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ABSTRACT:

Effective building detection and roof reconstruction has an influential demand over the remote sensing research community. In this
paper, we present a new automatic LiDAR point cloud segmentation method using suitable seed points for building detection and roof
plane extraction. Firstly, the LiDAR point cloud is separated into ”ground“ and ”non-ground“ points based on the analysis of DEM with
a height threshold. Each of the non-ground point is marked as coplanar or non-coplanar based on a coplanarity analysis. Commencing
from the maximum LiDAR point height towards the minimum, all the LiDAR points on each height level are extracted and separated
into several groups based on 2D distance. From each group, lines are extracted and a coplanar point which is the nearest to the midpoint
of each line is considered as a seed point. This seed point and its neighbouring points are utilised to generate the plane equation. The
plane is grown in a region growing fashion until no new points can be added. A robust rule-based tree removal method is applied
subsequently to remove planar segments on trees. Four different rules are applied in this method. Finally, the boundary of each object
is extracted from the segmented LiDAR point cloud. The method is evaluated with six different data sets consisting hilly and densely
vegetated areas. The experimental results indicate that the proposed method offers a high building detection and roof plane extraction
rates while compared to a recently proposed method.

1. INTRODUCTION

Among all of the artificial objects, buildings play a vital role in
modern civilisation. From early civilisation till today its impor-
tance never changes. Hence it gains popularity among the re-
mote sensing researchers to design and develop approaches for
automatic building detection and roof plane extraction, which is
an active research issue for more than two decades (Khoshelham
and Li, 2005, Chenga et al., 2013). Accurate detection of build-
ing boundary and extraction of the individual roof plane can be
a vital source of information for various applications, including
urban planning, virtual reality, disaster management, detection
of unlawful extension of properties, security, telecommunication
and so on (Habib et al., 2010, Kabolizade et al., 2012). As a con-
sequence, many different research activities have been conducted
in this field. These can be split into three major groups (Awrang-
jeb and Fraser, 2013, Khoshelham and Li, 2005): building detec-
tion, roof plane extraction, and roof/building reconstruction. In
this paper, we have concentrated with building detection and roof
plane extraction.

Building detection is the process of identifying and subsequently
separating the boundary of each building. The detection pro-
cess becomes harder in the presence of vegetation and other non-
building objects. More often than not, the process is utilised over
a data set consisting of many buildings. The detected boundary
can be optionally regularised to smooth the boundary. Many re-
searchers employ the detection output to generate building foot-
print (Zhang et al., 2006).

Roof plane extraction is the process to identify individual roof
planes. This process is similar to building detection. However,
there is a subtle difference between them. Building detection
process detects the individual building boundary, where the ex-
traction process identifies each roof plane on a building. The pro-
cess becomes more challenging with complex and small size roof
planes.

The building detection and roof plane extraction process can be
performed separately. However, some researchers (Awrangjeb
et al., 2013) combined these two steps into one. We adopt the
second approach. Our proposed method extracts individual roof
planes and logically combines them in a neighbourhood basis to
detect each building.

Building detection and roof plane extraction algorithms can be
divided into three major groups based on input (Awrangjeb et
al., 2012). They are: (a) image-based, (b) LiDAR-based, and (c)
combination of imagery and LiDAR.

Many researchers have applied 2D or 3D information from the
photogrammetric imagery for building detection and roof plane
extraction (Noronha and Nevatia, 2001, Ferro et al., 2013). Dif-
ferent image cues such as NDVI and colour along with entropy
can be applied for this purpose. Researchers have employed ei-
ther satellite imagery (Ferro et al., 2013) or aerial imagery (Noronha
and Nevatia, 2001) to attain this. Aerial imagery is more popular
than satellite imagery for its higher spatial resolution. Image-
based approaches suffer from various problems. A high resolu-
tion image contains more detail information, so the complexity of
detecting buildings from the non-building objects increases as the
resolution of the image increases (Cheng et al., 2008). Shadows
and occlusions from nearby buildings and trees have also neg-
ative effect for building detection and roof extraction (Meng et
al., 2009). The 3D information derived from stereo images, like
depth information, is even more challenging (Vu et al., 2009) and
offers poor accuracy. Moreover, the images contain several infor-
mation and in many cases extraction of the required information
is complex (Ferro et al., 2013).

