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ABSTRACT:

This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves
as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of
autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the
conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very
quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which
is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also
fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind
velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major
improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when
satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a
few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means
that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home
position without any signal that depends on vehicle environment.

1. INTRODUCTION

This paper is a shortened version of (Khaghani and Skaloud, 2016).
For more details and complementary results and discussions, read-
ers are encouraged to refer to (Khaghani and Skaloud, 2016) here
and on several occasions throughout the text.

1.1 Motivation

The dominant navigation system for small UAVs today is based
on INS/GNSS integration (Bryson and Sukkarieh, 2015). GNSS
provides absolute time-position-velocity TPV data for the plat-
form, at relatively low frequency of only a few Hz, while INS
provides relative position and attitude data at much higher fre-
quencies than GNSS, typically at few hundreds of Hz. The in-
tegration of these data types can provide solutions with enough
sort-term and long-term accuracy. However, the problem arises
when GNSS outage happens (Lau et al., 2013), which is not a
rare situation and can happen due to intentional corruption of
GNSS signals (jamming and spoofing), or loss of line of sight to
the satellites or interference in satellite signal reception (Groves,
2008). In such cases, the navigation solution is based on stand-
alone INS with possible aiding from navigation aids such as baro-
metric altimeters. The accuracy of the data provided by INS is
directly determined by the quality of the IMU that is used in the
system. The long-term accuracy of 3D inertial coasting based on
small and low-cost IMUs available for small UAVs is so low that
after only a minute of GNSS outage, the position uncertainty is
too far from being of practical use. In other words, unless this
drift is controlled by other means, the UAV is completely lost
in space or may even become dynamically unstable. This may
cause serious problems especially in non-line-of-sight flights and
can lead to loss of the UAV with possible damages to objects or
people on ground.
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1.2 Available solutions

Many researches have been conducted to address the problem of
rapid drift of navigation solution during GNSS outage conditions
of minutes. Some have tried to improve INS error modeling us-
ing advanced techniques (Noureldin et al., 2009), and some have
chosen to employ additional sensors to aid the system (Yun et
al., 2013). The first approach does not still provide sufficiently
good improvements for aerial vehicles. The solutions related to
the second approach add cost and complexity to the system, and
more importantly, their performance depends on environmental
conditions that are not met all the times, which challenge the au-
tonomy of the system. A widely used (yet partial) solution of the
second category is employing vision based methods that provide
relative or absolute measurements to inertial navigation (Wang et
al., 2008) (Angelino et al., 2012). Apart from adding extra weight
and hardware and software complications, their correct function
requires some prerequisites on light, visibility, and terrain tex-
ture. For example, they might not work at night or in foggy con-
ditions or over ground with uniform texture (vegetation, water,
snow, etc.).

Therefore, it is a challenge to find a solution that mitigates the
quick drift of low-cost inertial navigation during GNSS outage
in airborne environment while preserving the autonomy of the
system, and avoiding extra cost and additional sensors. Finding
a suitable solution can be extremely beneficial for increasing the
reliability of autonomous navigation of small UAVs.

There have been some previous research activities related to VDM
integration to improve the navigation accuracy, especially in GNSS
outage conditions. However, most of the proposed solutions em-
ploy the kinematic modeling (INS) as the main process model
within the navigation filter (Bryson and Sukkarieh, 2004) (Vas-
concelos et al., 2010) (Dadkhah et al., 2008), while using the
VDM output either in the prediction phase or in the update phase
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within this filter. Such approach relies totally on IMU and there-
fore is not robust if IMU failure occurs. Some authors have
considered both INS and VDM at the same level within the fil-
ter (Koifman and Bar-Itzhack, 1999), but still the navigation so-
lution at the end is based on filtered INS output. Therefore, IMU
failure disables navigation in this case, as well. In many cases
the presence of wind is not considered (Bryson and Sukkarieh,
2004) (Vasconcelos et al., 2010) (Dadkhah et al., 2008) (Cro-
coll et al., 2014) (Sendobry, 2014), or the capability of correct-
ing the parametric errors in dynamic model on-flight is not pro-
vided (Bryson and Sukkarieh, 2004) (Vasconcelos et al., 2010)
(Dadkhah et al., 2008), or the VDM is included only partially
within the filter (Crocoll et al., 2014) (Crocoll and Trommer,
2014) (Müller et al., 2015). Some researchers also consider IMUs
of higher accuracy (Koifman and Bar-Itzhack, 1999), which is
impractical for small UAVs in terms of size/weight and cost.

