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ABSTRACT:

Many tracking systems rely on independent single frame detections that are handled as observations in a recursive estimation frame-
work. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to
existing methods our novel approach suggests a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as
the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework
taking into account a dynamic model, prior scene information, and a state-of-the-art pedestrian detector and classifier. The classifier is
based on the Random Forests-algorithm and is capable of being trained incrementally so that new training samples can be incorporated
at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is
evaluated on a publicly available dataset captured in a challenging outdoor scenario. Using the adaptive classifier, our system is able to
keep track of pedestrians over long distances while at the same time supporting the localisation of the people. The results show that the
derived trajectories achieve a geometric accuracy superior to the one achieved by modelling the image positions as observations.

1. INTRODUCTION

Pedestrian tracking is one of the most active research topics in
image sequence analysis and computer vision. The aim of track-
ing is to establish correspondences between target locations over
time and is hence useful for a semantic interpretation of a scene.
Following Smeulders et al. (2013), visual object tracking can be
categorised according to the way in which the pedestrian position
in image space is acquired. Matching-based approaches used for
instance in (Comaniciu et al., 2003), update the trajectory at ev-
ery epoch. As a consequence in cases matching fails or returns
ambiguous results the trajectory is easily attracted to other ob-
jects than the target. Detection-based approaches typically use
classifiers to discriminate the regarded object class(es). Available
approaches differ in the number of classes (binary versus multi-
class) and in the way the training is conducted (on-line vs. off-
line). Binary off-line trained classifiers differentiating one class
from the background such as the HOG/SVM (Dalal and Triggs,
2005) and AdaBoost based approaches (Viola and Jones, 2001)
can be trained with a large set of training data and hence per-
form well in many different scenarios. The outcomes of such
systems are applicable to multi-object tracking, if the data asso-
ciation problem is solved, either explicitly, as in (Schindler et al.,
2010), or implicitly, as in (Milan et al., 2014). While these clas-
sifiers work well for the underlying object class, they are prone
to fail when the appearance of the individual pedestrians under-
goes object- or scene specific changes. These changes can be
taken into account by classifiers trained on-line, which can learn
and update statistics about an object appearance, e.g. (Saffari et
al., 2009), (Kalal et al., 2010). The adaptation of the appearance
changes makes these approaches applicable to complex scenes
with a wide range of depth, temporary occlusions, and changing
lighting conditions. Ommer et al. (2009) discern different moving
object classes present in typical outdoor scenarios using a multi-
class SVM which is trained off-line. Distinguishing between
various classes is expected to increase the per-class-accuracy be-
cause individual classes can be better separated from other simi-
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lar object classes. To this end, Breitenstein et al. (2011) suggest
an on-line adaptive multi-object tracking approach using a sin-
gle boosted particle-filter for each tracked individual. In (Klinger
and Muhle, 2012) an on-line approach based on on-line Random
Forests (Saffari et al., 2009), in which each class represents one
pedestrian, is suggested for multi-object tracking.

The term detection involves finding evidence for the presence of
a pedestrian and a (at least coarse) localisation. Though there
exists a lot of work related to the detection and tracking of pedes-
trians, only few papers address its geometric accuracy, e.g. (Dai
and Hoiem, 2012). The position of a detected person is usually
defined to be the location of some window around that person,
which does not necessarily align well to the actual position of
the person itself and thus only yields an approximate position.
If image acquisition by multiple cameras is possible, a stereo-
scopic approach can be used to estimate the 3D position and size
of pedestrians, which in turn supports the localisation in the im-
age, see for instance (Eshel and Moses, 2010) and (Menze et al.,
2013). For many realistic applications like motion analysis and
interaction of people in sports, video surveillance and driver as-
sistance systems, where one has to decide whether a pedestrian
does actually enter a vehicle path or not, geometric accuracy is
crucial. Most tracking approaches use variants of the recursive
Bayes filter in order to find a compromise between image based
measurements (i.e. automatic pedestrian detections) and a mo-
tion model, where the motion model implies the expected tem-
poral dynamics of the objects, e.g. constant velocity and smooth
motion. In such filter models, the state variables are modelled
as unknowns and the image based measurements as observations.
Approaches where the filter state is represented in factorised form
are referred to as Dynamic Bayes Networks, see for instance
(Dean and Kanazawa, 1989) and (Montemerlo et al., 2002).

