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ABSTRACT: 

 

Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile 

platform’s position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems 

(INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and 

navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds 

or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to 

mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in 

height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an 

automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and 

vertical reference, respectively. By exploiting the MM platform’s defective, and therefore imprecise but approximate orientation 

parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform’s three-

dimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is 

conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors 

simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel.  

Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three 

steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud 

feature extraction methods will be discussed as well as an outline of the project and its framework will be given. 

 

1. INTRODUCTION 

Mobile Mapping is on the verge of becoming a substantial 

addition to the family of geo-data acquisition techniques. 

Airborne or satellite data cover large areas, but have limited 

capabilities when it comes to the density of data postings and 

high accuracy, whereas classical terrestrial techniques are 

expensive and often impractical. Particularly in urban areas, 

MM shapes up to be an extraordinarily useful technique not just 

to complement airborne or satellite coverage, but to enable a 

completely new array of possibilities. MM imaging systems and 

laser scanners collect high-resolution data, but have to rely on 

external georeferencing by GNSS. As GNSS being 

intermittently available, INS provides relative measures 

between position fixes and compensates for measurement noise 

and errors. Although GNSS carrier-phase measurements allow 

highly accurate positioning, urban areas remain problematic 

regarding the measurement reliability due to multipath effects 

and occlusions. When these phenomena persist over longer 

periods, accurate positioning cannot be maintained, and 

consequently data accuracy will be diminished (Godha, 

Petovello et al. 2005). This paper presents a method to detect 

and extract low-level image and point cloud features as a 

prerequisite for the rectification of MM data using aerial 

imagery. First, a brief outline of the project will be given. In 

section 2, a literature overview on similar work will be 

presented, and applied feature detection and extraction methods 

will be shortly introduced, followed by section 4 addressing 

low-level feature extraction for images as well as for point 

clouds. Section 5 discusses initial results of low-level feature 

extraction methods of both aerial and MM images as well as 

point cloud data. Lastly, section 6 concludes the work presented 

in this paper as well as gives an outlook on future 

developments. 

 

2. PROJECT OVERVIEW 

The aim of our research project is to enable a reliable 

localisation pipeline for MM data obtained in urban areas, and 

to verify existing data sets according to their localisation 

accuracy in order to economise the acquisition of ground 

control. Due to apparent differences in the sensor setup and 

data, two workflows for Mobile Laser Scanning (MLS) and 

Mobile Mapping Imaging (MMI) are being developed. The 

common basis is the utilisation of high-resolution aerial nadir 

and oblique imagery as an external reference to compensate for 

vertical as well as for horizontal errors. In a first stage, common 

features between the ground data and aerial nadir imagery are 

sought. Based on the imprecise, but approximate exterior 

orientation of the MM data, more reliable and efficient 

matching techniques can be employed. For instance, a confined 

search for correspondences and their verification in the other 

image can be inferred even from coarse orientation parameters. 

The next stage will be the integration of oblique images into the 

pipeline to yield common features on the vertical axis in order 

to better detect errors in height, and to increase the overall 

number of tie features considerably. Façades and other vertical 

objects, such as street lights and traffic signs, are potential 

objects which can be used for that purpose in the future. In a 

last step, this tie information allows for either a re-computation 

of the trajectory or, alternatively, an adjustment of the data as 

such. 
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3. RELATED WORK  

3.1 Previous Approaches 

Coping with poor localisation of mobile platforms in urban 

areas has been addressed by many authors. Mostly by 

employing tertiary data as an external reference, either the data 

itself (Tournaire, Soheilian et al. (2006); Jaud, Rouveure et al. 

(2013); Ji, Shi et al. (2015)) or the platform’s trajectory 

(Kümmerle, Steder et al. (2011); Levinson and Thrun (2007); 

Leung, Clark et al. (2008)) has been corrected. Depending on 

the data input and type (e.g. aerial imagery, digital maps or 

ground control points), different registration methods were 

utilised to impose unaffected, reliable and precise orientation 

information from external data on MM data sets. Subsequently, 

yielded correspondences were used as a constraint within a filter 

or adjustment solution. Even though many authors achieved a 

successful localisation based on an external reference, errors in 

height were not corrected, and a consistent sub-decimetre 

accuracy could not be reached.   