In LiDAR (Light Detection And Ranging) based approaches, Li-
DAR point cloud is used for building detection and extraction.
LiDAR is a remote sensing technology that measures the proper-
ties of scattered or reflected light to find distance and/or other in-
formation of a distant target (Carter et al., 2012). The current Li-
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DAR point cloud is dense; it has high accuracy in height and can
be used directly to extract the 3D objects on the earth. Unlike im-
age acquisition systems, LiDAR data come from active systems,
so LiDAR data can be gathered during the day or night (Elaksher
and Bethel, 2002). The acquisition systems have other advan-
tages like, fast data acquisition, high point density, and canopy
penetration (Satari. et al., 2012).

Currently, many researchers are trying to combine high resolu-
tion imagery and LiDAR data for building detection and roof
extraction (Awrangjeb et al., 2012). However, this process may
fail to produce good quality results in some cases. Accurate co-
registration of imagery and LiDAR data is a prerequisite for this
approach. In many cases good quality data may not be avail-
able. If data acquisition is done at different times and if the time
gap is higher, both data may not be same. In a densely vegetate
area, most of the buildings are occluded by nearby trees. From
imagery, buildings may not be detectable due to shadows and oc-
clusions.

So considering the aforementioned issues, in this paper we have
focused on the building detection and roof plane extraction pro-
cess based on LiDAR data.

The rest of the paper is designed as follows: Section 2 discusses
related research work for building detection and roof plane ex-
traction using LiDAR data. Section 3 presents our contribution in
the proposed method. Section 4 describes the proposed method,
followed by the experimental results, analysis, and comparison in
Section 5 and 6, respectively. Concluding remarks are provided
in Section 7.

2. RELATED WORK

Different approaches for building detection and roof plane extrac-
tion using LiDAR data have been reported in the last few years.
Many researchers use raw LiDAR data (Awrangjeb and Fraser,
2013), while others pre-processed it (Ma, 2005). Some authors
initially classify the LiDAR data into several classes and em-
ployed only the required class (Chenga et al., 2013), while others
segment the LiDAR data to extract ground and non-ground points
(Awrangjeb et al., 2012). In this section, we will briefly describe
some of the research work which is based on LiDAR data.

A rule-based segmentation algorithm was proposed in (Awrang-
jeb and Fraser, 2013). The proposed algorithm was based on
3D information from the LiDAR point cloud. The raw LiDAR
data were initially divided into two groups based on a height
threshold. The LiDAR points which had smaller heights than
the threshold were used to generate a building mask. The re-
maining points were marked as non-ground points. These points
were further classified based on the coplanarity of the points. The
building mask was divided into cells. Based on the similarity, the
cells were clustered and three different types of clusters were ex-
tracted. Using the coplanarity and neighbourhood information
each of the planar roof segments was extracted. Finally, a rule-
based approach was used to remove planar segments on trees.
Experimental results showed that the approach missed small roof
planes and buildings.

Sampath and Shan (Sampath and Shan, 2010) provided a solution
framework for the segmentation of the LiDAR data. This method
used the eigenanalysis of each LiDAR point to determine its pla-
narity. Only the planar points were further considered for roof
segmentation. For this purpose, the framework used a modified
fuzzy k-means algorithm. The clustering algorithm is computa-
tionally expensive. Moreover the initial planar and non-planar

separation of LiDAR points can lead to erroneous results as the
surface normal becomes noisy for high point density (Novacheva,
2008). Experimental results showed that the framework provided
better evaluation results for large roof planes. However, for small
roof planes the results were not convincing.

A three step building detection technique have been proposed
by Wang and Shan (Wang and Shan, 2009). At first, it identi-
fied the boundary and non-boundary points. These points were
known as jump edge points and crease edge points respectively.
By using the convex hull with nearest neighbourhood-based com-
putation, the LiDAR points were labelled as boundary or non-
boundary points. The boundary points were connected using k-
nearest neighbour network and Minimum Spanning Tree (MST)
to form the jump edge. For tree removal, the authors assumed
that trees and buildings were separately enclosed by the differ-
ent jump edges. It applied the dimensionality learning method
to separate those. No quantitative results were presented in the
paper.

