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ABSTRACT:

In recent years, there has been a substantial increase in the availability of high-resolution commercial satellite imagery, enabling a
variety of new remote-sensing applications. One of the main challenges for these applications is the accurate and efficient extraction of
semantic information from satellite imagery. In this work, we investigate an important instance of this class of challenges which involves
automatic detection of multiple objects in satellite images. We present a system for large-scale object training and detection, leveraging
recent advances in feature representation and aggregation within the bag-of-words paradigm. Given the scale of the problem, one of
the key challenges in learning object detectors is the acquisition and curation of labeled training data. We present a crowd-sourcing
based framework that allows efficient acquisition of labeled training data, along with an iterative mechanism to overcome the label
noise introduced by the crowd during the labeling process. To show the competence of the presented scheme, we show detection results
over several object-classes using training data captured from close to 200 cities and tested over multiple geographic locations.

1. INTRODUCTION

Over the years, there has been a tremendous increase in both the
amount and resolution of satellite imagery (Doe, 2014). This
growth has resulted in several novel application opportunities, in-
cluding everything from precision agriculture (Yang et al., 2013)
to automatic construction of 3-D terrain models (Maas, 2005).
The key challenge shared among all these applications is the ac-
curate and efficient extraction of semantic information from satel-
lite imagery. In this work we focus on a particular instance of
such semantic information related to the accurate and efficient
detection of key objects in a region.

DigitalGlobe operates the world’s largest constellation of com-
mercial imaging satellites, which collect over 2.5 million square
kilometer of high resolution (better than 60 cm) imagery each
day. In addition, we have a large-scale image archive that we are
able to draw upon, with most places on the globe represented with
a diversity of seasonal, atmospheric, and environmental condi-
tions. We have developed a detection framework which is readily
scalable to run on our entire daily imagery take, and also exploits
our extensive image archive in constructing training data.

While automatic object detection from satellite imagery has been
explored in the past (Yang and Newsam, 2010) (Risojević et al.,
2013) (Cheriyadat, 2014) (Drozda et al., 2013), we take on this
challenge in a more detailed manner that is different from the pre-
vious efforts in several important ways. These include the scale
of the problem, the number of object classes (see Figure 1), the
use of crowd-sourcing for the acquisition and curation of labeled
training data, and a focus on detection as opposed to multi-class
classification.

Given the high variance in the chromatic appearance of objects
over different geographic locations (see Figure 2), using edge-
based characteristics of objects is a natural choice for learning
robust classifiers (Yang and Newsam, 2010) (Liu et al., 2011).
While previous approaches have focused on using such edge-
based characteristics directly in a bag-of-words framework, we

Figure 1: Examples of 9 of the object classes we consider in our
data-set, including a: Runway, b: Soccer Field, c: Parking Lot, d:
Baseball field, e: Golf course, f: Pier, g: Bridge, h: Lighthouse,
and i: Tennis court.

use a more sophisticated feature encoding scheme before utiliz-
ing the codes in a bag-of-features framework. The use of this
improved coding scheme makes the presented framework more
robust to variances in object appearance due to varying illumina-
tion, climate and terrain conditions.

For the problem at hand, having correctly labeled training data is
critical. However, given the size of the problem, conventional
data-labeling strategies simply do not scale up to the require-
ments. We therefore rely upon crowd-sourcing for the acquisition
and curation of the training labels. In particular, we start with
object-labels and co-ordinates given in the OpenStreetMap (Hak-
lay and Weber, 2008) (OSM) database to train our initial detec-
tors. We then apply these initial detectors over different geo-
graphical locations and curate the false detections and omissions
in an iterative manner. This process is repeated once or twice to
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Figure 2: a- Example instances from three of the considered
classes are shown to represent the appearance variability present
in the training data. b- Example instances of wrongly labeled
training points in the OSM database are shown to give a sense of
the label-quality of the training data.

finally converge to a sufficiently-accurate detector adapted to the
characteristics of a particular geographic area. Note that by boot-
strapping the learning process with the labels from OSM, we sig-
nificantly reduce the amount of curation required from the crowd
during detector adaptation, resulting in an efficient and scalable
training framework. Also note that the the labels from OSM can
be noisy (see Figure 2), and therefore may require some initial
curation to reduce label noise.