1.3 Proposed approach

In this research, a solution is proposed that integrates VDM with
inertial navigation for its autonomous part, and GNSS or other
aiding when available. It improves the accuracy of navigation and
significantly mitigates the drift of navigation uncertainty during
GNSS signal reception absence. The main idea of this concept
is to benefit from the available information of vehicle dynamic
modeling and control input within the navigation system that im-
plicitly rejects the physically impossible movements suggested
by the IMU. Significant improvements in navigation solution ac-
curacy in case of GNSS outages are reported via simulation stud-
ies. The proposed solution requires no additional sensors, so it
preserves the autonomy of the navigation system when GNSS
outages happen. Adding no extra sensors also means no addi-
tional cost and weight on the platform, which is an important
aspect in small UAVs.

A key feature in the proposed solution is VDM acting as the main
process model within the navigation filter, where its output is up-
dated with raw IMU observations and if available, GNSS mea-
surements. Such architecture avoids the complications of multi-
process model filters (Bryson and Sukkarieh, 2004) (Koifman and
Bar-Itzhack, 1999) and thus leads to simpler filter implementa-
tion, smaller state vector, and less computation cost. It is also
preferred over the architectures in which INS is the main pro-
cess model that gets updated by VDM, due to the following rea-
sons. In case of IMU failure, the proposed architecture can sim-
ply stop using IMU observations, while the architecture with INS
as the main process model will fail. On the other hand, the high
frequency measurement noise in IMU data causes divergence in
navigation solution when integrated within the navigation filter,
as analytically shown in (Schwarz and Wei, 1994). The mechani-
cal vibrations on the platform also affect the IMU measurements,
but not the VDM output. Therefore, treating the IMU data as ob-
servations and avoiding integration of them as a process model is
expected to improve the error growth.

The VDM needs to be fed with the control input to the UAV. This
information is already available in the control/autopilot system,
but it needs to be put in correct time relations with IMU and other
measurements. The other input to VDM is the wind velocity. The
proposed solution makes it possible to estimate the wind velocity
within the navigation filter itself, even in absence of air pressure
sensors. This adds certain redundancy to the system in case of air
pressure sensor misbehavior when employed.

The VDM requires a proper structure based on the host platform
type (fixed wing, copter, etc.) and its control actuators, which
is well described in the literature (Cook, 2013) (Ducard, 2009).

Some parameters in the model depend on the specific platform.
They can be either identified and pre-calibrated, or estimated in-
flight. This capability for online parameter estimation (dynamic
model identification) that does not require pre-calibration, mini-
mizes the effort required in design and operation.

Proof of the proposed concept is performed via Monte Carlo sim-
ulation study in several different situations. To make the simu-
lations realistic, errors are introduced to all the a-priori informa-
tion available to the navigation system, such as initial values of
states, dynamic model parameters, and error statistics of IMU and
GNSS measurements. Also, real 3D wind velocity data (KNMI
and Alterra, 2012) is used in simulations. Results of Monte Carlo
simulations on a sample trajectory are presented and analyzed in
the paper. More detailed results, along with observability and
accuracy prediction discussions can be found in (Khaghani and
Skaloud, 2016).

