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ABSTRACT: 

 

This paper presents a novel approach to detect the buildings by automization of the training area collecting stage for supervised 

classification. The method based on the fact that a 3d building structure should cast a shadow under suitable imaging conditions. 

Therefore, the methodology begins with the detection and masking out the shadow areas using luminance component of the LAB 

color space, which indicates the lightness of the image, and a novel double thresholding technique. Further, the training areas for 

supervised classification are selected by automatically determining a buffer zone on each building whose shadow is detected by using 

the shadow shape and the sun illumination direction. Thereafter, by calculating the statistic values of each buffer zone which is 

collected from the building areas the Improved Parallelepiped Supervised Classification is executed to detect the buildings. Standard 

deviation thresholding applied to the Parallelepiped classification method to improve its accuracy. Finally, simple morphological 

operations conducted for releasing the noises and increasing the accuracy of the results. The experiments were performed on set of 

high resolution Google Earth images. The performance of the proposed approach was assessed by comparing the results of the 

proposed approach with the reference data by using well-known quality measurements (Precision, Recall and F1-score) to evaluate 

the pixel-based and object-based performances of the proposed approach. Evaluation of the results illustrates that buildings detected 

from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.4% and 

853% overall pixel-based and object-based precision performances, respectively. 

 

1. INTRODUCTION 

Automatic building detection from monocular aerial and 

satellite images has been an important issue to utilize in many 

applications such as creation and update of maps and GIS 

database, change detection, land use analysis and urban 

monitoring applications. According to rapidly growing 

urbanization and municipal regions, automatic detection of 

buildings from remote sensing images is a hot topic and an 

active field of research. 

Building detection, extraction and reconstruction have been 

studied in a very large number of studies; some review studies 

of several techniques can be found in (Mayer, 1999; Baltavias, 

2004; Unsalan and Boyer, 2005; Brenner, 2005; Haala and 

Kada; 2010). Considering the type of data which have been 

used for building detection such as multispectral images, 

nDSM, DEM, SAR, LiDAR datasets, the existing methods can 

be categorized into two groups: 1-Building detection using 3D-

image provider datasets, 2-Building detection through 

monocular remote sensing images.  

This study is devoted to the autonomous detection of buildings 

from a monocular optical Google Earth images. Therefore, a 

brief discussion of the previous studies which used single 

optical image datasets to automatically detect the buildings will 

be given first. The studies in the monocular context used region 

growing methods, simple models of building geometry, edge 

and line segments and corners (Tavakoli and Rosenfeld, 1982; 

Herman and Kanade, 1986; Hueratas and Nevatia, 1988; Irvin 

and Mckeown, 1989) to detect buildings. The shadow areas are 

engendered with regard to height of the buildings and 

illumination angle of the sun in the optical remote sensing 

images, and they give important clues about the location of the 

buildings. First, Hueratas and Nevatia (1988) used shadows to 

carry out the sides and corners of the building. Then, Irvin and 

McKeown (1989) predicted the shape and the height of the 

buildings using shadow information. To extract buildings from 

aerial images through boundary grouping, Liow and Pavalidis 

(1990) used shadow information to complete the boundary 

grouping process. Furthermore, shadow information was used 

as an evidence to verify the initially proposed methods 

(McGlone and Shufelt, 1994; Lin and Nevatia, 1998). Besides, 

Peng and Liu (2005) proposed a new method based on models 

and context that is guided with shadow cast direction which has 

computed using neither illumination direction nor viewing 

angle. 

Recently, some methods have been proposed based on 

classification methods to detect and extract buildings from 

remote sensing imagery.  

Supervised classification and hough transformation are used by 

Lee et al. (2003) as a new method to extract buildings from 

Ikonos imagery. They illustrated that their proposed model 

largely depends on the supervised classification method to get a 

accurate and detailed set of building roofs. Furthermore, Inglada 

(2007) used support vector machines classification (SVM) of 

geometric image features to detect the man-made objects in 

high resolution optical remote sensing imagery. He just utilized 

original bands of the SPOT 5 satellite images for learning the 

SVM. Then, the additional bands such as NDVI, nDSM, and 

several texture measures additionally were used  for finding the 

building patches (San and Turker, 2014). As an effect of 

additional bands the accuracy of the building detection method 

has been increased about ten percent. Tanchotsrinon et al. 
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(2013) proposed a method utilizing integration of the texture 

analysis, color segmentation and neural classification 

techniques to detect buildings from remote sensing imagery. 