2. RELATED WORK

Multi-class image classification (Haralick et al., 1973) (Deng et
al., 2009) (Krizhevsky et al., 2012) (Harsanyi and Chang, 1994)
and object detection (Papageorgiou and Poggio, 2000) (Viola and
Jones, 2001) (Mohan et al., 2001) have generated substantial re-
search interest over the last few decades. A similar set of ex-
plorations has been done relating to satellite imagery (Yang and
Newsam, 2010) (Risojević et al., 2013) (Cheriyadat, 2014) (Drozda
et al., 2013). This work is an extension of such previous bodies
of work where we focus more on the detection and large-scale
aspects of the problem.

An important advancement in image representation has been the
development of texture-based image descriptors (Lowe, 1999)
(Bay et al., 2006) (Rublee et al., 2011). Given their tolerance
to factors such as rotation and illumination changes, these de-
scriptors have been successfully used to classify images in a bag-
of-visual words representation. One limitation of bag-of-visual
words models is that they discard the spatial locations of the
features, relying only on the relative frequencies of the visual
words in the representation. Spatial pooling has emerged as way
to retain much of the important relative positional information
of the feature descriptors without overly complicating the repre-
sentation (Lazebnik et al., 2006) (Grauman and Darrell, 2005).
These approaches have been further improved by schemes that
utilize distance based soft-assignments for descriptor quantiza-
tion (Wang et al., 2010) (Liu et al., 2011). In this work, we use
locally linear codes (LLC) (Wang et al., 2010) and spatial pyra-
mids (Lazebnik et al., 2006) for image encoding.

One way to mitigate the large-scale labeling needs of our prob-
lem is to rely upon crowd-sourcing to obtain training data. Like
several other applications (Yuen et al., 2011), crowd-sourcing has
found its use in generating labels in satellite imagery (Fritz et al.,
2009) (Heipke, 2010). However, unlike previous works, here we
focus on utilizing such data for the purposes of learning and re-
fining models for object detection.

3. COMPUTATIONAL FRAMEWORK

Given the scale of the problem at hand, we generate un-curated
training data by querying the OSM database to locate objects of
interest in a multi-petabyte historical image archive. We learn
an initial set of object models from the OSM-derived uncurated
training samples, and use the results of these models to bootstrap
the creation of curated data. This process dramatically reduces
the size of the imagery the crowd needs to observe in order to
generate quality training data. Our results demonstrate that a few
rounds of bootstrapping in this manner provides significant per-
formance gains in terms of Precision-Recall curves.
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Figure 3: Block diagram of the computational framework

We now describe the computational framework used to train the
detectors for different object classes. The block diagram of our
framework is given in Figure 3, and the explanation for each step
is given below. The specific details for some of the parameter
values are given in § 4. Note that the following account is one
particular set of framework choices and the corresponding re-
sults generated by using these choices. There can be sever differ-
ent variants of this framework, with different feature descriptors,
code-book learning mechanisms, coding and pooling strategies.

3.1 Feature Extraction

Our sensors have a number of high-resolution multispectral bands
(e.g., WorldView-2 has 8 bands), which we are able to process
spectrally to surface reflectance, thereby creating a direct rela-
tionship between measured spectral values and surface material
properties. In practice, we extract a combination of textural and
spectral features. However, for the purposes of this paper all re-
sults were produced using a standard dense SIFT (Lowe 1999)
descriptor applied only to the panchromatic image channel.

3.2 Dictionary Learning

Using the features extracted from the training images, we use k-
means clustering (Hartigan and Wong, 1979) to discover descrip-
tor modes in our training data. Following the terminology from
Natural Language Processing for document representation, find-
ing these modes is equivalent to discovering a dictionary of visual
words.