In this paper we propose and investigate a Dynamic Bayes Net-
work for pedestrian tracking which combines the results of detec-
tion, recursive filtering, prior scene knowledge, and a classifier
with on-line training capability in a single probabilistic tracking-
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Figure 1: Dynamic Bayes Network proposed for pedestrian tracking. The nodes represent random variables, the edges conditional
dependencies between them. The meaning of the variables is briefly explained on the right and in detail in the text.

by-detection framework using mono-view image sequences. By
modelling the results of the pedestrian detection, i.e., the position
of a person visible in the image, as a hidden variable, the system
allows the detection to be corrected before it is incorporated into
the recursive filter. In this way, the proposed method carries out
the update step of the recursive filter with an improved detection
result, leading to a more precise prediction of the state for the
next iteration. In turn, the precise prediction supports the deter-
mination of the new image position which is important for both,
the filter and the on-line classifier.

2. PROPOSED METHOD

In a standard Kalman Filter, the system state of a sequential pro-
cess is supposed to be unknown and is directly combined with
observations (in our context: the pedestrian position in image
space). In the proposed method the position in the image is mod-
elled as a hidden variable instead, which is connected to the de-
tection and classification algorithms (see below). The basic build-
ing block of the proposed system is thus a Dynamic Bayes Net-
work (referred to as DBN). Following the standard notation for
graphical models (Bishop, 2006), the network structure of the
proposed DBN is depicted in Figure 1. The small solid circles
represent deterministic parameters and the larger circles random
variables, where the grey nodes correspond to observed and the
blank nodes to unknown parameters. One such graphical model
is constructed for each tracked pedestrian. As indicated by the
subscript i, the system state wt

i , the image position xt
i and the

results ctRFi of a classifier are modelled for each person individ-
ually, while all other variables are either valid for an entire image
frame (if denoted by a superscript t indicating the time step), or
for the entire sequence. The joint probability density function
(pdf) of the involved variables can be factorised in accordance
with the network structure:

P (xt
i,w

t
i,w

t−1
i , ct

det, c
t
RFi, C

t, Ot, IP, π)

∝ P (xt
i|wt

i, C
t)P (wt

i|wt−1
i , π)

P (ctRFi|xt
i)P (ctdet|xt

i)P (xt
i|Ot)P (xt

i|IP ).

(1)

In the following the different variables considered in the approach
are explained in detail. For the ease of readability the superscript
t is omitted in the remainder of the paper where it is obvious.

2.1 Probabilities related to the image position

The image position xi = [xi, yi]
T represents the position of per-

son i in the image, where xi and yi are the column and row coor-
dinates of the bottom centre point of the minimal spanning rect-
angle around the person which is related to the position of the feet
(this point is referred to as reference point of the person in the fol-
lowing). In our model the variable xi cannot be observed directly,
so we model it as unknown and determine its optimal value by ap-
plying maximum-a-posteriori voting given the observed and the
fixed entities of the system. The position in the image depends on
the interior and exterior orientation parameters C of the camera
(which we consider as given at each time step), on a binary vari-
able O indicating if the object is occluded, on prior information
IP about the scene, and on the position and velocity wi of the
pedestrian in world coordinates. Furthermore, the image position
relates to the confidence of an on-line Random Forest classifier
(cRFi) and a pedestrian detector (cdet).

Model relating the state vector to the image position:
P (xi|wi, C) relates the (predicted) state wi at time t to the corre-
sponding image position, given also the orientation parameters C
of the camera. The model is formulated as a Gaussian distribution
P (xi|wi, C) = N(f(wi),Σm) with a non-linear function f(wi)
of the state as mean and a covariance matrix Σm accounting for
the uncertainty in the determination of xi. f(wi) is related to the
collinearity equations and computes the image position from the
given point on the ground plane and the orientation parameters of
the camera. We set the elements of Σm according to an assumed
localisation uncertainty of 0.3m in world coordinates propagated
to the image, which will be adapted to the actual uncertainty in
the determination of xt

i in future work.

