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ABSTRACT: 

 

This paper presents a method of reshaping and extraction of markers and masks of the dense houses from the DSM based on 

mathematical morphology (MM). Houses in a digital surface model (DSM) are almost joined together in high-density housing areas, 

and most segmentation methods cannot completely separate them. We propose to label the markers of the buildings firstly and 

segment them into masks by watershed then. To avoid detecting more than one marker for a house or no marker at all due to its higher 

neighbour, the DSM is morphologically reshaped. It is carried out by a MM operation using the certain disk shape SE of the similar 

size to the houses. The sizes of the houses need to be estimated before reshaping. A granulometry generated by 

opening-by-reconstruction to the NDSM is proposed to detect the scales of the off-terrain objects. It is a histogram of the global 

volume of the top hats of the convex objects in the continuous scales. The obvious step change in the profile means that there are many 

objects of similar sizes occur at this scale. In reshaping procedure, the slices of the object are derived by morphological filtering at the 

detected continuous scales and reconstructed in pile as the dome. The markers are detected on the basis of the domes.  

 

1. INTRODUCTION 

Buildings are basic and important geodesic features. Automatic 

geometric modeling using images or a Digital Surface Model 

(DSM) has been studied for many years, but it is still not 

sufficiently developed for practical applications. Semi-automatic 

building modeling has been widely applied when compared with 

entirely automated processes (Ameri et al., 2000; Förstner et al., 

1997; Wang et al., 2011; Sampath et al., 2010). Mature 3D 

modeling is typically implemented using 2D models or 2D 

digital line graph data (DLG).  

Our research focused on automated 2D geometric modeling. A 

number of algorithms have been proposed for building detection. 

However, the meaning of ‘successfully detected’ has not been 

investigated in detail, so a comparison between the relative 

performances of these algorithms is not available (Pfeifer et al., 

2001). Existing building extraction techniques can be 

categorized into two main types. One type primarily extracts the 

buildings using image segmentation and pattern recognition on 

single or multiple images (Katartzis et al., 2008; Lari et al., 2007; 

Fazan et al., 2010; Hao et al., 2010; Lee et al., 2003). Many 

methods such as the watershed-plus-marker technique are not 

applicable to textured or very complex scenes. Additionally, they 

often lead to results that are not stable (Pesaresi et al., 2001). 

The other type uses the DSM or LIDAR point cloud data (Cheng 

et al., 2011; Awrangleb M. et al., 2012) to determine geometric 

characteristics such as size, height, and gradient. Pfeifer et al. 

(2001) summarized the methods that use laser or DSM to detect 

the buildings. Algorithms that extract houses often classify the 

data into a number of urban classes. One kind of method uses 

normalized DSM (nDSM) to extract off-terrain grids based on a 

height threshold, and then distinguishes buildings from trees 

using a classification method (Awrangleb M. et al., 2012; Hug et 

al., 1997; Elberink et al., 2000). Another kind of method first 

applies segmentation, and then uses a classification method to 

distinguish buildings from trees. The segmentation can be 

bottom-up (Matikainen et al., 2001) or region growing (Forlani 

et al., 2001), and is used to identify segments above the terrain. 

Both of these methods use the height signal as a principal 

identifier. 

 

Mathematical morphology (MM) has been demonstrated to be an 

efficient tool for DSM data. Recently published papers have 

recognized the effectiveness of mathematical morphology when 

extracting objects of given shapes (Valero et al., 2010; Sagar et 

al., 2000; Soille et al., 2007; Sathymoorthy et al., 2007). More 

studies have investigated building extraction over the last two 

decades (Rottensteiner et al., 2002; Brunn et al., 1997; Zhan etal., 

2002; Sportouche et al., 2011). Zhan et al. (2002) proposed a 

volumetric approach, where the DSM is considered in multiple 

layers, i.e., slices. The connected component in each slice is 

labeled. Such a component is classified as belonging to a 

building if the components in the vertically neighbored slices 

have similar sizes and centers of gravity. Rottensteiner et al. 

(2002) extracted initial building masks using a binary 

segmentation based on a height threshold. The masks still 

contained vegetation and other objects, so they used the binary 

morphological opening to separate and filter out small thin 

objects. They then analyzed the DSM textures to eliminate 

vegetation and other areas. The final individual building regions 

were determined using a connected component analysis. A 

decreasing-sized structural element for morphological opening 

helped to split the regions that corresponded to more than one 

roof plane. Brunn et al. (1997) used a binary classification to 

distinguish vegetation from buildings, by applying morphology 

to derive closed areas on the surface normal variance and select 

valid vegetation segments. Li et al (2014) used a modified white 

top-hat transform with directional edge constraints to filter 

airborne LiDAR data and extract the ground points. They 

proposed a novel algorithm that used the modified white top-hat 

(MWTH) transform with directional edge constraints to 

automatically extract the ground points from airborne LiDAR 

data. Other studies used MM on a multi-spectral image instead 

of DSM, and produced good results. Lefevre (2007) used very 
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high-resolution (VHR) gray level images as the input data to 

