
 

 

PHOTOGRAMMETRIC DSM DENOISING  

 
F. Nexa, M. Gerkeb 

 
a 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Via Sommarive 18, 38123, Trento, Italy  

franex@fbk.eu, http://3dom.fbk.eu          
b University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), 

Department of Earth Observation Science, P.O. Box 217, 7500AE Enschede, The Netherlands m.gerke@utwente.nl 
 

Commission III – WG 1 
 

KEY WORDS:  Image Matching, DSM, Markov Random Field, graph-cuts, smoothing 
 
ABSTRACT:  
Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to 
LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to 
LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data 
for many applications but an effective way to enhance the generated point cloud has still to be found. 
In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point 
clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point 
clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a 
variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov 
Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has 
been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to 
mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving 
smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The 
TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly 
models the degradation properties of those DSM outperforms the others in all aspects.  
 
 

1. INTRODUCTION 

Using state-of-the-art multiple-view image matching technology 
in conjunction with modern very high resolution digital aerial 
imagery allows generating extremely dense point clouds 
compared to LiDAR data. Dense image matching approaches, 
like SGM (Hirschmüller, 2008), MicMac (Pierrot-Deseilligny 
and Paparoditis, 2006) or PMVS (Furukawa and Ponce, 2010) 
obtained attention in the past and all big photogrammetric 
software providers offer variants of these approaches in their 
product portfolio. When working with these point clouds, 
however, one is confronted with an error budget which is 
substantially different and larger than that of state-of-the-art 
LiDAR technology. We usually differentiate two main different 
types of errors: gross errors (outliers) and random noise.  
Gross errors appear as 3D points which are off the right location 
by several meters. Compared to LiDAR data, these points are 
not necessarily isolated and can thus not be easily filtered just 
using median filters and in addition large areas are usually 
affected by this kind of problem (Haala, 2013). In general these 
errors are appearing due to image occlusions, shadowed areas 
and homogenous texture. The number of images observing a 
particular area plays a role, as well, since the more images are 
available, the more robustly a dense matching technique can 
estimate a point and filter those mentioned wrong points 
through redundancy assumptions. In turn this means that in 
aerial image projects over urban areas some regions are more 
vulnerable to gross errors than others: e.g. in steep street 
canyons we might have only stereo, i.e. more gross error 
chances, while on roofs we have multiple views available which 
result in better surface representation. In practical cases, these 
problems can be more relevant when DSM can be generated 
using not very high overlaps or not high quality images. The 
new generation matching algorithms can only partly reduce this 
kind of problem. Random noise is inherent in any measurement 

process and through subsequent processes - in this case through 
point triangulation – the error will be propagated. Research 
showed that the error amplitude for dense image matching can 
reach up to three times GSD (Remondino et al., 2013) 
depending to the image quality, and the object texture.  
A standard product used for many applications and derived 
from point clouds is a digital surface model (DSM), which is a 
closed 2.5D representation of the area. Available methods to 
derive a DSM from point clouds employ a DSM denoising, e.g. 
removal of outliers followed by smoothing to retrieve a noise 
reduced model, but the methods used are often not published. In 
practice, a manual editing to remove outliers can still be 
necessary before the DSM can be used further.  
In addition, it is difficult to absolutely and quantitatively assess 
the quality of the photogrammetric DSM since reference data 
which might come from LiDAR has usually a lower resolution, 
because the used point cloud is less dense.  
Currently, the EuroSDR is performing a comparison of dense 
image matching techniques on aerial images 
(http://www.eurosdr.net/research/project/project-dense-image-
matching). Because of lacking ground truth, the computed 
DSMs are compared to their overall median. Although this 
showed some tendency on strengths and weaknesses of the 
approaches, it was not able to quantitatively assess the quality, 
also related to remaining noise and outliers.   
In general the denoising, or restoration, of a DSM is a post 
processing step. Unless a specific method is in place which uses 
additional input provided by the actual image matching, an 
outlier filter and smoothing algorithm should be applicable to 
any DSM produced by multi image dense matching. 
In this paper we compare four different methods for DSM 
smoothing. We use a synthetic test DSM, which allows us to 
simulate certain degradation, but also to quantitatively and 
visually assess the different restoration methods.  
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The methods are: a median filter, followed by an edge 
preserving smoothing from a standard image processing library 
(bilateral filter), a variational approach (TGV: Total 
Generalized Variation), as well as our own approach, which is 
embedded into a Markov Random Field (MRF) framework and 
optimized through graph-cuts. In addition, the developed 
algorithm will be tested on a urban area DSM to qualitatively 
assess the quality of the denoising in a real case.  
In the following we will review some related work and methods 
and motivate the development of our MRF-based approach to 
DSM denoising.  This approach will be explained in section 3, 
while extensive experiments and their analysis is added in 
section 4. The last section concludes the paper. 
 