Occlusion model: In order to model mutual occlusions between
pedestrians in the scene we define a binary indicator O which
describes whether a person is expected to be occluded or not, de-
pending on its position in the image. Therefore we set

P (xi|O) =

{
1, if O(xi) = 0

0, if O(xi) = 1
. (2)

O(xi) can be estimated for each position in the image by pro-
jecting xi to the ground plane π (see below for a definition) and
investigating the depth ordering of predicted pedestrian positions
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Figure 2: Frame #2 of the test sequence and visualisations of the probabilities associated with the position of the nearest pedestrian to
the camera in the image. Blue pixels indicate low, red pixels high probabilities.

relative to the camera position. We do not model the conditional
dependencies between the state, the camera orientation and the
occlusion explicitly, since we do not strive to optimise the occlu-
sion and only take it as an indication to omit trajectory updates
when an object is obviously situated behind others. Hence, the
occlusion variable is modelled as given variable in our model.
This model is a simplification that disregards the actual depen-
dencies between the variable O and wi. We will involve a more
sophisticated occlusion model in future work.

Interesting places: P (xi|IP ) is designed to emphasise regions
in the image where pedestrians occur with higher frequency, thus
the variable is called Interesting Places. We train a binary Ran-
dom Forest classifier with xi and yi as features and class assign-
ments according to true and false positive detections obtained
by a HOG/SVM detector (Dalal and Triggs, 2005) in a training
phase. The training samples are split into positive and negative
samples by validation with reference data, using an intersection-
over-union score threshold of 50%. In Figure 2(b) P (xi|IP )
generated by the Random Forest classifier is visualised for ev-
ery possible position in the image shown in Figure 2(a). As can
be seen, locations on the ground plane are favoured by the classi-
fier and among those the locations on the side walk are assigned
a higher value than those along the tram (on the right-hand side
of the image). Since the tilt angle of the camera remains approx-
imately constant throughout the sequence we use for our experi-
ments (see Section 3) and the function is relatively smooth in the
lower part of the image, P (xi|IP ) can be transferred well from
the training to the actual experiment. The image in Figure 2(b) is
hence assumed to be valid for the entire test sequence.

Detector confidence: P (cdet|xi) is the probability density for
any person to be present if xi is its position in the image. We
set the detector confidence proportional to the number of hits a
HOG/SVM without internal threshold achieved in scale space,
where we increment the number at each pixel within a square of

21 pixels side length centred on the reference point of each de-
tected person. The value of 21 pixels accounts for the geometric
uncertainty of the detector and is chosen heuristically. The de-
tector confidence P (cdet|xi) computed for the image shown in
Figure 2(a) is depicted in Figure 2(c). Regions that are assigned
as pedestrians by the HOG/SVM multiple times are favoured over
those with fewer assignments. The corresponding pdf is designed
to highlight the positions of any pedestrian visible in an image
and is computed for each frame.

Classifier confidence: By P (cRFi|xi) we denote the pdf that
xi is the position of the ith person in the image. For that purpose
an on-line Random Forest (Saffari et al., 2009) is trained, which
considers one class for each person and an additional class for the
background. To guarantee that the number of training samples is
equal for every class, the classifier is trained anew with samples
stored in a queue every time a new trajectory is initialised or ter-
minated. Every time a trajectory is updated, we take positive
training samples from an elliptic region with the new target po-
sition as reference point and a width-to-height ratio of 0.5. The
height of the ellipse corresponds to the height of the pedestrian
in [m] (estimated given the bounding box height of the initial
detection), transformed to a height in pixels by a scale factor de-
pending on the focal length and the distance of the predicted state
to the camera. The width and height of the ellipse are stored for
the evaluation and visualisation of the results (Section 3). Be-
cause the samples are rare from scratch, further positive training
samples are taken from positions shifted by one pixel up, down,
left and right. Negative samples (for the background class) are
taken from positions translated by half of the size of the ellipse in
the same directions. The feature vector is composed of the RGB
values inside the ellipse.