extract the buildings. They transformed the image to a binary 

image where the bright or dark buildings can be separated from 

the others. Then a morphological filter was applied to remove 

the objects that are smaller than a given minimal size of a 

building. Huang (2011) proposed a morphological building 

index (MBI) to represent the brightness, size, and orientation of 

the buildings using the reconstruction, differential morphological 

profile (DMP), and directionality. However, the MBI feature 

image is segmented according to a threshold to extract the 

buildings, which is not flexible or adaptive. Besides, DMP 

cannot reflect the height characteristics, only the width or size of 

the building. Meng (2012) proposed a method for detecting the 

residential land use of buildings from LiDAR data, aerial 

photography, and road maps. They used a morphology-based 

building detection algorithm to identify buildings from LiDAR 

and aerial photographs. However, this was not sufficient and a 

supervised C4.5 decision tree analysis was implemented to 

finally separate the residential buildings. To summarize, the 

above algorithms and methods generally consider LiDAR data, 

which are more accurate than photographic-derived DSM data in 

terms of the original direction and height. However, more than 

one method is often required to separate buildings that are close 

together. These techniques may not solve the problem when 

applied to the DSM of dense residential areas, where an 

abundance of joined-together houses may affect the accuracy of 

the DSM. However, a DSM can be simply and economically 

derived from photography and can cover a large area, so it is a 

practical choice for building extraction and modeling.  

 

2. METHODS 

As we know, the metropolises are characterized by various 

building types and complex spatial distributions. There are 

always tens of thousands of buildings in some districts of such 

cities, thus manually modeling them is labor intensive. Besides 

of the computational workload, the densely housing areas are 

difficult to handle in the automatic modelling. Houses in a 

digital surface model (DSM) are almost joined together in such 

areas, and most segmentation methods cannot completely 

separate them.  

 

Taking Tokyo as the case, this paper introduces an MM-based 

building extraction system for complex dense housing areas. 

Sapporo locates in is the northern Japanese island of Hokkaido, 

at 43o4’N and 141o21’E. The area of Sapporo is 1121 km2, 

including 10 districts. It is the administrative center of the 

Hokkaido, and also the fourth-largest city in Japan by population. 

It has the appearance of a modern city. The city spread along the 

river which divides it into northern and southern parts. There are 

two main streets intersecting in the city centre. There geographic 

features divide the city into several natural and different regions 

with various building types. There are many low-rise 

high-density housing areas in the suburbs of the city. It is more 

challenging to model these houses compared with low-density 

housing. The extraction is complex because of the surrounding 

trees, objects, and nearby houses. The house may be so close that 

they appear attached in less accurate DSMs. As a result, it is 

difficult to isolate one house from the others. We have addressed 

it in both our scale analysis and extraction algorithm.  

 

2.1 Overview of the technique 

Here is the general flowchart of the technique in Figure 1. 

  

 
 

Figure 1 The general technique illustration 

 

It respectively generates the small building footprints and the big 

building footprints through two algorithm branches. The reason 

to take this stratacy is that there will be big or high residential 

buildings as well as the small ones in one residential area, while 

the distributions of them are different. The big buildings are 

always locate sparsely comparing with the small ones. It is better 

to extract the big buildings firstly by easy processing, to avoid 

their disturbing to the complicated extraction of the small houses. 

Thus firstly, the multiple data including the RGB image and 

DSM are integrally segmented into the relatively big objects, 

which are more robust and reliable than pixels in spectral 

characteristics and furthermore, can provide contour information. 

The objects of big buildings will be characterized by big areas 

and straight contours. Criteria of such features are set up to 

recognize those objects and big building footprints are generated 

by them.  

 

Then, the MM based small house mask extraction is carried out 

on DSM. They will be used to group the fragmented objects 

derived from the image segmentation into house footprints. 

DSM can be taken as a surface in the 3D space when the height 

corresponds to the z-axis, and also a gray level image when the 

height corresponds to the brightness. The buildings and other 

off-terrain objects show as the convex objects in the surface or 

the bright objects in the gray level image. It is relatively easy to 

extract the intact buildings from the DSM comparing with from 

the spectral image. However, the shapes of the buildings derived 

from the DSM are less perfect than from the image. That is why 

we extract building mask firstly instead of extracting the 

buildings directly from the image. The MM based mask 

extraction can be described clearly by Figure 2. 