3.3 Locally Constrained Linear Codes

While gradient based image descriptors have shown some promise
as feature representations in satellite image classification, these
approaches tend to employ hard-assignment during feature quan-
tization. In contrast, we use an encoding approach that employs
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distance based soft-assignment during feature quantization along
with locality constrained regularization (Wang et al., 2010). These
locally constrained linear codes (LLC) ensure improved feature
reconstruction by generating a space that better captures data non-
linearities. More specifically, the LLC codes use the following
optimization cost-function:

min
C

N∑
i=1

||xi − Bci||2 + λ||di � ci||2 (1)

where � represents element-wise product, xi ∈ RD is the ith

feature vector, and B = [b1, b2, ·, ·, ·, bM ] ∈ RD×M is a basis
vector codebook. Moreover, di ∈ RM is the locality adaptor that
varies for each basis vector based on its similarity to xi. More
concretely,

di = exp

(
dist(xi,B)

σ

)
(2)

where dist(xi,B) = [dist(xi, b1), dist(xi, b2), ·, ·, ·, dist(xi, bM )],
and dist(xi, bj) is the Euclidean distance between xi and bj . Fur-
thermore, here σ adjusts the weight decay rate for the locality
adaptor.

3.4 Spatial Pooling

A means to incorporate locality constraints in image representa-
tion, spatial pooling (Boureau et al., 2011) has emerged as an im-
portant step in image classification systems. In particular, spatial
pyramids (Lazebnik et al., 2006) have shown to be a useful way
to perform spatial pooling for a wide variety of features. For our
purposes, we use spatial pooling computed over the dense LLC
codes for each of the training images to generate the final feature
vector representations.

3.5 Classifier Learning

The space generated by the LLC image codes attempts to capture
the non-linearities of the data accurately, using locally-linear ap-
proximations. Spatial pooling has the effect of greatly increasing
the dimensionality of the feature vector, which can be a bene-
fit for finding separating hyperplanes as classification decision
boundaries, but also increases the computational and storage re-
quirements of the system. Therefore for the sake of efficiency and
classifier generalizability, we use a linear SVM (Fan et al., 2008)
as our classifier of choice.

3.6 Testing

Given a previously-learned dictionary and a test image, we com-
pute the SIFT features using a dense grid, and find the LLC codes
for each of the grid locations. Based on the object-class under
consideration, we scan the test image using a sliding-window of
a specific size. For each of the sliding-windows, we perform
spatial pooling, and score the resulting feature vector using the
previously-learned classifier for the particular object of interest.
A final detection decision is made by applying a threshold to the
score for each window.

4. EXPERIMENTS AND RESULTS

Our experimental evaluation employed three data sets: McChord
Air Force Base (AFB), where we tested detection of multiple ob-
ject classes, and two secondary data sets, one in Corpus Christi,

Figure 4: “TilePicker” GUI used to quickly curate detections as
part of the bootstrapping process.

Texas, where we evaluated oil storage tank detection, and another
in Denver, Colorado, where we evaluated parking lot detection in
an urban setting. Details and results for each of the three data sets
are provided below.

4.1 Bootstrapping

We improve the detection results by using a training process we
call bootstrapping. The idea is that we can fine-tune a model for a
given data set by curating the detections (and the miss-detections)
to generate additional positive and negative training samples. In
general, we do this by using a set of training data to construct an
initial detector. We process detections on a validation image, set-
ting the detection threshold relatively low, such as to favor false
positives over false negatives (i.e. higher recall at the cost of
lower precision).

We use a graphical interface we call “TilePicker”, to quickly iden-
tify the true positives from among all the detections (see Fig-
ure 4). The true positives are used to augment the positive train-
ing data, while the false positives augment the negative samples.
Similarly, we have another interface that makes it easy for the
user to select objects that were missed in the validation image.
The regions around a miss are used to augment the positive train-
ing samples.

Bootstrapping can be an iterative process. In the data sets de-
scribed herein, we found that one or two rounds of bootstrap-
ping on the validation image was sufficient to generate an accu-
rate model. We use the precision-recall curves on the validation
image, through the training stages (initial detection, boostrapping
round 1, and bootstrapping round 2), to judge when the model is
sufficiently accurate. We use the final model created through this
bootstrapping process to perform detections on the withheld test
image.

4.2 McChord AFB

The McChord AFB data consists of 15 images of an airplane run-
way area taken over a series of months. Another 6 images are
from a different part of the base where helicopters are present.

The 15-image subset was used to train detectors for airplanes,
parking lots, and storage tanks. We used 13 of the 15 images to
generate positive and negative training samples. The 14th of 15
images was used for bootstrapping our models. The final image
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was withheld for testing the model. The same procedure was fol-
lowed for helicopters using the 6-image subset. Four images were
used to generate training samples, one was used for bootstrapping
the model, and the final withheld for testing.