Among other methods, some authors used morphological filter-
ing and its variations (Meng et al., 2009, Chenga et al., 2013). A
reverse iterative morphological algorithm was proposed in (Chenga
et al., 2013). This method applied the morphological opening op-
eration with gradually reduced window size. The algorithm sepa-
rated the LiDAR points into buildings, trees, and other classes. It
had some predefined data set specific thresholds for setting the
maximum, the minimum window size and the minimum non-
ground object height. A post-processing step with roughness
and area information was used to remove non-building LiDAR
points. However, the algorithm was tested only with 10 buildings
where the minimum building size was over 500 m2. It is unclear
from the paper, whether the algorithm can be applicable for small
buildings.

3. OUR CONTRIBUTION

The proposed method addresses some problems of a previously
proposed method (Awrangjeb et al., 2013) and contributes to solve
those problems. This section discusses two major problems of the
previous method and provides a brief description how to solve
them.

3.1 Problems of Using Mask

The previously proposed method generated two masks – primary
and secondary mask from the LiDAR data utilising DEM with a
height threshold. These masks were further used in the segmen-
tation process. However, the generated masks missed some of the
transparent roof top building objects. Figure 1 shows an orthoim-
age and its associated primary mask and highlights the missing
objects.

As these buildings are missed in the mask generation step, this
method could not extract them. Considering this problem, our
proposed method does not depend on mask generation. It divides
the LiDAR data into two sets based on a height threshold. LiDAR
points on transparent rooftop are collected for segmentation and
successfully extracted.

3.2 Issues Related to Image Lines

For roof plane extraction, the previously proposed method ex-
tracted lines from image and classified them as ‘ground’, ‘trees’,
‘roof ridge’, and ‘roof edge’. From the last two classified line
sets, this method used a region growing approach to extract each
roof segment. The image lines were used to identify seed points
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Figure 1: (a) Orthoimage; (b) Primary mask. Missing buildings
of the reference method are marked by red coloured region in
both images.

to grow the segment. However, if the image lines are missing,
planes are missing too. Moreover, this method missed small
buildings and small roof planes as it removed lines shorter than
1 m. Our proposed method solves this problem by coplanarity
analysis and successfully includes small buildings and roof planes.

4. PROPOSED METHOD

The flow diagram in Figure 2 outlines the basic steps of the pro-
pose method.

Figure 2: Flow diagram of the proposed method.

The proposed method commences with the LiDAR point cloud
as input. Firstly, it divides the LiDAR point cloud into two sets,
namely: ground and non-ground points. The elevation informa-
tion from the DEM with a height threshold is used to separate the
LiDAR point cloud. Secondly, each of the non-ground LiDAR
point is marked as coplanar or non-coplanar based on a copla-
narity analysis. The height level of the LiDAR data is reduced
iteratively from the maximum to the minimum height and at each
height level all the non-ground LiDAR points are collected. The

collected points are divided into several groups based on 2D Eu-
clidian distance. From each group, a coplanar point is selected
as a seed point and the plane is grown in a region growing fash-
ion until no new points can be added. A rule-based tree removal
procedure is applied to remove planar segments on trees. Finally,
the planar segments are combined on a neighbourhood basis to
obtain individual building boundaries.

4.1 LiDAR Point Separation

Morgan (Morgan, 2000) showed classifying ground and non-ground
points is a critical step for segmenting LiDAR data. Hence dif-
ferent approaches were reported in the literature to divide or clas-
sify the LiDAR point cloud. We are using elevation information
from the DEM to divide the LiDAR point cloud into ground and
non-ground points. The DEM has been generated from the in-
put LiDAR point cloud by using the commercial software MARS
Explorer (MARS Explorer version 7, 2014). The process iter-
atively selects each LiDAR point and takes ground height from
the DEM. A LiDAR point is considered as a non-ground point if
it is at least 1 m (Awrangjeb and Fraser, 2013) above the ground
height. The minimum object height of 1 m is chosen carefully,
hence we can detect low height buildings. Though many authors
used different threshold values such as 2 m (Zhang et al., 2006)
or 2.5 m (Awrangjeb et al., 2012) or even higher to minimize the
effect of the bushes and small vegetation, but they were unable
to detect low height buildings. From now on LiDAR point cloud
refers in this paper contains only the non-ground points.