2. DEFINITIONS

Three coordinate frames are considered in this research, “navi-
gation”, “body”, and “wind” frames. The navigation frame is a
local frame oriented in north, east, and down directions denoted
by (xn, yn, zn) or (xN , xE , xD), and considered to be inertial.
Definitions of body frame and wind frame (xb, yb, zb) can be per-
ceived from Figure 1. The rotation matrix to transform vectors
from body frame to navigation frame is defined as

Rbn = R1(φ)R2(θ)R3(ψ)

=

[
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

][
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

][
cosψ sinψ 0
− sinψ cosψ 0

0 0 1

]
.

(1)
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Figure 1: Navigation, body, and wind frames with airspeed (V ),
wind velocity(w), and UAV velocity (v), as weel as roll (φ), pitch
(θ), and yaw (ψ)

The wind frame has its first axis in direction of airspeed V , and is
defined by two angles with respect to body frame, angle of attack
α and sideslip angle β. Velocity of airflow that is due to UAV’s
inertial velocity v and wind velocity w is denoted by airspeed
vector V as

v = V + w. (2)

The rotation matrix from body frame to wind frame is defined as
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a function of Euler angles.

Rwb = R3(β)RT2 (α)

=

[
cosβ sinβ 0
− sinβ cosβ 0

0 0 1

][
cosα 0 sinα

0 1 0
− sinα 0 cosα

]
(3)

The density of the air is calculated based on the International
Standard Atmosphere model as a function of local pressure and
temperature, which can be expressed as functions of the altitude
as detailed in (Khaghani and Skaloud, 2016).

3. VEHICLE DYNAMIC MODEL

The VDM employed in this research is based on rigid body dy-
namics for a fixed wing UAV and follows from (Ducard, 2009).
It considers polynomial models for aerodynamic forces and mo-
ments. A brief description of the model is presented here, along
with the key definitions and equations. More details can be found
in (Ducard, 2009) and (Khaghani and Skaloud, 2016). The states
vector Xn =

[
xN , xE , xD, v

b
x, v

b
y, v

b
z, φ, θ, ψ, ωx, ωy, ωz, n

]T
,

control input vector U = [nc, δa, δe, δr]
T , and wind velocity

vector w = [wN , wE , wD]T are related via the dynamic model
of the form Ẋn = f(Xn,U ,w). Components of UAV velocity
vector v are represented by vbx ,vby , and vbz , while ωbx ,ωby , and ωbz
denote the rate of change for roll, pitch, and yaw, respectively.
Deflections of aileron, elevator, and rudder are denoted by δa, δe,
and δr , respectively. Propeller speed is denoted by n, where nc
shows the commanded value for that, and τn is the time constant
for its dynamics. Kinematic equations, Newton’s equations of
motion, and a first order model for propeller dynamics form the
vehicle dynamic model as follows.[

ẋN
ẋE
ẋD

]
= Rnb

vbxvby
vbz

 (4)

v̇bxv̇by
v̇bz

 =

[
−g sin θ

g sinφ cos θ
g cosφ cos θ

]
+

1

m

[(
FT
0
0

)
+Rbw

(
Fwx
Fwy
Fwz

)]

−

ωyvbz − ωzv
b
y

ωzv
b
x − ωxv

b
z

ωxv
b
y − ωyv

b
x

 (5)

φ̇θ̇
ψ̇

 = Rω

[
ωx
ωy
ωz

]
, Rω=

[
1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

]
(6)

[
ω̇x
ω̇y
ω̇z

]
= (Ib)−1

Mb
x

Mb
y

Mb
z

−

[
ωx
ωy
ωz

]
× Ib

[
ωx
ωy
ωz

] (7)

ṅ = − 1

τn
n+

1

τn
nc (8)