Initially, the graph theory was used to detect buildings in aerial 

images by Kim and Muller (1999). They used linear features as 

vertices of graph and shadow information to verify the building 

appearance. Then, Sirmacek and Unsalan (2009) utilized graph 

theoretical tools and scale invariant feature transform (SIFT) to 

detect urban-area buildings from satellite images. Ok et al. 

(2013) proposed a new approach for the automated detection of 

buildings from single very high resolution optical satellite 

images using shadow information in integration of fuzzy logics 

and GrabCut partitioning algorithm. Thereupon, Ok (2013) 

increased the accuracy of their previous work by using a new 

method to detect shadow areas (Teke et al., 2011) and 

developing a two-level graph partitioning framework to detect 

buildings. 

In this paper, a fully automatic method is proposed to detect 

buildings from single high resolution Google Earth images. 

First a novel shadow detection method is conducted using LAB 

color space and double thresholding rules. Thereafter, 

considering the illumination direction and shadow area 

information training samples are collected. An improved 

parallelepiped classification method is applied to classify the 

image pixels into building and non-building areas. Finally, 

simple morphological operations are executed to increase the 

accuracy. 

2. METHODOLOGY 

The proposed automatic building detection using supervised 

classification has three main steps: (Fig. 1). 

Step1: Shadow detection based on novel double thresholding 

technique: 

Shadows occur in regions where the sunlight does not reach 

directly due to obstruction by some object such as buildings. In 

this paper, we propose a novel double thresholding technique to 

detect shadow areas from a single Google Earth image. In order 

to detect shadow information automatically we convert the 

image from RGB to LAB color space. Since the shadow regions 

are darker and less illuminated than their surroundings, it is easy 

to extract them in the luminance channel which gives lightness 

information. Indeed, information of the luminance channel is 

utilized because of its capability in separating the objects with 

low and high brightness values in original image. Consequently, 

we put a default and a little bit coarse threshold in the range of 

(70 - 90) for our images with 256 bits’ depth. Utilizing this 

threshold allows shadow areas to be detected; but, 

simultaneously some of vegetation regions are detected 

inaccurately because of their low luminance values. To separate 

the vegetation and shadow areas from each other we utilize 

Otsu’s (Otsu, 1975) automatic gray-level thresholding witch is 

very effective in isolating the bimodal histogram distribution. 

Although there are some mistakes in eliminating true shadow 

pixels, but they cannot be very effective in reducing our 

method’s accuracy to detect the buildings.( Fig. 2b). 

In addition, we use some simple morphological operations to 

remove the shadow areas which are smaller than building 

shadows. In this way, we can protect our algorithm from the 

negative effects of tree shadows in next steps. 

 

Figure 1. Proposed method for building detection 

Step2: Supervised classification 

Supervised classification is a process of categorizing pixels into 

several numbers of data classes on their values which are 

extracted from training sites identified by an analyst. Collecting 

training areas manually by an expert makes this method as a 

non-automated model of categorizing of data. Since we aim to 

detect the buildings automatically from the satellite images, our 

proposed method should be provided with training areas which 

are selected in an automated way.  

In this study, shadow evidence is used to overcome this 

limitation toward automatic supervised classification. Then, an 

improved parallelepiped supervised classification is conducted 

to classify the image into building and non-building areas. 

1- Automatic collection of training areas  

Training areas should be well-representative of their class. 

Besides, shadows are features that can be easily detected as 

darkest areas in the image which gives a robust clue of the 

buildings. Therefore, we collected the training areas with 

respect to the illumination angle and the shadow areas which are 

detected in step one by composing buffer zone considering 

shadow shapes and sizes. Indeed, each buffer zone has the same 

length of the shadow edges adjacent to the building, and it has 

five pixels in width. Since collecting the training areas adjacent 

to the shadow edges cannot be a good representation of that 

building class, and it might contain shadow pixels, the buffer 

zone is shifted 3 pixels toward inside building in regard to 

illumination angel. (Fig. 2.c).  
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2- An improved parallelepiped classification 

The parallelepiped classifier uses the class limits and stores 

range information related with all the classes to determine if a 

given pixel falls within the class or not. For each class, the 

minimum and maximum values are used as a decision rule to 

classify the image pixels as buildings, subsequently the 

unclassified pixels are assigned to the non-building areas.  

The parallelepiped classification method has disadvantages as 

follows: 1- The decision range that is defined by the minimum 

and maximum values may be unrepresentative of the spectral 

classes that they in fact represent. 2- It performs poorly when 

the regions overlap because of high correlation between the 

categories. 3- The pixels remain unclassified when they are not 

in the range of any classes. 