 

2. RELATED WORK 

Still today, a raster DSM where the heights values are stored in 
the grey values is the most common way to disseminate and 
analyse surface information. The main reason is that it can then 
easily be overlaid with ortho images. In the case of raster DSM 
the denoising problem boils down to an image restoration task. 
In the past kernel-based filters have been used to remove 
outliers, like median filters, and edge preserving smoothing to 
remove random noise effects. Two general problems are related 
to the standard methods. First, in the case point clouds derived 
by dense image matching the outliers are often not isolated 
pixels, as mentioned above. This means that too small median 
kernel sizes will miss out many outliers, while large kernels will 
result in a smoothed DSM, even smoothing out sharp edges. 
The second problem is related to the edge preserving smoothing 
algorithms employed, like e.g. anisotropic diffusion or bilateral 
filters. Those assume piecewise constant homogenous areas, 
bounded by strong gradients. The assumption on homogeneity 
results in an undesired staircase-effect at sloped areas, like 
building roofs.  
Besides kernel based methods, energy minimization approaches 
have been investigated in the past. Variational approaches have 
become an interesting means to solve different computer vision 
problems . While traditional graph-based approaches like MRF 
work in discrete space, variational functionals are defined in the 
continuous domain. This seems very appealing, since also the 
real world, modelled e.g. in a DSM is continuous, as well. In 
fact, also in the field of image restoration and DSM smoothing 
some TGV-based work can be found (Pock et al., 2011; 
Meixner et al., 2011). The advantage of TGV-based methods 
over the aforementioned ones is that it allows to model 
piecewise polynomial functions, i.e. in the case of DSM 
restoration it would preserve slanted roof faces. 
The use of MRF and graph-cuts optimisation for image 
restoration have been presented in many papers (Boykov and 
Kolmogorov, 2004; Yan and Yongzhaung, 2007; Bae et al., 
2011) showing the reliability of this approach to perform  
images smoothing. Additional models such as TV minimization 
problems (Bae et al., 2011) or Gaussian filtering (Yan and 
Yongzhaung, 2011) have been embedded in the energy 
function, as well, in order to make the smoothing filtering more 
effective. Anyway, the goal of those methods is usually to 
reduce the random, salt and pepper, noise of the images that is 
usually randomly generated and homogeneously distributed all 
over the image. 
Very effective smoothing algorithms are presented in the 
computer graphics domain, in order to smooth random noise 
from 3D meshes or point clouds and retrieve the correct shape 
of objects (Digne, 2012). 

However, in literature we did not find methods which address 
both, large blunder errors, as well as random noise, i.e. typical 
problems of (urban) photogrammetric DSM, at the same time. 
The random noise and both isolated and large areas with 
degredated height information with errors of different 
amplitudes must be properly managed at the same time. To do 
that, the generation of staircasing effects on slanted surfaces and 
of unexpected smoothing on height variations must be 
prevented, as well.  
 