 

3.2 Low-Level Feature Extraction 

Both, low- and high-level feature extraction methods, are 

relevant for this research project. Whereas low-level features 

allow a great flexibility towards the selection of suitable 

correspondences, the registration of data originating from 

different sensors (i.e. Mobile Laser Scanning and aerial 

imagery) may demand an extension of that concept. Although 

MLS intensity information enables the derivation of corner 

features, an abstract representation by identifying common 

objects in both data sets can facilitate determining thorough and 

reliable transformation parameters. Hence, high-level feature 

extraction methods will be highlighted in the future. In this 

paper, however, emphasis will be placed on low-level feature 

extraction which is still an active field of research as real-time 

applications have been gaining more attention in the last few 

years. Classic feature detection algorithms, such as the Förstner-

Operator (Förstner and Gülch 1987) or the Harris Corner 

Detector (Harris and Stephens 1988) are accompanied by state-

of-the-art approaches like AKAZE (Alcanterilla, Nuevo et al. 

2013) or FAST (Rosten and Drummond 2006). Although many 

improvements have been made in this field, the most important 

property of a feature detector remains to identify the same 

keypoints over a set of images.  

Once features have been detected in the image, they have to be 

described unambiguously to increase their distinctiveness 

among other features in order to match them correctly. Low-

level feature description approaches can be divided into two 

categories – binary and float description. Whereas float 

descriptors, such as SIFT (Lowe 2004), are based on a 

Histogram of Oriented Gradients (HoG), binary descriptors (e.g. 

BRIEF (Calonder, Lepetit et al. 2010)) are analysing the 

neighbourhood of a feature keypoint with a binary comparison 

of intensities according to a specific sampling pattern. Float 

descriptors are typically more expensive to compute, and need 

more memory to store their output than binary descriptors. 

However, depending on the application, robustness of these two 

categories varies (Heinly, Dunn et al. (2012); Miksik and 

Mikolajczyk (2012)). 

In this paper, different feature detection as well as float and 

binary description methods will be compared taking the 

example of aerial nadir, MM panoramic imagery and intensity 

images derived from MLS data. Feature keypoints across the 

data sets will be computed with SIFT (Lowe 2004), KAZE 

(Alcantarilla, Bartoli et al. 2012), AKAZE (Alcanterilla, Nuevo 

et al. 2013) and the Förstner Operator (Förstner and Gülch 

1987).  

SIFT detects blobs with a Difference-of-Gaussian method at 

different scaled instances of the image. KAZE computes a non-

linear scale space using an additive operator splitting technique, 

where keypoints are detected at locations with a maximum 

response of the determinant of the Hessian matrix. Similarly, 

AKAZE also relies on keypoint detection based on the Hessian 

matrix, but computes a non-linear scale space with fast explicit 

diffusion. Förstner detects corners based on the search for local 

minima of eigenvalues of a covariance matrix of image 

gradients. Except for Förstner, all aforementioned procedures 

allow for an additional feature description. SIFT utilises a HoG 

in a local neighbourhood to describe a keypoint. KAZE’s 

keypoints are described with the SURF descriptor (Bay, Ess et 

al. 2008) modified to be compatible with the detector’s non-

linear scale space. AKAZE uses a binary description based on 

an adapted version of Local Difference Binary (Yang and 

Cheng 2012) where sample patches around the keypoint are 

averaged and then compared in a binary manner. For Förstner 

keypoints, LATCH (Levi and Hassner 2015) has been used for a 

binary feature description. LATCH compares sample-triplets 

around a keypoint, where the sampling arrangement is learnt. 

Respective results will be discussed in section 5. 

 

4. LOW-LEVEL FEATURE EXTRACTION 

4.1 MMI & Aerial Nadir Images 

Aerial nadir ortho-images with a ground sampling distance of 

approximately 12 centimetres serve as the reference data set in 

this project. The MM images are 360*180 degrees panoramic 

images (Figure 1) acquired every 5 metres along the platform’s 

trajectory. For more details and specifications, please see (Beers 

2011).  

 

 
Figure 1 Mobile mapping panoramic image in equirectangular 

projection 

 

In order to successfully use the aerial images’ exterior 

orientation for the rectification of MM data, respective tie 

information has to be reliable and accurate. Although ground 

and aerial nadir data have a different perspective on the scene, 

low-level feature correspondences can be identified in all data 

sets. For example, corners of road markings, centres of 

manholes and building corners resemble each other across all 

sensors.  