In order to overcome the limitations we proposed a new 

thresholding method based on standard deviation of the classes, 

in which the pixels, which are assigned inaccurately as 

buildings due to these limitations, are removed considering this 

threshold. Furthermore, the overlapped classes, which illustrate 

the regions of the building values, do not affect the final results 

because the all training areas are merged and demonstrate the 

same class as building. Moreover, although in the parallelepiped 

classification method the remaining unclassified pixels is a very 

big problem for classification of the whole image when the 

training areas are complete and represent all the features in the 

entire image. However, it cannot be a disadvantage for our 

proposed method, because this manner of the parallelepiped 

classification makes it optional and ideal for our method when 

we try to collect training areas from the building regions instead 

of all the features in the images. Due to lack of information 

about the features except the building areas in the image, we can 

only use a classification method that can assign pixels just to the 

specific predetermined training areas, and keeps other pixels 

unclassified which belong to other features that are not 

buildings.  

 

Figure 2. (a) Original #1 test image, (b) detected shadow areas, 

(c) white areas are the training samples, (d) detected building 

regions. 

In this study, after collecting the training areas and removing 

the noises by a standard deviation thresholding process, the 

minimum and maximum values of the each training area are 

calculated to determine the districts of that building class. 

Consequently, all the pixels in the image classified considering 

these districts, indeed, the pixels whose are inside these districts 

labeled as building and others labeled as non-building. 

 

Step3:  Post-processing and finalizing the results  

Although the detected buildings reveal the regions that might be 

the feature of interest, many false alarm areas, a set of 

morphological image processing operations such as openings, 

closings and fillings applied to the single binary image that is 

the output of the classified image. The opening operation 

generally smoothes the contour of an object, breaks narrow 

strips, and eliminates stray foreground structures that are 

smaller than the predetermined structure; Therefore, larger 

structures will remain. On the other hand, the closing operation 

not only tends to smooth sections of contours, but also fuses 

narrow breaks and long thin gulfs, eliminates small holes, and 

fills the gaps in the contour. Despite of filling of gaps in 

previous morphological operations, it is seen that these 

operations are not effective in filling larger holes. Therefore, we 

used morphological filling operation in order to overcome this 

problem at the beginning of the post-processing operations. 

(Fig. 2d).  

 

3. Experimental Results 

3-1-Image Datasets 

We tested our automatic building detection method on seven 

high resolution Google Earth images which have three bands 

(RGB), and they have acquired from different sites in Ankara, 

Turkey. The images selected specially to represent diverse 

building characteristics such as the sizes and shapes of 

buildings, their proximity and different color combinations of 

building roofs. The test images are showed in Fig. 3, and we 

provided the detected buildings in the second column for each 

test image. 

3-2-Accuracy Assessment Strategy 

The final performance of the proposed automated building 

detection method is evaluated by comparing the results with the 

reference data which are generated manually by a qualified 

human operator. In this study, we utilized both pixel-based and 

object-based quality measures. Initially all the pixels in the 

image are classified into four classes as follows: 

  1-True Positive (TP): Both manually and automated methods 

classified the pixel as building. 

   2-True Negative (TN): Both manually and automated methods 

classified the pixel as non-building. 

   3-False Positive (FP): The automated method incorrectly 

classified the pixel as building whereas it is truly classified as 

non-building with manually method.   

   4-False Negative (FN): The automated method incorrectly 

classified the pixel as non-building whereas it is truly classified 

as building manually.   

Subsequently, to assess the pixel-based performance of the 

proposed method, we use three well-known quality measures as 

applied on Aksoy et al. (2012), Ok et al. (2013) and Ok 

(2013): 

FPTP

TP
precision


                     (1) 
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Figure 3. Test images and the results of the proposed building detection method. Green, red, blue colors represent TP, FP and FN 

respectively. (first column) Test images #1–3. (second column) Detected buildings for test images #1–3. (third column) Test images 

#4–7. (fourth column) Detected buildings for test images #4–7. 

 

FNTP

TP
recall


                           (2) 

recallprecision

recallprecision
F




**2
1

                 (3) 

Where . denotes the number of pixels assigned to each distinct 

class, and 
1F -score is the combination of Precision and Recall 

into single score.  

The object-based performance of the proposed method has been 

tested using the measures given in Eqs. (1)-(3). To do that, we 

classify a resulted building object as TP if it has at least 60% 

pixel overlap ratio with a building object in the reference data. 