 

3. DEVELOPED ALGORITHM 

Both gross error and random noise have peculiar behaviours 
that are common to most of the matching algorithms and that 
can be detected in most of the generated DSM. Taking 
advantage of these peculiarities, an optimization approach can 
be assumed to mitigate these erroneous and retrieve the correct 
position of wrong points in the DSM.   
In this paper, a Markov Random Field formulation has been 
adopted. The advantage of this formulation for de-noising and 
smoothing tasks is that it combines observations (data term) 
with a neighbourhood smoothness constraint using the context 
information (Li, 2009; Ardila Lopez et al., 2011). Among a 
selection of optimization methods to minimize the overall 
energy, the graph-cut (Boykov et al., 2001) approach showed 
good performances and in particular the implementation 
provided by (Boykov et al., 2004) has already provided good 
results in former papers (Gerke and Xiao, 2014).  
The total E energy is composed out of the data term and a 
pairwise interaction term: 
 

(((( )))) (((( ))))
(((( ))))

∑∑∑∑ ∑∑∑∑++++====
∈∈∈∈ ∈∈∈∈Pp Nqp

qppqpp llVlDE
,

,                                    (1) 

 
where Dp(lp) is the data energy at point (i.e. image pixel) p for 
label lp (i.e. height value). Vpq is the pairwise interaction 
potential, considering the neighbourhood N. In the smoothing 
term, the Potts interaction potential, as proposed by (Li, 2009) 
and adding a simple label smoothness term, has been adopted. 
The input information is only provided by the 2.5D DSM. 
Additional information about matching correlation values, 
image radiometric information, etc. has been intentionally 
avoided in this release of the algorithm.  
The initial DSM is resampled in discrete height steps: the GSD 
dimension is adopted to define the height step value. 
Each step represents a different Label L and each point p has an 
initial label lp: the lowest point of the DSM has l=0 by default. 
The cost to change in height the position of a point p depends 
on several features that are included in the data term of the cost 
function. These features, exploiting both the initial height 
values and the information about the local shape of DSM, are 
used to model the optimal position of a point. In particular, the 
local planarity of man-made objects is also assumed to fit an 
effective cost function devoted to this tasks.  
 
Local reliability ( ndir): man-made objects are usually defined 
by locally smooth and planar surfaces: height value of p must be 
consistent with height values of neighbouring points. The local 
smoothness of the DSM represents an indirect indication about 
the quality of the matching result on that area and of the 
reliability of the initial position of points. Noisy areas are 
usually characterized by rough height variations. The 
determination of the local DSM smoothness is performed 
considering the local planarity of the point cloud in 8 directions 
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(2 verticals, 2 horizontals and 4diagonals) over a region of 5 
pixels. The standard deviation of each point from the fitted 
straight line is evaluated in each direction and the threshold λ is 
usually set to define the directional planarity of the DSM. λ is 
manually defined according to expected mean level of noise of 
the DSM and in normal cases it ranges from 1 to 3 GSD sizes. 
A point is supposed to be on a reliable area if the threshold is 
maintained in 3 or more directions (ndir). 
 
Height distance (∆Lp): each pixel p of the DSM has an initial 
height value corresponding to a label (Lp). ∆L defines the 
relative distance between the initial label of p and other 
neighbouring labels L. A linear relation is used to define this 
value, as reported in (2). 
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where R is additional cost that is summed to ∆Lp when ndir<3 
and it is equal to: 
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Slope index (Ism): the cost will increase considering the 
reliability of the point too. Unreliable points must have a wider 
number of possible solutions with similar costs. On the 
opposite, reliable points must have higher costs for solutions far 
from the initial one.  
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Label change direction (Cd): an height overestimation is 
usually observed in photogrammetric DSMs on noisier areas; a 
parameter keeping in count this aspect is set to increase costs of 
displacements on higher labels. 
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Slant surfaces correction (Ssl): the graph-cut has a smoothing 
effect on the data and it helps to reduce the label differences 
between adjacent points. For this reason, it properly smooth flat 
areas, where the label differences between adjacent points must 
be flatted. On slant surfaces like roofs (Figure 1a), the 
smoothing allows to completely delete gross errors, but it has 
the drawback to generate “artificial” steps on that surfaces 
(staircasing effect), making steep and flat segments alternated 
together, as shown in Figure 1b.  
Assuming that roofs are mainly composed of local flat surfaces, 
an additional constraint should be considered in order to 
preserve their slope. A transition between different labels on 
adjacent points must be assured in a smoother way when points 
on a slant surface are considered (Figure 1c). Given the local 
inclination of the roof, the label of p could be predicted (Lpred) 
from surrounding point positions and an additional parameter 
can be added to the solution.   
 