4.2 Coplanar and Non-coplanar Point

In this section, LiDAR points are classified as coplanar and non-
coplanar points. The coplanar points will be used to determine
seed points. The idea of classifying the LiDAR points as copla-
nar and non-coplanar is adopted from (Sampath and Shan, 2010).
The eigenvalues of the covariance matrix are used to ascertain
whether a point is coplanar or non-coplanar. The eigenvalues
(λ1, λ2, λ3 where λ1 ≤ λ2 ≤ λ3) imply the dimensionality of
the LiDAR point. If the dimensionality is two, there would exist
only two nonzero eigenvalues. If the dimensionality of the point
is three, all the three eigenvalues will be zero. However, due to
inherent noise of LiDAR data it is not reasonable to expect zero
eigenvalues even for a coplanar neighbourhood. A normalised
eigenvalue is considered instead of using individual eigenvalues.
If it is at least 0.005 (Sampath and Shan, 2010) the point is con-
sidered as coplanar along with its neighbourhood. The neigh-
bourhood of each point is determined using 2D Delaunay trian-
gulation.

Figure 3 shows the coplanar and non-coplanar LiDAR points for
a data set. The points which are marked by yellow colour are
the coplanar points and the remaining are non-coplanar. As can
be seen from this figure, the majority of the points on trees are
non-coplanar and those on buildings are coplanar.

4.3 Seed Point Selection

The process starts with the maximum LiDAR point height, ac-
cumulating all of the points at each height level with a toler-
ance height threshold. This can be represented as M = {p ∈
P |hl− τ < hp <= hl + τ}, here P represents the LiDAR point
cloud where hp represents the height of point p and hl corre-
sponds the current height level. Points satisfying the above equa-
tion are selected where τ indicates the tolerance height threshold,
which is set 10 cm. Though dense LiDAR data provide high ac-
curacy in height, but it has inherent noise. Hence, on a particular
height level all the LiDAR points do not have the similar height,
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Figure 3: Coplanar and non-coplanar points for a data set: copla-
nar (yellow dots) and non-coplanar (magenta dots) LiDAR points.

although they can be fitted into a planar surface. Since the error
in the LiDAR estimated height is usually higher than 10 cm, (Liu,
2011) τ = 10 cm is a reasonable threshold. All of the points in
M may not belong to the same building or plane. The points inM
are clustered based on 2D Euclidian distance. Each of the clusters
is used to extract lines. These extracted lines are used to select
the best suitable seed point for a plane. A coplanar point which is
the nearest to the midpoint of each line is considered as the seed
point. The aforementioned process runs iteratively and in each
step hl is reduced by 0.5 m until it reaches the minimum LiDAR
point height. This height reduction threshold is set empirically.
If the density of the LiDAR point cloud is low (<= 1 point/m2),
then the chance of getting new seed points for plane extraction
will be eventually low. However, for high density point cloud the
possibility increases. Setting the value as 0.5 m allows us not to
lose any significant plane, even at a low point density.

4.4 Plane Extraction

The seed point and its neighbouring points are used to generate
the initial plane equation. The neighbourhood is determined by
the 2D Euclidian distance from the seed point. The seed point
and its neighbouring points are used to determine the plane equa-
tion. The initial plane is growing in a region grown fashion until
no new points can be added. To grow the initial plane, those
points are chosen which are the neighbourhood of the current
plane but do not belongs to it. Before updating the plane equation,
the new points are judged based on a plane fitting error and the
height difference between the estimated height and the LiDAR
point height of the points. Two different thresholds were pro-
posed in (Awrangjeb et al., 2013) for this purpose. All the new
points which satisfy one of the two threshold values are added
to the initial plane and the coefficients of the plane equation are
updated.