Each of the images was labeled by hand to establish ground truth.
For parking lots, we outlined each parking area, creating a set
of ground-truth polygons. For the other classes, we selected the
center points of the objects. Parking lots and storage tanks are
static facilities, so a single ground-truth data file sufficed for all
images. For airplanes and helicopters, each image had to be an-
notated separately.

We generated positive training samples by extracting a rectangu-
lar patch around the center points of each object. For parking
lots, we selected a random representative point from within each
polygon for use as the center of the training patch. The size of
the training patch varied based on the class. For airplanes, we
used 150×150 pixels, for parking lots and storage tanks we used
75×75 pixels, and for helicopters, 50×50 pixels. To augment the
positive training samples, we rotated each through 8 directions, in
45◦ increments.

We generated negative training samples for each class by ran-
domly selecting 200 patches from each training image and then
discarding any of the patches that happen to contain part of the
positive class.

Class Initial Bootstrap1 Bootstrap2
Parking Lots 12584 / 2322 14235 / 3561 –
Storage Tanks 1768 / 2587 1801 / 2637 1852 / 2792
Airplanes 1560 / 2578 1626 / 2662 –
Helicopters 1176 / 2193 1237 / 4979 1320 / 5112

Table 1: Summary of training data for McChord AFB. Each en-
try provides the number of positive / number of negative training
samples, in total, at each stage.

Detections are processed using a sliding window of the given
patch size (150 × 150 for planes, e.g.) with an overlap between
windows of 1

3
the window width. The detection score for each

sliding window is compared to a threshold to determine if the ob-
ject of interest is present or not within the window region. We
do not attempt to further segment the objects, thus multiple slid-
ing windows can be considered true-positives for a single large
object.

Detection results are shown in Figure 5. These are the results
on the respective test images for all classes using the final boot-
strapped detectors. An unexpected result occurred for the storage
tank class. Using our detector, we discovered a storage tank that
was not labeled as such in our ground-truth annotations. In this
case, it was a white storage tank sitting atop a white-roofed build-
ing, and thus was hard to see by the human eye (shown in the inset
of the left image in the figure).

Precision-recall curves for each class are shown in Figure 6. Each
graph shows the precision-recall for each training stage (solid
lines: red, blue, and green) as well as the curve for the test im-
age (dashed black lines). The bootstrapping process significantly
improves the accuracy on 3 of the 4 classes, but does not help
improve the parking lot detector. This may be due to the fact that
the parking lot detector starts with many more positive training
samples, and the initial model performs quite well.

4.3 Corpus Christi

The Corpus Christi data consists of nine images of an oil refining
region near the coast of Corpus Christi, Texas. There are hun-
dreds of oil storage tanks, of a variety of shapes, colors, and sizes

a b

Pr
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n
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Figure 8: (a) Visualization of the parking lot detection results in
Denver area. (b) P-R curves for different types of training-data.

in this imagery. We selected two of the nine Corpus Christi im-
ages to use for model validation and bootstrapping, and used the
remaining seven images for testing.

We use this data set to evaluate the use of using OpenStreetMap
(OSM) to generate an initial detector from globally-distributed
training samples, followed by bootstrapping to fine tune the model
to perform well on the local images.

Our initial detector was trained using 3,165 samples created by
using OSM to provide the locations of storage tanks from the
vicinities of 200 metropolitan areas around the world. We further
augmented this data by employing known locations of 1,954 oil
storage facilities near Cushing, Oklahoma, for a total of 5,119
training samples. Negative samples were created from a clutter
class derived by avoiding known storage tank locations, but in the
same general vicinities as the positive samples, resulting in 9,651
negative samples.

The details of how we bootstrapped the detector differs in one
step from what was described previously. We employed the initial
model to detect oil tanks in the first of the two validation images.
We used TilePicker to identify the true positives. Where we dif-
fered from the previous bootstrapping process was that after the
first round of curation, we trained the subsequent model only on
the new samples (427 positive, 921 negative). We did this to en-
courage quicker convergence on an optimized local model, since
the relative fraction of local training samples to global is small.
After this step, we iterated the next two rounds of bootstrapping
on the second validation image, following the same procedure as
was done for the McChord AFB data.