 
     (a)                             (b)                            (c) 

Figure 1: ground truth (a) smoothing without (b) or using (c) Ssl 
feature on a small DSM section. 
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where α defines the inclination of the tilted surfaces:  
 
Neighbourhood index (Cnp): each point is connected to 8-
neighbouring points. Points in correspondence of unreliable 
areas are only connected to reliable points: in each of the eight 
directions the first reliable point is considered as neighbour.   
Assuming that points should be locally consistent, a point 
would have height values similar to (one or more) neighbouring 
points (Lneigh). In the same way, an unreliable point p should 
have a label close to reliable points. An additional parameter is 
added for unreliable points when labels close to neighbouring 
points are considered.  
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Cnb won’t give any contribution to points in reliable areas and 
on points far from neighbouring points, while it will enforce 
solutions close to neighbouring points.  
 
All the features are integrated in the following data term 
function.  
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The Dp is then normalized in order to have the lower value 
equal to 0. As the differences of labels can be very high 
(especially in correspondence on DSM in urban areas), a 
maximum value is usually set to limit very high costs: the range 
is usually between 0 and 10. The adopted solution works with 
integer data term values: for this reason, Dp(lp) is approximated 
to the upper integer value.  
In general, ∆L defines that the cost increases for labels that are 
far from the initial position of point p. The displacement to 
lower labels are advantaged by Cd and the cost increases faster 
on points considered as reliable than on unreliable points thanks 
to Ism. On unreliable points, labels corresponding to 
neighbouring points are enforced by Cnb. Finally, Ssl shifts the 
minimum cost in the direction of the predicted solution only on 
slanted surfaces.  
The solution is influenced by the estimation of local smoothness 
of the point cloud defined by λ as most of the additional costs or 
the reductions are dependent from the estimated of the local 
smoothness of each point. Anyway, from the performed tests, 
the solutions has shown to be insensitive to moderate variations 
of λ providing very similar results.   
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4. PERFORMED TESTS 

Several tests have been performed on the algorithm in order to 
tests its performances. Both synthetic and real images have been 
considered. In the following some of the achieved results are 
shown. 
 
4.1 Synthetic DSM 

The synthetic 2.5D DSM was created using an image editor. 
The height values are provided by the grey values. Depth was 
defined in order to create simple but meaningful buildings able 
to simulate a real scenario. Roofs of different dimensions and 
shapes have been considered in order to evaluate the 
performance of the algorithms (Figure 2a).  
 
 

  
(a)                                       (b) 

Figure 2: ground truth (a) and noisy DSM (b). 
 

Then, additional noise has been added on the whole DSM as it 
is shown in Figure 2b: 
- ±2 GSD of random depth noise to simulate the random noise 

of a photogrammetric DSM. The noise was in both upper and 
lower directions; 

- Outliers have been added around some roof sides, on the 
ground or on adjacent buildings, to simulate gross errors due 
to occlusions and shadows. These outliers are randomly 
determined with a maximum amplitude of 40 GSD; the gross 
errors are in both upper and lower directions, but the outliers 
in the higher direction are bigger and mostly above the 
ground height. 

- 10000 outliers spatially distributed and isolated: they simulate 
the matching outliers that can be found on the DSM. Their 
position is randomly generated, but they have maximum 
amplitude of ±10 GSD.  

