our observation from section 3, namely that 
the matching across the multi-platform dataset, especially the 
fact that the illumination is quite different, challenges 
commercial state-of-the-art software, as well.   
 

5. CONCLUSIONS 

It turns out that the ISPRS benchmark dataset is a challenging, 
but at the same time also realistic example for close range/UAV 
image blocks. State-of-the-art tie point matching approaches 
show good results in some published work. However, in this 
case still the traditional SIFT, in combination with Wallis 
filtering outperforms all other approaches for a mixed-platform 
and illumination image pair. The selected images are all from 
the released dataset, i.e. all the experiments can also be 
conducted by interested researchers. 
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Figure 14: UAV and terrestrial, set a, Wallis-filtered image. 
Upper left: image connections, upper right: tie point cloud and 
camera locations (red: not adjusted), lower: densified point 
cloud. 
 
 
Using pix4dmapper we found out that the entire block of images 
gets split-up into several sub-blocks. Our assumption is that one 
reason for this failure is a combination of a low number of inter-
platform image matches, with a bad approximate geo-location 
for images, especially in the terrestrial part. 
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