Classification then delivers P (cRFi|xi) ∝ ni
n0

, where ni and n0

are the relative frequencies of class i and the background class 0,
respectively, assigned to the leaf nodes of all decision trees in the
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Random Forest to which the sample xi propagates. P (cRFi|xi)
is evaluated for every xi located within a square of 21 pixels side
length around the predicted state of the ith trajectory. In Figure
2(d) an exemplary classifier confidence distribution is depicted.
P (cRFi|xi) is shown for every potential position in the image
(though we only use the smaller region of 21 by 21 pixels for
computation). Note that at the positions, where persons different
to the one closest to the camera (cf. Figure 2(a) and 2(c)) were
found, P (cRFi|xi) is rather low.

2.2 Probabilities related to the state vector

The state vector wt
i = [Xt

i , Y
t

i , Ẋ
t
i , Ẏ

t
i ]T consists of the two-

dimensional coordinates of the pedestrian on the ground plane
and the 2D velocity components.

Temporal model: In our model the state vectors form a Markov
chain over time. The state at time t depends on the state at time
t− 1 and the ground plane parameter π (see below). We describe
the pdf for the state transition P (wt

i|wt−1
i , π) as a Gaussian dis-

tribution with a linear function µ+ = Twt−1
i of the preceding

state as mean and the covariance Σ+ (see Section 2.3) of the
predicted state: P (wt

i|wt−1
i , π) = N(µ+,Σ+). T denotes the

transition matrix and is defined as for the standard linear Kalman
Filter with constant velocity assumptions (Kalman, 1960).

Ground plane: The ground plane π is defined in a Cartesian
world coordinate system, where the X and Y axes point in the
horizontal directions and Z is the vertical axis. π is the plane par-
allel to the X and Y axes of the coordinate system at a constant
height below the camera, which is given in advance. We compute
the position of a person in world coordinates as the intersection
point of the image ray of the lowest visible point of a person (in
our model given by xi and yi) and the ground plane.

2.3 Maximum a posteriori (MAP) estimation

For the computation of the posterior state wt
i of our model an

extended Kalman Filter model is used. As opposed to the tradi-
tional recursion between prediction and correction we apply an
intermediate step for the computation of the image position vari-
able xi considered as hidden variable (see above), which then is
used for the correction of the predicted state. The recursion hence
consists of three steps:

i) Prediction of the state vector. The state vector is predicted
in accordance with the temporal model, involving the uncertainty
of the previous state Σt−1 and the transition noise accounted for
by Σp in the way that

P (wt
i|wt−1

i , π) = N(µ+,Σ+) (3)

with µ+ = Twt−1
i and Σ+ = Σp + TΣt−1TT . We account for

the transition noise by assigning a standard deviation of σXi =
σY i = ±0.3m and σẊi = σẎ i = ±0.3 m

s
to the elements of Σp.

ii) Estimation of the image position. We estimate xt
i by max-

imising the product of the probability terms relating the image
position to the predicted state µ+ and the observed and constant
variables. The probability distributions involved in the estimation
of xt

i (except for P (xt
i|Ot)) are depicted in Figure 2.

P (xt
i|µ+, C

t)P (xt
i|Ot)P (xt

i|IP )P (ctRF |xt
i)P (ctdet|xt

i)→ max.
(4)

The value of xt
i maximising the product in Equation 4 is used for

the update step (see step iii)). There, the estimate of xt
i is expected

to follow a normal distribution, which we justify by the observa-
tion that the individual terms of Equation 4 are either equally dis-

tributed or resemble Gaussian distributions themselves (see also
Figures 2(b) to 2(f)). The probability distribution related to the
on-line Random Forest classifier usually peaks at the target’s po-
sition and decreases radially and thus can be approximated by a
Gaussian distribution as well (see Figure 2(d)). The probability
distribution P (xt

i|µ+, C
t) relating xt

i to the predicted state (see
Figure 2(e)) is used to support the estimation of xt

i , and also acts
as a gating function by restricting the search space for the esti-
mation of xt

i to the 3σ-ellipse (projected into the image) given by
the uncertainty about the predicted state Σ+.

iii) Update of the state vector. The incorporation of the es-
timated image position into the recursive filter is conducted in
accordance with the Kalman update equation.

E(wt
i) = µt

i = µ+ +K(w̃t
i − µ+). (5)

In Equation 5 K is the Kalman Gain matrix and w̃t
i is the state

computed from the projective transformation of the expected value
of the image point xt

i to the ground plane. Step iii) is conducted
only if the product in Equation 4 exceeds a threshold. If this is not
the case, the trajectory is only continued based on the prediction.