We observe that the results are qualitatively similar in accuracy to
those of the McChord data set, where only local training samples
were employed (see Figure 7). We also note that the results of the
initial model, trained on thousands of diverse samples, generates
good results – good enough that there is value in bootstrapping
off this global model instead of simply starting from scratch.

4.4 Denver

As a second test employing a globally-trained model, we revisit
the detection of parking lots. In this case, unlike the parking lot
model for McChord AFB, we use OSM training data to create an
initial model, followed by bootstrapping on imagery surrounding
Tacoma, Washington, and finally we perform testing using a third
set of imagery from Denver, Colorado.

We gathered two images from the Denver downtown area and
collected the ground-truth using crowd-sourcing. We then used
the training data from the OSM database with the positive class
as parking lots and all the other classes, including a clutter class,
as negative examples. We tested this learned classifier on a strip
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Figure 5: Detections in McChord AFB images. Left image shows detections of parking lots (red), storage tanks (cyan) and airplanes
(yellow). Right image shows detections of helicopters (yellow). Inset images show areas of interest enlarged. The top-right storage
tank in the inset image was not part of the human annotated ground-truth, and thus our detector helped us discover this human labeling
error.

from Tacoma. We curated the results from the Tacoma strip and
appended both the positive and negative curated examples of park-
ing lots from the Tacoma area to our original training set to re-
learn the classifier. We performed another similar round of active
learning for one of the strips from the Denver area.

We tested the re-trained classifiers on the Denver area test-strip.
The results for the test strip using the original and the actively
learned classifiers are shown in Figure 8. The four precision-
recall curves in the figure are described as follows. The curve
labeled “uncurated” is for the case when we used training data
directly obtained from the OSM labels. The curve labeled “cu-
rated” is one obtained using OSM training data where additional
curation was performed to reduce label noise (examples of OSM
label noise are shown in Figure 2). The final two curves, “al1”
and “al2” are for the two rounds of active learning (bootstrap-
ping) modifying the classifier learned from curated OSM data.

It is interesting to see that the results we achieve using the un-
curated data are better than the curated ones. One explanation
for this observation is that some of the mis-labels in the train-
ing data actually help improve the generalizability of the learned
classifier. Another possibility as to why curation did not help was

the ambiguity from many of the samples showing just a part of
a parking lot amidst a set of buildings or other urban structures.
In trying to make the data as clean as possible, we may have dis-
carded important boundary cases in the initial OSM curation.

Also note that the test data in Denver is significantly different
from the validation/bootstrapping data from Tacoma, as opposed
to previous experiments where the test images are from the same
AOI as the validation.

5. CONCLUSIONS

In this work, we investigated automatic detection of multiple ob-
jects in satellite images. We presented a system for large-scale
object training and detection, leveraging recent advances in fea-
ture representation and aggregation within the bag-of-words paradigm.
In particular, we showed that using LLC with spatial pooling and
linear SVM is an efficient and robust methodology to learn clas-
sifiers for multiple object classes. Furthermore, we presented
a crowd-sourcing based framework that allows efficient acqui-
sition of labeled training data, along with an iterative mecha-
nism to overcome the label noise introduced by the crowd during
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Figure 6: Precision-recall curves for McChord AFB data set. Two rounds of bootstrapping were used with helicopters and storage
tanks, and only a single round for planes and parking lots. Bootstrapping does not seem to help parking lots, perhaps because there
were many more initial positive training samples (over 12,500 parking lot samples vs. about 2,000 each for the other classes).

the labeling process. We presented detection results over sev-
eral object-classes using training data captured from close to 200
cities and tested over multiple geographic locations.

In the future, we plan on incorporating multi-spectral data to im-
prove the robustness of our framework. We also plan on incor-
porating meta-data, such as the terrain-type, weather parameters,
and a water mask. Finally, as the amount and variety of training
data increases, the need for bootstrapping will be reduced. We
observed in the McChord data that where we had significantly
more training samples (for the parking lot class), the benefit of
bootstrapping were minimal. We also observed that by training
on thousands of samples gathered from OSM, we were able to
generate relatively good detectors even prior to bootstrapping.
While bootstrapping serves to augment the amount of training
data and to adapt the classifier to the local imagery, it may be that
with sufficient training samples, models trained only on global
data will be accurate enough not to require adaptation to local
imagery. This is a question we plan to investigate in future work
involving significantly more training data.
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