 

4.1.1 Pre-processing 

 

In order to simplify and optimise feature matching, the 

panoramic images are projected onto an artificial ground plane 

to increase the resemblance to the aerial images. The ground 

plane is computed based on the location of the MM imaging 

sensor and the fixed height of the sensor above ground. 

Especially in areas where the actual ground is not exactly flat, 

this approximation can lead to certain distortions (see Figure 2). 

In the future, the rather reliable relative orientation between two 
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recording locations will be used to compute a more accurate 

plane. Since this paper focuses solely on feature detection and 

description, and the aerial images used are ortho-projected, this 

fact can be neglected for now.  

MM panoramic images are stored in an equirectangular 

projection, encoding directly spherical coordinates for every 

image pixel. Therefore, no projection matrix or other intrinsic 

parameters are needed to reproject the panoramic image. The 

quadratic ground plane is centred at the dropped perpendicular 

foot of the respective recording location. Analogue to the aerial 

imagery’s resolution of 12 centimetres, the ground plane is 

rasterised holding a world coordinate for every cell. 

Subsequently, each raster cell’s coordinate is back-projected 

into the panoramic image in order to extract the respective RGB 

value, and transfer the information back onto the ground plane.  

Since every back-projected ray will pierce the image plane of 

the panoramic image, and thus every raster cell will contain an 

RGB value, an interpolation of the resulting projected image 

seems dispensable. However, the geometric representation of 

the pixels of both grids varies, leading to multiple assignments 

of the same RGB value especially at the edge of the projected 

image appearing as blur. Hence, a bilinear interpolation of the 

extracted value according to the pixel neighbourhood of the 

panoramic image is conducted. Consequently, every pixel in the 

projected image is composed of an individual set of grey values.  

 

 
Figure 2 Panoramic projected onto an artificial ground plane 

 

4.1.2 Feature Extraction 

 

The only overlapping area for feature detection induced by 

different original perspectives between aerial ortho-images and 

MM images is the road surface and its immediate vicinity. 

Therefore, road markings, such as zebra crossings or centre 

lines are being targeted on for feature detection. Resulting from 

atmospheric conditions and motion blur (esp. cameras without 

forward motion compensation), the image quality of the aerial 

photographs can be affected. To compensate for these effects, 

the projected panoramic images might need to be blurred even 

though sharing the same resolution with the aerial image. In the 

process of projecting the panoramic images onto the ground, 

not just the projection but also the approximate scale and 

rotation of the aerial image have been retrieved simultaneously. 

In particular, this circumstance simplifies the matching process 

considerably, but also renders to be useful for the step of feature 

description as less invariances and therefore fewer ambiguities 

have to be considered by the descriptor; i.e. the descriptor does 

not have to account for scale and rotational invariance since the 

panoramic image is north oriented and has got the same 

resolution.  

On the other hand, the images have not been acquired at the 

same time and with different sensor systems. Consequently, this 

fact is resulting in another category of a description problem. 

For instance, changes in illumination and contrast may affect 

the computation of the descriptor.  

Moreover, repetitive patterns of road markings (e.g. zebra 

crossings) cannot be ignored as they may result in false feature 

matches. Either this issue has to be tackled on the descriptor 

level or during the matching stage. Introducing rules, such as 

ordering constraints (Egels and Kasser (2001), p. 198) or 

perceptual grouping (Lowe (1985), p. 4), to describe a chain or 

group of adjacent features may prevent misassignment. 

Additionally, approximate camera parameters can be exploited 

within the matching procedure. By back-projecting identified 

keypoints into the other image, a window can be defined to 

constrain the search for correspondences. These methods are 

currently under development or labelled future work. 

Aforementioned feature detection and description procedures 

will be applied to our data sets and results will be discussed in 

section 5. 

 

4.2 Mobile Laser Scanning 

The Mobile laser scanning point cloud (MLSPC) is acquired 

from one or more lidar sensors mounted on a moving car. The 

car’s trajectory is estimated by GNSS and IMU, where a GNSS 

based position is retrieved after one second intervals. The IMU 

is used to interpolate all intermediate positions. A particular 

mobile mapping car moving at a speed of 36 km/h covers an 

area of 10m in 1 second. During this 1 second interval, the IMU 

provides relatively accurate positions which favours to crop 

MLCPC patch-wise, where the size of each patch is 10 by 10 m. 