Whereas, we classify a resulted object as FP if the resulted 

object of the proposed method does not coincide with any of the 

building objects in the reference data. In addition, FN class 

assigned to a resulted object when it corresponds to a reference 

object with an overlap under 60%. Therefore, the object-based 

Precision, Recall and 
1F -score values for each test image were 

computed. 
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Tabel 1. Numerical results of the proposed automatic building detection method 

 

Test 

Image 

Pixel-Based Evaluation (%) Object-Based Evaluation (%) 

Precision Recall 1F  Precision Recall 1F  

#1  97.9 84.4 90.7 100 90.0 94.7 

#2  81.9 62.6 71.0 87.1 85.9 86.5 

#3  99.0 40.0 57.0 50.0 100 66.7 

#4  97.3 84.5 90.5 100 80.0 88.9 

#5  96.1 91.9 94.0 100 100 100 

#6  97.3 87.8 92.3 100 100 100 

#7  49.2 50.8 50.0 60.0 54.5 57.1 

Overall 88.4 71.7 77.9 85.3 87.2 84.8 

Min 49.2 40.0 50.0 50.0 54.5 57.1 

Max 99.0 91.9 94.0 100 100 100 

 

3-3-Results and Discussion 

We illustrate the detection results of the proposed method in 

Fig. 3. Visual interpretations of the results show that the 

developed method is robust and representative by detecting 

most of the buildings without producing too many FN pixels in 

the images which include buildings with divers roof colors, 

texture, shape, size and orientation. In addition to visual 

illustration, the numerical results of the proposed method are 

listed in Table 1 which also support these findings. With regard 

to pixel-based evaluation, the overall mean ratio of precision 

and recall are computed as 88.4% and 71.7%, respectively. 

Further, the calculated pixel-based F1-scores for all test images 

are 71.7%, which indicate promising results for such a divers 

and challenging set of test data. Moreover, for the object-based 

evaluation, the overall mean ratios of precision and recall are 

calculated as 85.3% and 87.2%, respectively, and these results 

correspond to an overall object-based F1-score of 84.8 %. 
Considering the complexity and various conditions in the test 

images involved, this is a reliable pixel-based automatic 

building detection performance.  

According to the numerical results in Table 1, the lowest pixel-

based precision ratio (49.2%) is produced by the test image #7. 

The reason of this poor pixel-based performance in comparison 

with other test image performances is the proximity of the 

spectral reflectance values of the buildings and the background 

image. Whereas, the test image #3 produces the lowest object-

based precision performance ratio as 50% due to big differences 

of contrast values between two sides of the buildings according 

to the illumination angle. However, it produces pixel-based 

precision ratio as 90%, which shows a robust result in terms of 

pixel-based performance.  

In Fig. 3, #2 test image results show the efficiency of our 

proposed method in detecting buildings from dense urban areas 

where the buildings are so close to each other, and it produces 

high object-based precision, recall and 
1F -score ratios as 

87.1%, 85.9% and 86.5%, respectively. 

The #1, #3, #4 and #7 test images are representative examples 

of various colors, shapes and sizes of the buildings which 

detected by our proposed automatic building detection method 

and is resulted in fairly good performance in both pixel-based 

and object-based assessments. Based on discussed quantitative 

and qualitative evaluations, we can deduce that the proposed 

building detection method works fairly well and has robust 

performance despite of such diverse challenging test images. 

4. CONCLSION AND FUTURE WORKS 

The majority of building detection methods has one or more 

limitations in automatic detections of buildings. There may be 

some restrictions about density of buildings areas such as urban, 

sub-urban and rural areas. In addition to these restrictions, there 

are some limitations related to shape, color and size of the 

buildings. To overcome most of these problems, we proposed a 

novel approach. This method can detect buildings without 

influencing from their geometry characteristics. Moreover, this 

method provides an automatic training area collection to seed 

the supervised classification methods. In this study, a novel 

shadow detection method based on double thresholding using 

RGB images is proposed and, the parallelepiped classification 

model is improved to detect building regions. This method is 

still has some incapability in separating non-building from 

building areas when they have similar spectral values. However, 

we believe that our method will supply great help for building 

detection applications in big scales in future. 

As a future work, satellite images that offer NIR band in 

addition to RGB bands will be used to improve the accuracy of 

the shadow detection results. In addition, the image-processing 

operator will be enriched in order to boost the detection 

accuracy. 
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