Multi-source data 

Object recognition 

Big building footprints Small building masks 

MM based extraction  

DSM 

Grouping 

Small building footprints 

Segmentation  

Spectral image 
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Figure 2 Flowchart of MM based mask extraction 

 

The smoothed DSM has been morphologically filtered to derive 

DTM and NDSM. A structure element (SE) of 100-by-100 was 

used to do opening to the smoothed DSM to get the DTM, and a 

SE of 60-by-60 was used to smooth the DTM. NDSM is derived 

by subtracting DTM from DSM. The pixels of the NDSM with 

values under zero are taken as the ground pixels. Others are 

taken as the off-terrain pixels. 

 

Because the small houses within a neighbourhood generally have 

similar sizes, particularly in the modern city block with good 

planning, there will be some key scales corresponding to them. 

A granulommetry technique is used for scale detection for 

NDSM, which will be described in the next part. It is a kind of 

MM method. However, even if the key scales are acquired, the 

joint effect of the dense houses in NDSM still remains as the 

problem for correct separation of the houses. For this, an MM 

reshaping processing for the houses is implemented to 

reconstruct the domes of the houses. Markers and masks can be 

detected and segmented on the basis of the domes. 

 

In the procedure of small house mask extraction, a big building 

map was used to filter the NDSM so that the values of the big 

building pixels can be set to 0. The small house mask extraction 

then has completely nothing to do with the big buildings. 

 

2.2 Granulometry based scales detection 

 

The gray level (GL) image/DSM can be considered as a 

collection of level images, each corresponding to a horizontal 

profile of the GL image/DSM surface. The inner pixels have a 

value of 1, the outer pixels are 0, and the GL image/DSM is a 

sum of all the level images. Morphological operations can be 

applied to each level image, and output a sum of the results. 

Vincent and Pierre stated that an opening removes some peaks 

and crest lines, whereas a closing tends to fill in basins and 

valleys (Vincent et al., 1991). Morphological reconstruction is 

particularly a powerful tool, which can be used to isolate certain 

features within an image, based on the manipulation of a mask 

image f and a marker image g (Sathymoorthy et al., 2007).  

 

 

The available data include visible light airborne images of 

Sapporo, Japan with a 0.2-m resolution, and the DSM derived 

through photogrammetry with a 0.5-m resolution (which is 

registered to the images). The spatial or height accuracy of the 

DSM is not as good as the original images. The obvious 

advantage is that the signal reflects the height directly, and is 

immune to color variations caused by the shade of a certain 

object. Thus, we used the DSM to detect the markers that 

correspond to the regions of the houses and generate the building 

masks. We used the multiple-spectral image to accurately 

acquire the house outlines with the help of the masks.  

    

The scales of the houses can be detected using granulometry 

analysis. A granulometry is a kind of morphological histogram 

(Serra 1982). It is computed using a sequence (
,S n ) of 

morphological openings with a structuring element S of 

increasing size n. It reflects the main sizes of the objects in the 

scene using obvious increases in the curve. Unlike Santibañez 

(2012) and Mura (2011), we define a granulometry as the 

mapping of a sequence (
,S n ) of morphological 

opening-by-reconstruction with structuring element S of 

increasing size k. That is,  

  , [1, ]
( ( ))S n I kS k n

v I 


                (1) 

where kS refers to the S dilated k-times, and v(o) refers to the 

surface function (which returns the total height of the non-zero 

pixels and the volume of o). As shown in Figure 3 (a), the value 

of 
,S n  increases as the size of the structure element increases. 

The difference between the original image volume and 
,S n  

exactly corresponds to the volume of the cut-off domes of the 

objects under that size. The volume less than a certain size may 

contain noise and small objects such as trees or cars. There may 

be no buildings under the smaller sizes. When the size matches a 

building, there is an obvious steep increase in the granulometry. 

The difference between 
,S n  and 

, 1S n  is called the 

pattern spectrum (PS), and is also known as a differential 

morphological profile (Lefèvre et al., 2007). It represents the 

reduced volume between the two scales. The peak of the PS 

curve reflects the main scale of the objects in the image. We 

propose to construct the granulometry using 

opening-by-reconstruction instead of opening to implement the 

scale mining. The difference between opening-by-reconstruction 

and opening is that a bright object in the 

opened-by-reconstruction image will remain the same size at 

each scale, while in the opened image it becomes smaller and 

more compact. In other words, the histogram of the 

opening-by-reconstruction operation reflects the real volume 

change caused by removed domes.  