State of the art laser scanning systems claim to achieve a 

relative accuracy of 10 mm, when a control point is provided 

within 100 m of scanning. Thus, even if the scanning is 

conducted at a slower acquisition speed, the 10 by 10 m patch 

would not be affected by (IMU-based) distortions to an extent 

that would hamper feature extraction. Moreover, the point cloud 

which has been used in this project, already has an absolute 

accuracy in sub-metre range for roughly 25 km of scanning, 

which means that the relative accuracy of the point cloud is still 

within a 10 mm range. 

Thereafter, each cropped point cloud patch is converted to an 

ortho-image by assigning a barycentric interpolation of laser 

intensities to its corresponding image pixel. A particular point 

cloud patch and the generated ortho-image is shown in Figure 3.  

The proposed method detects low-level features from ortho-

image gradients using SIFT, KAZE, AKAZE and Förstner 

feature detectors. The feature point description is obtained from 

SIFT, KAZE, AKAZE and LATCH feature descriptors. 

 

  
Figure 3 Point cloud patch (left) to an orthoimage (right). 

 

 

5. RESULTS 

In this section, feature detection and description methods will 

be compared according to their potential for deriving significant 

tie features and correspondences between aerial nadir and 

mobile mapping panoramic images as well as between aerial 
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nadir and MLS intensity images. First, a comparison between 

SIFT1, KAZE, AKAZE and Förstner2 on each of the three data 

sets will be conducted. Subsequently, acquired keypoints will 

be described with their corresponding method except for 

Förstner where a LATCH description will be used. Although 

still under development, feature matching will be utilised to 

compare the quality of each descriptor. To this end, simple 

descriptor matching to yield correspondences and a 

homography estimation to detect outliers will be used. As the 

focus of this project is on urban areas, four subsets with each 15 

m side length of a typical road scene between two intersections 

have been selected for this experiment (Figure 4). 

 

 
Figure 4 Four subsets of a typical urban scene (coloured tiles 

from scene 1 on the left to scene 4 on the right) 

 

5.1 Feature detection 

In urban areas, road markings and other prominent objects, such 

as kerbstones or manholes, identifiable among all data sets are 

favoured for feature detection. However, due to noise and 

different original perspectives, it is considered to be a 

challenging task for the step of feature detection to maintain a 

comparable detection rate over the entire data set.  

Depending on the scene, this detection rate varies. The number 

of road markings and the detector itself, highly influence the 

results. For instance, due to its scale invariance SIFT detects 

keypoints on different blurred instances of the same image, and 

thus yields a lot more potential features than a corner detector, 

such as Förstner. As it will be shown in section 5.2, a potent 

feature detection alone is not sufficient for a successful 

registration. 

 

 Aerial 

Image 

Panoramic 

Image 

MLS 

Intensity  

Total 

SIFT 234 379 810 1423 

KAZE 119 304 458 881 

AKAZE 29 68 175 272 

Förstner 40 75 153 268 

Table 1 Number of combined keypoints over all subsets per 

detection method 

 

5.1.1 SIFT  

 

SIFT yields more keypoints than any other method used in this 

paper (Table 1). It detects 60% keypoints more than KAZE and 

even 5 times more keypoints than AKAZE or Förstner. Being 

very sensitive to image noise and detecting keypoints on 

different image scales, the detected features are not always 

                                                                 
1 For SIFT, KAZE, AKAZE and LATCH, their respective 

OpenCV implementation has been used 
2 Implementation of the Förstner-Operator by Marc Luxen, 

University of Bonn 

useful. In particular, this comes into effect for both types of 

MM images as they have a higher original resolution and 

therefore a higher entropy (Figure 5). 

 

 
Figure 5 SIFT keypoints detected in aerial image (left), 

panoramic image (centre) and MLS intensity image (right) 

 

5.1.2 KAZE 

 

KAZE detects fewer keypoints than SIFT, but still considerably 

more than AKAZE or Förstner. However, road markings are 

very well preserved, and especially their corner features, which 

are the most important image entity in our case, were mostly 

detected (Figure 6).  