By using raw LiDAR data, the possibilities of extracting non-
building planes are higher. To reduce this effect, the average stan-
dard deviation of height of all of the non-ground LiDAR points
is used. Comparatively, planes on trees have a higher standard
deviation of height than planes on buildings. To evaluate this ob-
servation, we calculated the standard deviation of height of all the
extracted planes along with an average standard deviation. The
calculated result supports our observation. Figure 4 shows the
effect of standard deviation of height.

It is clear from the figure that the buildings have lower standard
deviation of height. The observation helps us to remove some of
the trees in the detection process. Figure 5 illustrates all of the
extracted initial planar segments after plane extraction step.

Figure 4: Standard deviation (std.) of height of all the extracted
planar segments. Black and blue vertical lines represent std. of
height from trees and buildings respectively. The blue horizontal
line corresponds to the average std. of height.

Figure 5: Initial planar segments of a data set marked by different
colours and projected on an image.

4.5 A Rule-based Method for Tree Removal

Some of the planes extracted as above may be on trees and other
non-building structures such as fence or gutter. To remove those
unwanted planes, we propose a rule-based automatic tree removal
method. The method defines four rules to remove planar seg-
ments on trees. All threshold values use in this method are chosen
through a sensitivity analysis.

4.5.1 Plane Neighbourhood Area Ratio: This rule is aimed
to remove small planar segments on trees. On a large tree, many
small planar segments may be extracted during the initial plane
extraction step and they are close to each other but do not form a
large plane. For this rule, we choose small planes (area < 5 m2)
and find out their neighbouring planar segments. If a plane has
N neighbouring planes and among them Ns are small (area <
5 m2), the ratio of these two (Ns/N ) is considered as a rule to
remove planes on trees. If the ratio is more than 60% the planar
segment is discarded. This process has the least effect on planar
segments over buildings as small planes on buildings may be sur-
rounded by large planar segments. This rule does not consider
isolated planes (the plane which has no neighbouring plane) as it
can accidentally remove small buildings.

4.5.2 Object Shape Information: The shape information of
an object such as area and width are used to remove planar seg-
ments on trees. If a plane has a negligible width (<= 1 m) re-
gardless of other parameters the plane is removed. This rule re-
moves the planes that are extracted on the fence or on the gutter.
The area of a plane is also considered to remove unwanted planes.
For an isolated plane (single plane building) if it has a small area
(< 5 m2) the plane is not considered as a building plane and for
non-isolated planes (planes with other big planes in their neigh-
bourhood) the area parameter is reduced to 1 m2.
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4.5.3 Height Gap: To remove trees, the height gap within a
plane is calculated. In this measurement, the main concern is
for finding any significant height difference in a plane. All of
the points in a plane are clustered based on height difference.
If there are several clusters, the average height differences for
all clusters are calculated. If the average height difference (>
1.5 m proposed in (Awrangjeb et al., 2013)) significantly differs,
the plane is considered as a tree plane. The motivation of this
observation is, for building plane, there is less height gap as the
LiDAR points are continuous in the roof plane. But for the trees,
the LiDAR points are coming from various parts of the tree and
there may have vertical height gaps in the plane.

4.5.4 Used Point Ratio: The ratio of the used points and ac-
tual number of points in a plane is considered as another parame-
ter for tree removal. To calculate the actual number of points, the
planar segment is bounded by a rectangular region. All the Li-
DAR points inside this rectangle are considered as actual points.
If the ratio is less than 60%, the plane is marked as tree and re-
moved. Figure 6 shows all the extracted planes after applying the
rule-based tree removal method.

Figure 6: Extracted planar segments after applying a rule-based
tree removal method, represented by different colours.

4.6 Building and Plane Boundary Extraction

This is the final step of the method, where the outline of the build-
ing is generated. The boundary of the detected buildings and ex-
tracted roof planes is shown in Figure 7 for a data set. Images are
used only for visualisation purpose.

(a) (b)

Figure 7: (a): Detected building boundary; (b): extracted planar
segments for a data set.