 

Figure 3(a) gives an example of a typical granulometry profile of 

a DSM. The x-axis corresponds to the radius of the structural 

element (SE), and the y-axis corresponds to the granulometry 

number. Figure 3(b) shows the PS of Figure 3(a). There is more 

than one peak in the PS curve, because there are buildings at 

multiple scales. The SE is a disk with a radius of one pixel. The 

highest peak occurs at 23, which indicates the main scale of most 

houses. The big increases within a range of continuous scales in 

the granulometry curve reflect the large amount of dome 

removal in the gradual morphological process. We expect that 

we can extract all the houses using this scale range. Thus, we 

propose a scale range detection method that uses the PS curve, 

described as follows. The start of the range (s0) is assigned as the 

point where there is a break in the increases of the granulometry 

curve. The cumulative average of the PS is defined as 

Morphological reconstruction  

Small building masks 

Markers 

Watershed 

DSM 

Filtering 

Morphological scale detection  
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Obviously mc(n) is the slope of the line connecting the head of 

the granulometry curve to the point corresponding to n. When 

the local slope of the curve at point n is obviously higher than 

mc(n), n is detected as s0. The peak scale can be taken as the end 

of the scale range, sp. 

 
(a) Granulometry 

 
(b) PS 

Figure 3 Granulometry and PS using opening-by-reconstruction 

 

2.3 Dome reshaping 

 

The reason of dome reshaping is presented in the beginning of 

part 2. As we know, morphological operations change the height 

and shape of an object in the level images. For instance, an SE 

disk shape makes the corners of a square object disappear by 

opening. Opening can shrink and round general objects.  

 

Therefore, we filtered the DSM image to change the building 

shapes and reconstruct the building domes to easily detect the 

markers. To this end, we propose an iterative differential 

opening-based morphological filtering algorithm. The 

continuous opening to the DSM shrinks the shape of an 

off-terrain object and makes it more round. This separates 

connected houses. Then, we partly filter the object slice at a 

certain scale by subtracting the opened DSM from the last 

iterative result. The sizes of the SE used in this stage are 

identical to the scales detected in Section 2.2. Some thin edges 

remain after differencing, which correspond to the outside of the 

non-rounded objects. We use opening to erase this noise from 

the filtered objects. The reshaped domes will look like the 

shapes in Figure 4 (b), while Figure 4(a) is the NDSM. 

 
(a) NDSM 

 
(b) Reconstructed domes 

 
(c) Markers 

  
(d) Masks 
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(e) Models 

Figure 4 The morphological computation results: (a) 

reconstructed houses, (b) markers, and (c) masks. 

 

2.4 Mask extraction 

 

The markers present as a round spot that indicates the basic 

location of a building, as shown in Figure 4 (c). A mask is a 

region that covers the basic shape of a building. We used 

watershed segmentation on the gradient of the DSM (GDSM) to 

segment the building masks, by setting the markers of the local 

minima of the GDSM (i.e., the catchment basins). The classic 

immersion algorithm proposed by Vincent and Soille (1991) can 

give the desired result. The mask map for the test data in Figure 

3 is shown in Figure 4(d). 

 

In our case, the near infrared image is not available, so we 

developed a normalized difference index to classify vegetation 

and artificial surfaces using R, G, and B channels.  

3. RESULTS 

We investigated the effectiveness of the proposed method using 

some experimental results on Japanese test datasets, which 

contained various types of house distributions. Figure 4 shows 

the typical result of the data sets. Figure 4(e) draws the polygon 

models of the buildings in this area in red on the RGB image. 

The polygon modelling method is not the goal of this paper and 

is omitted. The result shows that all the houses were correctly 

labelled and separated. The regular models fit the houses very 

well, in the sense of both the orientations and the sizes. Figure 

5(a) shows the clip of the NDSM of another place in Sapporo, 

where big residential buildings and small dense houses are both 

present. Figure 5(b) displays the polygon models in red on the 

RGB image. Only two houses are mixed as one, while other 

houses and buildings are extracted. 

 

 
(a) NDSM 

 
(b) Models 

Figure 5 The models of the extracted buildings 

4. CONCLUSIONS 

The objective of this work was to extract houses from DSM of 

high-density residential areas and avoid combining them into a 

single object. The process is difficult, because houses may be 

attached in the DSM. They are concave in the DSM surface but 

higher than the true ground. It is quite difficult to identify these 

as isolated houses. We have proposed a new method. A dome is 

reconstructed for an off-terrain object using a collection of slices 

that are derived using iterative differential openings of the DSM. 

The sizes of the structural elements in the morphological 

implementation are determined by the scale range of the houses 

in the residential area. We proposed a modified granulometry 

analysis to detect these scales. Our experiments on real data 

demonstrate that the scale detection method is robust to different 

data, because it yields a scale range instead of a single value. 

This scale range guarantees that the slices can be extracted for 

some house at least once, and thus be labeled as the marker. 

Joins between houses correspond to a peak in the pattern 

spectrum or a sharp change of the granulometry. Thus, they are 

not generally extracted as slices. As a result, attached houses can 

be separated.  
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