 

 
Figure 6 KAZE keypoints detected in aerial image (left), 

panoramic image (centre) and MLS intensity image (right) 

 

5.1.3 AKAZE 

 

Although, AKAZE and KAZE are quite similar in the way how 

a feature is detected (determinant of Hessian), their main 

difference lies in the computation of image pyramids to detect 

keypoints at different image scales. AKAZE detects fewer 

keypoints than KAZE, but these keypoints are most often 

important corners of road markings (Figure 7). Nonetheless, in 

two of four aerial images, AKAZE only detected one single 

keypoint which turns out to be too few for matching purposes.  

 

 
Figure 7 AKAZE keypoints detected in aerial image (left), 

panoramic image (centre) and MLS intensity image (right) 

 

5.1.4 Förstner Operator 

 

The Förstner Operator is the only feature detector without the 

consideration of scale. This, and the fact that Förstner detects 

features solely at corners and centres of small image objects, 

leads to a very deliberate keypoint detection. However, almost 

every detected feature can be regarded as significant for the 

registration process. Due to its capability of sub-pixel 

localisation of keypoints, the same object point can be 

represented slightly shifted among different image sources 

which shapes up as a challenge for feature description.  
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Figure 8 Förstner keypoints detected in aerial image (left), 

panoramic image (centre) and MLS intensity image (right) 

 

5.2 Feature description 

Identified keypoints need to be described unambiguously to 

enable feature matching between two images. In general, 

difficulties arise if there is a change in perspective, illumination, 

coverage, or scale between the images as well as ambiguities 

resulting from repetitive patterns. In order to obviate apparent 

difficulties for registering the images, the MM data has been 

projected onto the ground to increase the resemblance to aerial 

imagery. As a consequence, scale and perspective are more 

similar among the data sets, but differences in illumination and 

coverage cannot be mitigated easily. Thus, different description 

methods are evaluated with regard to their ability to cope not 

just with the aforementioned changes but also to their 

performance to bridge sensor-induced differences.  

SIFT, KAZE, AKAZE and LATCH will be used for feature 

description. As mentioned earlier, LATCH will be used for 

keypoints detected with the Förstner-Operator. To measure the 

descriptor quality of each method, the images have to be 

matched. The number of matches, inliers classified by 

RANSAC as well as the actual number of correct 

correspondences will be compared among different descriptors. 

Two out of four scenes (scene 1 and scene 2) will be discussed 

in detail3. Moreover, for every test scene, four different settings 

have been tested. To this end, MM data has been blurred with a 

Gaussian filter to increase the resemblance to the aerial data set. 

Moreover, a resampling of all data sets has been conducted as it 

has been shown that increasing the sampling size can facilitate a 

feature’s distinctiveness considerably (Köthe 2003). 

 

1st run  No modification of source images 

2nd run  Gaussian blurring of source images 

3rd run  Resampling to 150% of original size 

4th run  Blurring and subsequent resampling of source 

images 

 

5.2.1 Aerial images and panoramic images 

5.2.1.1 Scene 1 

 

The first scene comprises of a zebra crossing and dotted road 

markings aggravating correct matching due to possible 

descriptor ambiguity. If enough correct correspondences are 

found, RANSAC converges to a correct solution. In the first 

run, however, none of the methods was able to achieve a good 

result (see e.g. Figure 9). The derived keypoint descriptors were 

not distinct enough to be matched accordingly. By blurring the 

images with a Gaussian low-pass filter in the second iteration, 

results slightly improved for KAZE (see Table 2). Yet, by 

resampling the source images to 150% of their original size, 

results got significantly better especially for KAZE, but also a 

                                                                 
3 More results are provided on 

https://www.researchgate.net/profile/Phillipp_Jende 

bit for SIFT and AKAZE (see Figure 10). In the fourth run, a 

Gaussian blurring followed by a resampling did not have an 

impact on the matching quality of this scene (see Table 3). 

Furthermore, LATCH yielded very poor results regardless of the 

iteration.  