There are two possible ways for building detection and roof ex-
traction. Some authors (Sampath and Shan, 2010) find out each
building and then extract individual roof planes. While the re-
verse is also possible, where extracted individual roof planes are

combined in a neighbourhood basis to detect each building (Awrang-
jeb and Fraser, 2013). As we extract individual planes so we use
the second approach to trace the boundary of each building. For
this, the extracted planes are grouped into several clusters based
on the Euclidean 2D distance. Each of the clusters represents a
building. By combining all the points in a cluster the building
outline is obtained. Any building which has an area less than
5 m2 is removed as per discussion in the previous section. The
boundary of the object is determined using a boundary detection
approach (Awrangjeb et al., 2012).

5. PERFORMANCE STUDY

5.1 Data Sets

In the conducted performance study six data sets from various
states of Australia have been used. Basic information of each
data set is provided in Table 1.

Scenes Full Name PD Area PR
AV1 Aitkenvale Area 1, Qld 40 66 m× 52 m F,M
AV2 Aitkenvale Area 2, Qld 29.3 108 m× 80 m F,M
HB Hervey Bay, Qld 12 108 m× 104 m F,L
EL Eltham, Vic 4.8 300 m× 300 m H,D
HT Hobart, Tas 1.6 222 m× 390 m H,D

Knox Knox, Vic 1.2 400 m× 400 m H,D

Table 1: Data sets and their basic information. PD: point density
in points/m2, PR: Properties, F: flat area, H: hilly area, L: low
vegetation, M: moderate vegetation, D: dense vegetation.

The AV1, AV2, and HB data sets are flat in nature with low to
moderate vegetation. However, the remaining three data sets have
dense vegetation with hilly areas. The point density varies from
1.2 points/m2 to the maximum 40 points/m2. Not only the scenes
are complex in hilly areas, but they also have low point density.
The proposed method is evaluated with the threshold free evalu-
ation approach (Awrangjeb et al., 2010).

5.2 Evaluation Results and Discussion

An evaluation is conducted in pixel-based, object-based, and ge-
ometric. Total 13 different metrics are calculated for evaluat-
ing building detection results. For roof extraction, 14 metrics
are calculated. Seven metrics are used in pixel-based evaluation.
In object-based, five metrics are calculated. In geometric-based,
two metrics are calculated. Evaluation is also conducted for large
buildings and roof planes. Table 2 shows the building detection
results for all data sets and Table 3 shows the roof plane extrac-
tion results.

Despite of vegetation the completeness and correctness values
in pixel-based evaluation are higher than 90% or approximately
90% in AV1, AV2, and HB data sets. Remaining three data sets
contain dense vegetation with hilly land structure, though these
data sets provide competitive results. The completeness of the
Eltham data set is more than 90% with competitive correctness
and quality. The proposed method also provides better complete-
ness than correctness and quality in the Hobart data set. Among
these three data sets, the evaluation results from the Knox data
set are comparatively lower. Most of the buildings of the Knox
data set are surrounded by dense trees and some of the build-
ings are mostly occluded by trees. Due to this, LiDAR points are
missed to some parts of the building. In the reference data set,
some building parts that are mostly from the veranda are consid-
ered as buildings. However, those parts have a few number of
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Metrics AV1 AV2 HB EL HT Knox
Cpa 95.2 91.2 96.3 93.2 82 70