- Some mixed pixels: these points are in correspondence of the 
building borders, and they represent points with height 
between the roof and the ground.  

All these noise has been added to the original DSM in order to 
evaluate the capability of the developed algorithm to reduce and 
recover the noise.  
In Figure 3a, the differences between the ground truth and the 
noisy DSMs are presented. The white parts represent the areas 
where the two DSMs are coincident. The greyish colours 
represent points with differences that are comprised between 1 
and 10 GSD: grey values ranges between 1 GSD of difference 
(brighter colours) to 10 GSD (darker colours). Differences 
larger than 10 GSD are represented in black. Finally, the 
differences (defined in GSD) and their relative frequencies are 

reported in the histogram in Figure 3b. The histogram gives a 
global statistics on the remaining degradation. In practice such 
charts, however, do not sufficiently reflect the performance of 
an algorithm: local problems might still remain undetected. In 
this context the visualisation is very helpful: on the first sight 
one can see where a certain method fails. 
 
 

  
(a) 

 
(b) 

Figure 3: differences between ground truth and noisy DSM (a) 
and histogram of the differences expressed in GSD (b). 

 
As it is possible to see from figure 3b points position is almost 
equally distributed in a range of ±2 GSD from the correct 
position and outliers are mainly distributed on the higher 
extreme.  
In the following the results achieved using the described 
algorithms will be shown.  
 
- Median Filter: the median filter reduces the random noise as 
it is shown by the histogram distribution; residuals are 
homogeneously distributed all over the DSM. Anyway, large 
noisy areas around buildings still persist and their amplitude is  
not changed appreciably (Figure 4). It is more the other way 
around: the fine roof structures on the building at the left 
border, centre area, do get enhanced. 
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(a)                                       (b) 

 
(c) 

Figure 4: denoised DSM (a), differences between ground truth 
and the smoothed DSM using the median filter (b) and 

histogram of the differences (c). 
 
- Bilateral filter: the bilateral filter (the OpenCV libraries were 
used to implement this algorithm) was able to efficiently smooth 
the flat surfaces like the ground, but shows still high random 
noise residuals on the slanted surfaces. The gross errors are still 
visible and they are not reduced. In Figure 5a, 5b these results 
are reported. Some artefacts and medium differences (between 3 
and 10 GSD) are generated on edges of the buildings and they 
are more evident in the histogram (Figure 5c).  
 
 

  
(a)                                       (b) 

 
(c) 

Figure 5: denoised DSM (a), differences between ground truth 
and the smoothed DSM using the bilateral filter (b) and 

histogram of the differences (c). 
 
- TGV regularization: The TGV filtering was used adopting 
the implementation available on the web and provided by 
(Getreuer, 2012). The TGV regularization algorithm was able to 
properly filter the random noise on the surfaces (Figure 6a, 6b) 
and a higher percentage of correct points (compared to the 
former methods) was achieved (Figure 6c). Anyway, the 
smoothing effect did not preserve the shape of the point cloud 
in correspondence of the building edges, where larger 
differences are visible (Figure 6a, 6b). Finally, it was not able to 
retrieve the correct position of large noisy regions around 
buildings.  
 
 

  
(a)                                       (b) 

 
(c) 

Figure 6: denoised DSM (a), differences between ground truth 
and the smoothed DSM using the TGV regularization filter (b) 

and histogram of the differences (c). 
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(a)                                       (b) 

 
(c) 

Figure 7: denoised DSM (a), differences between ground truth 
and the smoothed DSM using the proposed algorithm (b) and 

histogram of the differences (c). 
 
- Proposed algorithm: the de-noising allows to remove almost 
completely the noisy regions around building and to retrieve the 
correct position of points. Some problems are still visible in 
correspondence of building edges, where some pixels are 
sometimes eroded and their height values can be sometimes 
underestimated.  
The mean level of random noise of the DSM is greatly 
improved as shown in Figure 7a, b, where usually lighter grey 
colours are visible. This analysis is confirmed by the differences 
in Figure 7c, where more than the 90% of the DSM are 
concentrated in the error interval ±1 GSD: only where few 
points exceed this interval.  
 