After steps i) to iii), the values for the unknown variables xt
i and

wt
i maximising the joint pdf (see Equation 1) are determined. The

estimate of the state vector is then used for the prediction step in
the next recursion at the successive time step. From the estimated
image position new training samples for the on-line Random For-
est classifier are extracted as described in Section 2.1. During an
occlusion the on-line Random Forest classifier is not updated.

2.4 Initialisation and termination

For the detection of new pedestrians we apply the strategy from
(Klinger et al., 2014) and validate the outcomes of a HOG/SVM
detector by two classifiers, one concerning the geometry of the
search window r = [xr, yr, widthr, heightr]T and the other
concerning the confidence value given by the SVM (cSV M ). By
classification, the probabilities P (v|cSV M ) and P (v|r) for the
classified position being either a person (v = 1) or background
(v = 0) are obtained. A new trajectory is initialised if the de-
cision rule in Equation 6 votes for a person and if according to
the occlusion model (see Section 2.1) no trajectory of an existing
target is predicted at the position of the search window.

v =

{
1, if P (v=1|r)P (v=1|cSV M )

P (v=0|r)P (v=0|cSV M )
> 1,

0, otherwise.
(6)

If the person is predicted to be occluded, the trajectory is updated
only with respect to the temporal model (see Section 2.2). If the
trajectory is occluded in more than 5 consecutive frames, or if a
person leaves the image, the trajectory is terminated.

3. EXPERIMENTS AND RESULTS

Experiments are conducted on the Bahnhof -sequence of the
ETHZ dataset (Ess et al., 2008) captured from a moving platform
in a challenging outdoor scenario. For an automatic detection of
pedestrians we apply the HOG/SVM-detector of OpenCV, which
is trained with the INRIA person dataset
(http://pascal.inrialpes.fr/data/human/). In our application only
pedestrians with a minimum height of 96 pixels are considered.
The HOG/SVM detector is configured without internal threshold,
so that the results are as complete as possible. The bounding rect-
angles resulting from the HOG/SVM are decreased to account for
the systematic margin of 16 pixels around people in the training
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(a) Frame #502 (b) Frame #511 (c) Frame #526

(d) Frame #543 (e) Frame #554 (f) Frame #585

Figure 3: Exemplary tracking results achieved by the proposed system. Most pedestrians are tracked persistently throughout their
presence in the images, though also early terminations of trajectories occur.

data. The detection results given by the HOG/SVM are evaluated
at two different stages: first, for the identification and initialisa-
tion of new targets and second, for supporting the estimation of
the image position (Equation 4). For the initialisation of new tra-
jectories we apply the strategy described in Section 2.4. Every
time a new position xt

i of a pedestrian is determined, a bound-
ing rectangle T t

i = [xt
i, y

t
i , width

t
i, height

t
i] with widtht

i and
heightti the width and height of the ellipse determined at the clas-
sification step (see Section 2.1), is assigned to the trajectory.

In Figure 3 six images taken from the test sequence with superim-
posed bounding rectangles T t

i and trajectories are shown. Each
tracked pedestrian is assigned a separate colour for the visualisa-
tion. As validated by visual inspection of the results, most pedes-
trians have been tracked by our system throughout their presence
in the sequence. For a quantitative evaluation of the achieved
tracking performance we build three different set-ups of track-
ing algorithms. In the first set-up tracking is conducted without
recursive estimation or motion model so that the trajectory con-
sists of the positions with the highest confidence achieved by the
on-line Random Forest separately in each image (referred to as
ORF). In the second set-up, the position with the highest confi-
dence of the on-line classifier is introduced as an observation into
an extended Kalman Filter (ORF&KF). The third set-up reflects
the model proposed in this paper, modelling the image position
as hidden variable (DBN).