 

 
Figure 9 Matched LATCH keypoints in the first scene and first 

iteration 
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SIFT 61 15 1 61 13 0 

KAZE 41 12 1 41 12 2 

AKAZE 14 6 0 14 6 0 

LATCH 9 4 0 9 0 0 

Table 2 Matching results of scene 1 between aerial and 

panoramic image of the 1st and 2nd iteration 

 

 
Figure 10 Comparison of matching results of AKAZE (top), 

KAZE (centre) and SIFT (bottom) in 3rd run of the 1st scene  
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SIFT 59 15 2 59 16 0 

KAZE 78 17 10 78 16 10 

AKAZE 24 9 2 24 9 0 

LATCH 7 4 0 7 0 0 

Table 3 Matching results of scene 1 between aerial and 

panoramic image of the 3rd and 4th iteration 
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5.2.1.2 Scene 2 

The second scene shows linear road markings and parts of a 

zebra crossing. Whereas major parts of the zebra crossing and 

the dotted road markings were visible in the first scene, large 

parts of the road markings are covered by the mobile mapping 

car itself in the second scene which may impede the matching 

process. Similarly to the first scene, unmodified imagery was 

difficult to match and LATCH nor AKAZE found a single 

correspondence. With SIFT, however, a couple of keypoints 

could be matched, even though just one correct correspondence 

has been identified (see Figure 11). 

 

 
Figure 11 Matched SIFT keypoints in the second scene and first 

iteration (correct correspondence is light purple) 
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SIFT 54 12 1 54 11 2 

KAZE 42 8 1 42 12 0 

AKAZE 1 0 0 1 6 0 

LATCH 1 0 0 1 0 0 

Table 4 Matching results of scene 2 between aerial and 

panoramic image of the 1st and 2nd iteration 

 

By blurring the images with a Gaussian filter, especially SIFT 

returns a better result. Albeit only two correct correspondences 

have been identified, results got considerably better (see Figure 

12). Apparently, RANSAC removed a couple of outliers, and 

was able to stabilise the estimation of the homography. Without 

ground truth, the matched bars of the zebra crossing might 

appear as correct correspondences. These descriptor ambiguities 

have to be tackled on another processing level.  

 

 
Figure 12 Matched SIFT keypoints in the second scene and 

second iteration 

 

Now, by resampling the images to 150% of their original size in 

the 3rd iteration, KAZE benefitted the most, although yielding 

only 4 correct matches out of 14 matches classified as inliers 

(see Figure 13).  

 

 
Figure 13 Matched KAZE keypoints in the second scene and 

third iteration  

 

Blurring the images prior to resampling them further improves 

the results for KAZE and AKAZE while decreasing the quality 

of SIFT’s output (see Figure 14). Again, LATCH did not show 

any improvement.  

 

 
Figure 14 Comparison of matching results of AKAZE (top), 

KAZE (centre) and SIFT (bottom) in 4th run of the 2nd scene 
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SIFT 51 12 0 51 11 1 

KAZE 79 14 4 79 20 6 

AKAZE 15 6 0 15 8 2 

LATCH 3 0 0 3 0 0 

Table 5 Matching results of scene 2 between aerial and 

panoramic image of the 3rd and 4th iteration 

 

5.2.2 Aerial images and MLS intensity images 

5.2.2.1 Scene 1 

In the 1st run (Table 6), KAZE yielded the best results with only 

few mismatches, and those occurred due to descriptor 

ambiguity. AKAZE has a competitive result, however obtained 

fewer matches than KAZE. SIFT and LATCH both equally 

failed to achieve a reliable number of matches. In the 2nd run, 

blurring the images, dramatically improved the number of 

correct matches from SIFT descriptor. Similarly, KAZE’s result 

also improved moderately. AKAZE has performed consistently 
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and results did not improve. The image blurring did not have an 

effect on the poor results of the LATCH descriptor. In the 3rd 

run (Table 7), resizing the images to 150%, results of SIFT and 

KAZE have improved. Interestingly, all calculated matches are 

correct and there is no mismatch. The results from AKAZE 

have improved slightly as well. 

The 4th run, blurring and resizing the images, increased the 

number of inliers from KAZE, while there is no mismatch as 

shown in Figure 15. The total number of matches even 

decreased in case of AKAZE. 