The four aerodynamic forces and the three aerodynamic moments
are expressed as polynomial functions of navigation states, con-
trol inputs, wind velocity, and physical properties of the UAV
called dynamic model parameters hereafter. The aerodynamic
forces include:
• “thrust force” as FT = f(ρ, V,D, n, CFT ...)
• “drag force” as Fwx = f(ρ, V, S, CFx..., α, β)
• “lateral force” as Fwy = f(ρ, V, S, CFy..., β)
• “lift force” as Fwz = f(ρ, V, S, CFz ..., α)

The aerodynamic moments include:
• “roll moment” asMb

x = f(ρ, V, S, b, CMx..., δa, β, ωx, ωz)

• “pitch moment” as Mb
y = f(ρ, V, S, c̄, CMy..., δe, α, ωy

• “yaw moment” as Mb
z = f(ρ, V, S, b, CMz ..., δr, ωz, β)

Propeller diameter is denoted by D, and S, b, and c̄ represent
wing surface, wing span, and mean aerodynamic chord, respec-
tively. Density of air is shown by ρ, and C...’s represent aerody-
namic coefficients for associated force and moment components.
The vehicle dynamic model parameters are collected in (9).

4. FILTERING METHODOLOGY

An extended Kalman filter (Gelb, 1974) is chosen to serve as the
navigation filter in this research, which is detailed in this section.

4.1 Scheme

The proposed navigation system utilizes VDM as main process
model within a differential navigation filter. As depicted in Fig-
ure 2, VDM provides the navigation solution, which is updated
by the navigation filter based on available measurements. Hence,
IMU output is treated as a measurement within the navigation
filter, just the way GNSS observations are, whenever they are
available. Any other available sensory data, such as altimeter or
magnetometer output, can also be integrated within the naviga-
tion filter as additional observations. VDM is fed with the con-
trol input of the UAV, which is commanded by the autopilot and
therefore available. Other needed input is the wind velocity as
an input, which can be estimated either by the aid of airspeed
sensors, or within the navigation system with no additional sen-
sors needed. The latter approach is implemented here. Finally,
the parameters of VDM are required within the navigation filter.
Pre-calibration of these parameters as fixed values is an option.
However, to increase the flexibility, as well as the accuracy of the
proposed approach while minimizing the design effort, an on-
line parameter estimation/refinement is implemented. Last but
not least, IMU errors are also modeled and estimated within the
navigation system as additional filter states.
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Figure 2: Navigation system architecture

4.2 State space augmentation

The augmented state vector includes the navigation states Xn,
the UAV dynamic model parameters Xp excluding mass (m) and
moments of inertia (Ix, Iy, Iz, Ixz), the IMU error terms Xe,
and the wind velocity components Xw.
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The dynamic model parameters are included in a 26 × 1 state
vector as in (9), and modeled as constant parameters with initial
uncertainties. Description of these parameters is provided in the
nomenclature, and the numerical values used in simulation can
be found in (Ducard, 2009).

Xp=


S, c̄, b, D, CFT 1, . . .

. . . CFT 2, CFT 3, CFz1, CFzα, CFx1, . . .

. . . CFxα, CFxα2, CFxβ2, CFy1, CMxa, . . .

. . . CMxβ , CMxω̃x , CMxω̃z , CMy1, CMye, . . .

. . . CMyα, CMyω̃y , CMzδr , CMzβ , CMzω̃z , . . .

. . . τn


T

(9)
Mass and moments of inertia are not included in this vector, since
they appear as scaling factors in equations of motion and there-
fore they are completely correlated with the already included co-
efficients of aerodynamic forces and moments.

The error in each accelerometer and gyroscope inside the IMU
is modeled as a random walk (b...rw) process. Therefore, the IMU
error terms vector is defined as

Xe =
[
ba1rw, ba2rw, ba3rw, bg1rw, bg2rw, bg3rw

]T
, (10)

where ai and gi superscripts denote the i-th accelerometer and
gyroscope, respectively. This model has been found sufficient
for the low-cost IMU in consideration, but can be extended as
needed.