4.2 Real photogrammetric DSM  

The DSM of the town of Transacqua (Italy) was generated using 
images acquired by a consumer grade single lens reflex camera 
(installed on an helicopter). 80% along track overlaps and 60% 
across track overlaps have been adopted in the flight; the DSM 
was generated using the MicMac software (IGN, France) and it 
has 18 cm of GSD. In the original point cloud, several outliers 
are visible, mainly due to building shadows and occlusions, 
while some noisy regions can be detected on the roof surfaces. 
A ground truth is not available, anyway a qualitative evaluation 
of the DSM before and after the DSM denoising can be 
performed to assess the effectiveness of the developed 
algorithm.  
In Figure 8, the orthophoto of the analysed areas, the shaded 
visualization of the DSM before (Figure 8b) and after the 
denoising process are presented (Figure 8c). 

The developed algorithm allowed to improve the results in 
correspondence of building borders. Black regions around 
buildings in Figures 8b describe the noisy area of the DSM: the 
dark colour is due to the rough height variations of the DSM. 
These areas appear strongly reduced in Figures 8c and gross 
errors are efficiently recovered in most of the cases. Points on 
noisy areas are usually moved on the ground by the algorithm. 
Isolated wrong points on the roof surfaces are correctly 
retrieved. Random noise is reduced on the roofs surfaces. 
 
 

5. CONCLUSIONS AND FUTURE DEVELOPMENTS 

Photogrammetric DSM are usually affected by both random 
noise and gross errors. These errors are generally concentrated 
in correspondence of occluded or shadowed areas and are 
strongly influenced by the texture of the object that is 
considered, or the number of images employed for the 
matching.  
In this paper, different denoising methods have been evaluated 
to retrieve the correct point positions and deliver accurate point 
clouds. In particular, the effectiveness of common and a newly 
developed method to manage both these problems has been 
assessed.  
To do that, a synthetic DSM, reproducing a realistic urban 
environment has been first generated. Different errors have been 
introduced to reproduce some typical errors that can be 
commonly detected on real DSM: the noise level, before and 
after the denoising process has been assessed using the 
algorithms, performing a quantitative evaluation.  
The performed tests have shown that standard methods (median, 
bilateral smoothing, TGV-based) are only able to reduce the 
random noise problems, but they do not efficiently manage the 
presence of large noisy areas around buildings, and building 
corners get smoothed.  
On the other hand, the developed algorithm based on MRF 
formulation has shown to provide better results both on random 
noise and gross error reduction: few remaining errors are mainly 
concentrated on the buildings borders. The algorithm uses as 
input a DSM and exploits few assumptions about the shape of 
the man-made objects and the height error distribution to set up 
an effective cost function. Tests on a real DSM have also 
confirmed the good performances of the algorithm at least from 
a qualitative point of view showing the ability of the presented 
methodology to reduce the noise on the building borders.  
The use of this prior information can strongly enhance the 
performance of the denoising process; on the other hand, it 
could limit the performance of the smoothing when 
unconventional errors patterns have to be recovered.  
Another disadvantage of this method is the possibility to get 
stuck in local minima since the data term is not convex. 
Anyway, for the denoising application this problem is a minor 
drawback since a good initialization, the noisy DSM, is always 
available.  
In the future, further tests will be performed on other real DSM 
in order to assess the reliability of the developed method in very 
different operative conditions. Then, the extension from the 
2.5D case to the fully 3D will be performed and further 
comparisons with other available denoising algorithms will be 
performed, as well.  
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a)   
 

b)   
 

c)   
Figure 8: Qualitative comparison of real case: the true ortho-photo of the area (a), the DSM before (b) and after (c) denoising. 
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