CRpa 96.8 92 89.7 76.7 79 86.2

Qpa 92.3 84.5 86.8 72.7 67.4 63

Aoe 0.05 0.09 0.04 0.07 0.18 0.3

Ace 0.03 0.08 0.1 0.23 0.21 0.14

Bf 0.03 0.09 0.11 0.3 0.26 0.16

Mf 0.05 0.1 0.04 0.07 0.22 0.43

Cpo 100 75.4 100 80 65.2 61.5

CRpo 100 98 96.3 100 93.7 97

Qpo 100 74.2 96.3 80 62.5 60.3

Dcl 0.33 0.09 0.08 0.27 0.07 0.1

Rcl 0 0 0 0 0.03 0.04

RMSE 0.22 0.3 0.32 0.82 0.95 1.40

Cpo,50 100 100 100 100 97.8 97

CRpo,50 100 98 96.3 100 93.7 97

Qpo,50 100 98 96.3 100 91.8 94.1

Cpa,50 95.2 93.4 96.3 94.3 85.2 74.2

CRpa,50 96.8 92 89.7 76.7 79 86.2

Qpa,50 92.3 86.4 86.8 73.3 69.5 66.3

Aoe,50 0.05 0.07 0.04 0.06 0.15 0.26

Ace,50 0.03 0.08 0.1 0.23 0.21 0.14

Bf,50 0.03 0.09 0.11 0.3 0.26 0.16

Mf,50 0.05 0.07 0.04 0.06 0.17 0.35

Table 2: Building detection results. Pixel-based: completeness
(Cpa), correctness (CRpa), quality (Qpa), area omission error
(Aoe), area commission error (Ace), branching factor (Bf ), and
miss factor (Mf ) for buildings and buildings over 50 m2. Object-
based: completeness (Cpo), correctness (CRpo), quality (Qpo),
detection cross lap (Dcl), and reference cross lap (Rcl) for build-
ings and buildings over 50 m2. Geometric: roof mean square
error (RMSE).

LiDAR points, so our method cannot detect those buildings. Fig-
ure 8 shows the Knox data set along with the detected building
boundary which are marked by red colour.

Figure 8: Detected building boundary in the Knox data set.

The area omission error, which represents the percentage of the
non-detected building parts is lower than 10% for first three data
sets. The area commission error, which represents the percentage
of incorrectly detected buildings is also lower than 10% for first
three data sets. Branching factor, which measures the degree of
over segmentation of buildings non-building parts is also within
a reasonable range. The miss factor, which represents the degree

Metrics AV1 AV2 HB EL HT Knox
Cpa 89.6 78.6 85 79.2 69.7 58.9

CRpa 89 77.1 75.1 63.8 63 67.2

Qpa 80.7 63.7 66.3 54.7 49.4 45.7

Aoe 0.1 0.21 0.15 0.21 0.3 0.4

Ace 0.11 0.23 0.25 0.36 0.37 0.33

Bf 0.12 0.3 0.33 0.57 0.59 0.49

Mf 0.12 0.27 0.18 0.26 0.43 0.7

Cpo 96.1 70.3 93.4 79.8 66.5 51.4

CRpo 100 92 98.7 82.8 82.2 88.6

Qpo 96.1 66.2 92.3 68.5 58.2 48.2

Dcl 0.04 0.15 0.06 0.11 0.19 0.28

Rcl 0 0.04 0.01 0.12 0.06 0.02

RMSE 0.22 0.38 0.38 0.79 0.92 1.16

RMSEz 0.04 0.04 0.08 0.05 0.05 0.05

Cpo,10 100 90.3 99.3 92.6 88.1 71.5

CRpo,10 100 92 98.7 82.8 82.2 88.6

Qpo,10 100 83.7 98.1 77.7 74 65.5

Dcl,10 0.04 0.15 0.06 0.11 0.19 0.28

Rcl,10 0 0.05 0.01 0.14 0.08 0.03

Cpa,10 90 81.2 86 81.2 74.7 64.6

CRpa,10 89.2 77.1 75.2 63.8 63 67.2

Qpa,10 81.1 65.4 67 55.6 51.8 49.1

Aoe,10 0.1 0.19 0.14 0.19 0.25 0.35

Ace,10 0.1 0.23 0.25 0.36 0.37 0.33

Bf,10 0.12 0.3 0.33 0.57 0.59 0.49

Mf,10 0.11 0.23 0.16 0.23 0.34 0.55

Table 3: Roof plane extraction results. Pixel-based: complete-
ness (Cpa), correctness (CRpa), quality (Qpa), area omission er-
ror (Aoe), area commission error (Ace), branching factor (Bf ),
and miss factor (Mf ) for roof planes and roof planes over 10 m2.
Object-based: completeness (Cpo), correctness (CRpo), quality
(Qpo), detection cross lap (Dcl), and reference cross lap (Rcl) for
roof planes and planes over 10 m2. Geometric: roof mean square
error (RMSE) and height accuracy (RMSEz).

of non-detection of a building part, is also within a fair range.

For object-based evaluation, higher results are achieved in AV1
and HB data sets. The correctness has increased in most of the
data sets. The completeness is comparatively lower in AV2 data
set, since it contains many small buildings or building type ob-
jects. Despite of dense vegetation, Eltham data set provides 100%
correctness. The correctness of Hobart and Knox data sets are
also higher than 90%.