The wind velocity is stated as a vector in local (navigation) frame
consisting of the three components of wind velocity in north, east,
and down directions.

Xw = [wN , wE , wD]T (11)

Wind velocity is also modeled as a random walk process.

4.3 Errors and uncertainties

For the purpose of simulation, a MEMS-grade IMU is consid-
ered. Random biases with standard deviations of 8 mg for ac-
celerometers and 720 ◦/hr for gyroscopes are considered, ac-
companied by white noise and first order Gauss-Markov pro-
cesses. GNSS error is modelled as independent white noise sig-
nals for each channel (north, east, down), with standard devia-
tions 1m. The sampling frequency is 100Hz for IMU and 1Hz
for GNSS measurements.

In terms of initialization errors, random errors are considered for
different runs of the Monte-Carlo simulations with standard devi-
ations of 1m for each position component, 1m/s for each veloc-
ity component, 3◦ for roll and pitch, 5◦ for yaw, 1◦/s for rotation
rates, and 15 rad/s for propeller speed. The errors considered
for the UAV dynamic model parameters (Xp) are randomly dis-
tributed with a standard deviation of 10%.

More details on the process model noise, observation noise, and
initial uncertainties can be found in (Khaghani and Skaloud, 2016)

5. MONTE CARLO SIMULATIONS

To evaluate the performance of the navigation system, a Monte
Carlo simulation has been performed with 100 runs, using real
3D wind velocity data (KNMI and Alterra, 2012). While the tra-
jectory and the wind has been kept the same in each realization,
the error in observations, initialization, and VDM parameters has
changed randomly for each individual run. Figure 3 depicts the
reference trajectory, as well as the solution from a sample run.

For more comprehensible presentation, the results are presented
in ENU frame, instead of navigation NED frame. The trajectory
has a footprint bigger than 2 km× 2 km on the ground and 1km
change in altitude. The results of Monte Carlo simulations are
presented in sections 5.1 and 5.2.
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Figure 3: Reference trajectory and the solution from a sample
rum with GNSS signals available during first 100s only

5.1 Navigation States

Figure 4 shows comparison of RMS of position and yaw errors
for all the 100 runs between proposed VDM/INS/GNSS approach
and classical INS/GNSS navigation algorithm over the whole in-
terval. While the RMS of position error is 11.7km for classical
INS coasting after 5 minutes of autonomous navigation during
GNSS outage, this is reduced to less than 110m with the pro-
posed VDM/INS/GNSS integration under exactly the same situ-
ations, which means an improvement of two orders of magnitude
in position accuracy. The attitude determination also shows an
improvement of 1 to 2 orders magnitude, which will be detailed
shortly. It is worth mentioning here that the improved perfor-
mance of the proposed filter is noticeable also during the avail-
ability of GNSS in estimating yaw.
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Figure 4: Comparison between INS/GNSS and
VDM/INS/GNSS: RMS of position and yaw errors from
100 Monte Carlo runs

The position error for all the 100 Monte Carlo runs is presented
in Figure 5. The graphs show how the error grows as time passes
after GNSS outage starts, and how the overall behavior is sim-
ilar for individual runs. An empirical RMS is calculated from
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these individual errors and plotted against the predicted confi-
dence level (1σ). It is important to notice that how closely (and
slightly conservatively) the error is predicted within the filter,
which reveals the correctness of filter setup.
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Figure 5: Position errors for all the 100 Monte Carlo runs

Figure 6 depicts the empirical RMS of attitude errors for all the
100 runs, with associated predicted values of confidence (1σ).
The results are very satisfactory in terms of preserved naviga-
tion accuracy, with the RMS of error to be only 0.0072◦ for
roll, 0.020◦ for pitch, and 0.38◦ for yaw after 5 minutes of au-
tonomous navigation during GNSS outage. In comparison, the
classical INS coasting would result in errors of 2.6◦ for roll, 1.5◦

for pitch, and 16.6◦ for yaw under exactly the same situations.

