The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publications Copernicus
Articles | Volume XL-3
11 Aug 2014
 | 11 Aug 2014

Integration of prior knowledge into dense image matching for video surveillance

M. Menze and C. Heipke

Keywords: Close Range, Stereoscopic Image Matching, Surface Reconstruction

Abstract. Three-dimensional information from dense image matching is a valuable input for a broad range of vision applications. While reliable approaches exist for dedicated stereo setups they do not easily generalize to more challenging camera configurations. In the context of video surveillance the typically large spatial extent of the region of interest and repetitive structures in the scene render the application of dense image matching a challenging task. In this paper we present an approach that derives strong prior knowledge from a planar approximation of the scene. This information is integrated into a graph-cut based image matching framework that treats the assignment of optimal disparity values as a labelling task. Introducing the planar prior heavily reduces ambiguities together with the search space and increases computational efficiency. The results provide a proof of concept of the proposed approach. It allows the reconstruction of dense point clouds in more general surveillance camera setups with wider stereo baselines.