By using only LiDAR data, the accuracy of the boundary is lim-
ited to the LiDAR point spacing. For all data sets, the RMSE of
the boundary is lower than the respective LiDAR point spacing.

For large buildings, better results are observed in both area-and-
object-based. In most of the data sets the completeness is 100%
with more than 90% completeness and quality.

The same trend of results is observed in roof extraction as of
building detection process. These results are comparatively bet-
ter in the first three data sets. Despite of dense vegetation, the re-
sults from last three data sets are also impressive. Best results are
observed for large roof planes. Both the area- and object-based
results are improved. Comparatively higher results are found in
object-based than area-based. The RMSE is lower than the Li-
DAR point spacing. The height error is also within a limited
range of 8 cm.
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Despite of scene complexity and vegetation, our proposed method
is able to detect most of the buildings and roof planes. However,
some of the buildings and roof planes are missed due to its small
size. There are also occlusions from the surrounded trees.

6. COMPARATIVE RESULTS

The outcomes of the building detection and roof plane extrac-
tion process are compared with Awrangjeb’s method1. Here PM
represents our proposed method and AW corresponds to Awrang-
jeb’s method.

Figure 9 shows the object and area-based completeness compari-
son of building detection process.

Figure 9: Object and area-based completeness comparison of
building detection process. PM (object) and PM (pixel) represent
the object and pixel-based completeness of the proposed method.
AW (object) and AW (pixel) correspond to the same for Awrang-
jeb’s method. The X-axis labelling represents the data sets.

In object-based evaluation, the proposed method provides better
results in all data sets except Hobart and Knox data sets. In our
method, we used an updated reference data set where many small
sized buildings are included. However, these buildings were not
considered in Awrangjeb’s reference data set. Despite this, our
method outperforms Awrangjeb’s method in object-based.

Correctness comparison of these two methods is presented in Fig-
ure 10.

Figure 10: Object and area-based correctness comparison of
building detection process. PM (object) and PM (pixel) represent
the object and pixel-based completeness of the proposed method.
AW (object) and AW (pixel) correspond to the same for Awrang-
jeb’s method. The X-axis labeling represents the data sets.

Despite of the dense vegetation, our proposed method provides
better results in Hobart and Knox data sets. The proposed method

1http://users.monash.edu.au/~mawrangj/RExtraction.

html

offers the best result in the Knox data set. For other data sets, both
methods provide approximately the same results with an excep-
tion in the Eltham data set.

Figure 11 and 12 show the completeness and correctness compar-
ison for roof plane extraction.

Figure 11: Object and area-based completeness comparison for
roof plane extraction process.

Figure 12: Object and area-based correctness comparison for roof
plane extraction process.

For the completeness analysis, our proposed method provides
better results in all data sets except in the Knox data set, where
the completeness is slightly lower than Awrangjeb’s method. An
improved performance has been observed in object-based cor-
rectness comparison. In the area-based evaluation, both of the
methods perform approximately the same.

Figure 13 shows the RMSE of the detected boundary.

(a) (b)

Figure 13: RMSE comparison of (a): building detection; (b): roof
plane extraction. PM: proposed method and AW: Awrangjeb’s
method

For building detection, our proposed method has significantly
lower RMSE than Awrangjeb’s method. Therefore the accuracy
of the building boundary is much higher in our method. The
RMSE of roof plane extraction is also in our favour. However,
in the Knox data set Awrangjeb’s method provides lower RMSE.

7. CONCLUSIONS

In this paper, we have presented a new automatic LiDAR point
segmentation method for building detection and roof plane ex-
traction. Detailed explanation of the proposed method with a
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performance study and comparative results were also presented.
The method performed well in the presence of vegetation, even in
dense vegetation the results were quite impressive. As the method
fully depends on the provided LiDAR data, the accuracy of the
detection is mostly dependent on the accuracy of the data. There
is some future scope of further improvement. The DEM was gen-
erated by commercial software. An improved DEM could im-
prove the performance in both building detection and roof plane
extraction. The detected boundary can be regularised to generate
3D roof models.
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