3

4.5

6

0 50 100 150 200 250 300 350 400
time [s]

0

0.5

1

1.5

A
tt
it
u
d
e
E
rr
o
r
[d
eg
]

GNSS Outage

Roll Error
1σ Prediction
Pitch Error
1σ Prediction
Yaw Error
1σ Prediction

Figure 6: RMS of position and attitude errors from 100 Monte
Carlo runs

5.2 Auxiliary States

Successful estimation of auxiliary states is a key enabler of navi-
gation improvement within the filter. The results are briefly pre-
sented in this section, with all the reported values calculated as
an RMS of the values for all the 100 Monte-Carlo runs. More de-
tailed results on auxiliary states estimation and associated plots
are presented in (Khaghani and Skaloud, 2016).

The time correlated part of the IMU error gets estimated quickly
during the first tens of seconds of navigation and remains rather
unchanged afterwards, even during the GNSS outage period. The
estimation error has an average of 6.0% for the three accelerom-
eters and an average of 14.8% for the three gyroscopes at the end
of the whole navigation period.

The mean error in estimation of VDM parameters shows a sharp
decrease from the initial value of 10% to 6% during the first 40

seconds with GNSS available, which is followed by a slowly de-
creasing trend until the end. The reason behind the second regime
is the correlation between some parameters within the set. In such
situations, the groups of parameters are estimated rather than in-
dividual parameters, and those individual errors contribute to in-
creasing the mean error for the whole set.

Finally, the wind velocity is estimated very well during GNSS
availability period, reaching an error of only 3.9% for wind speed
after 100 seconds. The estimation error starts to grow when GNSS
outage begins. However, the rate of this growth is well controlled,
and the error is still below 9.6% after 5 minutes of GNSS outage.

6. CONCLUSION

In this work, a novel method was presented to perform autonomous
navigation and sensor integration for unmanned aerial vehicles.
The key concept of this method is employing vehicle dynamic
model in navigation system. Unlike the traditional method of
kinematic modeling in which IMU serves as navigation process
model within navigation filter, here the navigation filter features
dynamic model of UAV as navigation process model whose out-
put gets updated using IMU measurements. GNSS measurements
can also be used within the filter whenever they are available, as
well as other measurements such as those from a barometric al-
timeter.

In addition to navigation states and error terms related to inertial
sensors, UAV dynamic model parameters and wind velocity com-
ponents can also be estimated within the filter. This is all possible
with no extra sensors. The designed filter is thus polyvalent as it
can accommodate changes in the platform and/or environmental
conditions, such as the wind acting on the platform.

The scenario of GNSS signal reception disruption (e.g., due to
electromagnetic interference) is a situation where this method can
be most useful. In case of GNSS outage of 5 minutes, the pre-
sented Monte Carlo simulations show an improvement of more
than 2 orders of magnitudes in position accuracy compared to in-
ertial coasting, for random initial errors of 10% in UAV dynamic
model parameters. Such gain of navigation autonomy is internal
to UAV, therefore very suitable for limited or zero-visibility op-
erations. Attitude estimation also shows a major improvement,
reducing the error on yaw from 16.61◦ to only 0.38◦ for exam-
ple. The parameters of the dynamic model are calibrated in flight
and such calibration is possible even if GNSS signal reception is
not available. The time-correlated errors in accelerometers and
gyroscopes are also estimated within the filter as a random walk
process, so are the wind velocity components.

Further development of current work will include studies on pro-
posed navigation system in real scenarios. Technical and per-
haps scientific challenges can be expected in real implementation.
Proper time stamping of all sensor observations and scaling the
control input signals are examples of technical challenges. On
the scientific part, the main challenges will probably be related to
unmodeled dynamics and disturbances, and the inclusion of addi-
tional effects, such as sensor misalignments, actuator dynamics,
UAV body elasticity, and asymmetric mass distribution.
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