We evaluate the tracking performance on the Bahnhof-sequence
of 1000 images, split the data in two halves and apply cross-
validation, using one half for learning the Interesting Places (Sec.
2.1) and the classifiers (Sec. 2.4), and the other half for testing.
The Position Based Measure (PBM) (see, e.g. (Smeulders et al.,
2013) for a reference) is computed as

PBM =
1

NTP

∑
i

[1− Distance(i)

Th(i)
], (7)

PBM Recall Precision ID-sw.
ORF 0.91 0.57 0.37 8
ORF&KF 0.93 0.52 0.56 7
DBN 0.94 0.59 0.55 3

Table 1: Results of the investigated set-ups using the on-line Ran-
dom Forest separately (ORF), together with a standard Kalman
Filter model (ORF&KF) and the proposed method (DBN).

with NTP the number of true positive detections, Distance(i)
the L1-norm distance between the automatic detection (Ti) and a
reference result GTi. Th(i) is defined as Th(i) = (width(Ti) +
height(Ti) +width(GTi) + height(GTi))/2. Only automatic
detection results with an overlap of at least 50% between Ti and
GTi are counted as correct. For the three set-ups the achieved
PBM, the recall and precision rates, as well as the total number
of ID-switches are given in Table 1.

The results demonstrate the benefit of using the proposed method.
If tracking is conducted using only the on-line Random Forest
classifier, the geometric accuracy in terms of the PBM with a
score of 0.91 performs worst among the applied set-ups. The
results improve when recursive estimation in form of Kalman fil-
tering is applied. By estimating the state vector using the Kalman
Filter, the position in the image is constrained by a motion model,
which keeps the track close to a more plausible path (if the motion
model is correct). Using this model we obtain a slightly improved
geometric accuracy. If the position in the image is modelled as a
hidden variable, as in our approach, the geometric accuracy is fur-
ther improved to a PBM value of 0.94. The principal difference
between the second and the third set-ups is the way in which the
image position is modelled. Since the image position essentially
contributes to the posterior state of the trajectory, a correct value
for the image position is crucial. When modelling this position
as a hidden variable, its accuracy can be improved by considering
further information, here the detection and classification results,
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occlusion model and prior information about the scene, before it
is used for the update of the filter. Furthermore, the considera-
tion of additional observations in our model decreases the risk of
identity switches, compared to the trajectory estimation using the
on-line classifier or the Kalman Filter only.

However, the recall and precision rates indicate that only every
second decision concerning the presence or absence of a pedes-
trian is correct and that about every second pedestrian present in
the scene is not obtained (evaluated in each frame). Also the ge-
ometric accuracy achieved with the proposed method, although
best between the three investigated set-ups, can be further im-
proved. We encounter two major causes of geometric inaccuracy
in our system. First, the method relies on the initialisation which
is taken from the HOG/SVM detector. If this image position is
imprecise due to a misaligned initial detection, erroneous train-
ing samples are derived, which keeps the classifier attracted to
regions with an offset from the actual position of the pedestrian.
In this case the trajectory hardly converges towards the correct
position during further tracking. When this happens, the automat-
ically determined position might not overlap sufficiently with the
reference data, so that the number of false positive detections in-
creases, although the pedestrian is being correctly tracked, how-
ever with a lower accuracy. In this way also new initialisations
can be prevented, increasing thus the number of false negatives as
well. Second, in crowded scenarios interactions between pedes-
trians take place. If two pedestrians appear next to each other,
the gap normally visible between them might vanish, giving rise
to ambiguities both in the classification with the HOG/SVM and
with the on-line classifier. A position can hence be inaccurate, if
(at least) two pedestrians interact.

4. CONCLUSIONS

In this paper we proposed a probabilistic model designed for the
task of visual pedestrian tracking. The pedestrian state (position
and velocity) in world coordinates and the corresponding posi-
tion in the image are modelled as hidden variables in a Dynamic
Bayes Network. The network combines a dynamic model, prior
scene information, a state-of-the-art pedestrian detector, and a
classifier with on-line training capability in a single framework.
The results show that the derived trajectories achieve a geomet-
ric accuracy superior to the one obtained by processsing each
frame of the image sequence individually or by using a standard
Kalman Filter. To overcome problems of our approach, we will
focus on an improvement of the geometric accuracy particularly
at the initialisation step of the tracking method in future work.
To better dissolve ambiguities in the trajectory update, a trajec-
tory optimisation can be conducted on a global level, considering
also time steps further in the past. Also a better pedestrian detec-
tor, which detects body parts or pairs of pedestrians will be ap-
plied. More comprehensive experiments including the suggested
improvements will be conducted in future work.
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