 

 

 
Figure 15 Comparison of SIFT (top) and KAZE (bottom) in 4th 

run on 1st scene. 
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SIFT 61 15 1 61 14 12 

KAZE 41 12 8 41 13 12 

AKAZE 14 7 5 14 7 4 

LATCH 9 4 0 9 4 0 

Table 6 Matching results of scene 1 between aerial and MLS 

ortho-image of the 1st and 2nd iteration 
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SIFT 59 14 14 59 14 14 

KAZE 78 19 19 78 20 20 

AKAZE 24 9 6 24 8 3 

LATCH 7 4 0 7 0 0 

Table 7 Matching results of scene 1 between aerial and MLS 

ortho-image of the 3rd and 4th iteration 

5.2.2.2 Scene 2 

In the 1st run (Table 8), on this difficult scene, all descriptors 

totally failed except KAZE, which also performed poorly due to 

descriptor ambiguity. SIFT also seemed to struggle with the 

descriptor ambiguity and therefore yielded no match. Blurring 

the images did not change anything, except that KAZE’s result 

slightly improved. The 3rd run (Table 9) did not lead to any 

significant improvements. Contrarily to the 1st scene, the total 

number of matches from KAZE even decreased due to 

descriptor ambiguity. Although AKAZE was able to derive 

some matches, it cannot be considered as a significant 

improvement. SIFT and LATCH also failed to achieve a single 

match in the 3rd run. In the 4th run, the number of matches from 

KAZE improved significantly. Interestingly, not a single 

mismatch could be identified. Results are shown in Figure 16. 

SIFT, however, could not improve and yielded only a single 

match. 

  

 

 
Figure 16 Matching results of AKAZE (top) and KAZE 

(bottom) in 4th run on scene 2. 
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SIFT 54 10 0 54 11 0 

KAZE 42 10 4 42 11 7 

AKAZE 1 0 0 1 0 0 

LATCH 1 0 0 1 0 0 

Table 8 Matching results of scene 2 between aerial and MLS 

ortho-image of the 1st and 2nd iteration 
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SIFT 51 9 0 51 9 1 

KAZE 79 17 5 79 21 21 

AKAZE 15 6 3 15 8 5 

LATCH 3 0 0 3 0 0 

Table 9 Matching results of scene 2 between aerial and MLS 

ortho-image of the 3rd and 4th iteration 

 

6. DISCUSSION 

6.1 Conclusion 

This paper addressed the topic of tie feature extraction within 

the framework of the registration of aerial nadir images, mobile 

mapping panoramic images and MLS data. The aim of the 

overall project is to develop an automatic pipeline to correct the 

trajectory of mobile mapping platforms, especially in urban 

areas where reliable GNSS localisation is scarce. As a 

prerequisite for an orientation update of the platform’s 

trajectory, precise tie information is needed. In this paper, 

feature-based extraction techniques have been evaluated. It 

could be shown that the outcome highly depends on the 

algorithm itself and data pre-processing. KAZE seems to be the 

most reliable feature extraction method in both cases – mobile 
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laser scanning intensity and panoramic imagery. SIFT and 

AKAZE only yield mediocre results, and do not benefit from 

resampling and blurring the images to the same extent as KAZE 

does. Although the Förstner-Operator detects good and 

significant features, LATCH failed to describe them accordingly 

to allow for a successful matching. In our scenario, binary 

descriptors are not as powerful coping with changes in 

illumination and contrast as float descriptors, and cannot 

manage to handle features originating from different sensors 

that well. However, due to this specific setup, and a very 

generic feature matching, further tests have to be conducted to 

draw a thorough conclusion on binary descriptors’ performance. 

Interestingly, the discussed techniques show a better 

performance in conjunction with MLS and aerial data than with 

MMI data. 

 

6.2 Outlook 

Evidently, repetitive patterns of road markings are the biggest 

obstacle for a successful registration of the data sets. To 

efficiently tackle this issue, spatial information has to be 

introduced. Although the positioning accuracy of mobile 

platforms may be diminished in urban areas, their exterior 

orientation could support feature matching. In other words, they 

can be utilised to introduce search constraints as they allow for 

the localisation of individual keypoints. Besides that, using 

contextual information and shape knowledge can augment 

feature description to prevent mismatches. Additionally, 

nonessential descriptor invariances or capabilities could be 

removed from the respective original implementations (e.g. 

rotational & scale invariance, sub-pixel localisation etc.). 

As far as MLS data is concerned, utilising high-level feature 

extraction methods could further facilitate the registration 

process also in areas with a lower point density and therefore 

fewer distinct keypoints. For this reason, entities, such as 

kerbstones or entire zebra crossings, can be utilised to 

accomplish this task.  
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