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ABSTRACT:

Image matching techniques can nowadays provide denge point clouds and they are often consideredlid alternative to
LiDAR point cloud. However, photogrammetric poinbetls are often characterized by a higher leveanflom noise compared to
LiDAR data and by the presence of large outlieresEhproblems constitute a limitation in the pratticse of photogrammetric data
for many applications but an effective way to erdgatine generated point cloud has still to be found.

In this paper we concentrate on the restoratioligftal Surface Models (DSM), computed from densege matching point
clouds. A photogrammetric DSM, i.e. a 2.5D représon of the surface is still one of the major guwots derived from point
clouds. Four different algorithms devoted to DSMaising are presented: a standard median filtercgmh, a bilateral filter, a
variational approach (TGV: Total Generalized Vaoia}, as well as a newly developed algorithm, whicbmbedded into a Markov
Random Field (MRF) framework and optimized throughpdrcuts. The ability of each algorithm to recotfer original DSM has
been quantitatively evaluated. To do that, a syitH2SM has been generated and different typologfewise have been added to
mimic the typical errors of photogrammetric DSM$ieTevaluation reveals that standard filters likediare and edge preserving
smoothing through a bilateral filter approach canadficiently remove typical errors occurring inpaotogrammetric DSM. The
TGV-based approach much better removes random,rimiséarge areas with outliers still remain. Oumomethod which explicitly

models the degradation properties of those DSMartdpms the others in all aspects.

1. INTRODUCTION

Using state-of-the-art multiple-view image matchteghnology
in conjunction with modern very high resolution ithd aerial
imagery allows generating extremely dense pointuado
compared to LIDAR data. Dense image matching appesc
like SGM (Hirschmuller, 2008), MicMac (Pierrot-Dédtigny
and Paparoditis, 2006) or PMVS (Furukawa and Po2@&0)
obtained attention in the past and all big photognatric
software providers offer variants of these appreacim their
product portfolio. When working with these pointoats,
however, one is confronted with an error budgetctvhis
substantially different and larger than that oftestaf-the-art
LiDAR technology. We usually differentiate two malifferent
types of errors: gross errors (outliers) and randoige.

Gross errors appear as 3D points which are offige location
by several meters. Compared to LiDAR data, thesetpaire
not necessarily isolated and can thus not be efitdyed just
using median filters and in addition large areas asually
affected by this kind of problem (Haala, 2013)gkmeral these
errors are appearing due to image occlusions, steti@reas
and homogenous texture. The number of images dbgeas
particular area plays a role, as well, since theenimages are
available, the more robustly a dense matching igclencan
estimate a point and filter those mentioned wror@nts
through redundancy assumptions. In turn this mehas in
aerial image projects over urban areas some regimsnore
vulnerable to gross errors than others: e.g. irepstetreet
canyons we might have only stereo, i.e. more graser
chances, while on roofs we have multiple views lale which
result in better surface representation. In pratiwases, these
problems can be more relevant when DSM can be getker
using not very high overlaps or not high qualityages. The
new generation matching algorithms can only pagtiuce this
kind of problem. Random noise is inherent in any sneament

process and through subsequent processes - ioathgsthrough
point triangulation — the error will be propagatdtlesearch
showed that the error amplitude for dense imagelmreg can
reach up to three times GSD (Remondino et al., 2013)
depending to the image quality, and the objecurext

A standard product used for many applications aadved
from point clouds is a digital surface model (DSMpich is a
closed 2.5D representation of the area. Availab&thods to
derive a DSM from point clouds employ a DSM denaisie.g.
removal of outliers followed by smoothing to retdea noise
reduced model, but the methods used are oftenuimished. In
practice, a manual editing to remove outliers cafl be
necessary before the DSM can be used further.

In addition, it is difficult to absolutely and quéatively assess
the quality of the photogrammetric DSM since refieee data
which might come from LiDAR has usually a lower resion,
because the used point cloud is less dense.

Currently, the EuroSDR is performing a comparisordefise
image matching techniques on aerial images
(http://mwww.eurosdr.net/research/project/projeatsieimage-
matching). Because of lacking ground truth, the oateq
DSMs are compared to their overall median. Althoubfs
showed some tendency on strengths and weaknesstd® of
approaches, it was not able to quantitatively astes quality,
also related to remaining noise and outliers.

In general the denoising, or restoration, of a D&Va post
processing step. Unless a specific method is ioephehich uses
additional input provided by the actual image meatgh an
outlier filter and smoothing algorithm should bepkgable to
any DSM produced by multi image dense matching.

In this paper we compare four different methods Bg8M
smoothing. We use a synthetic test DSM, which alas to
simulate certain degradation, but also to quantébt and
visually assess the different restoration methods.
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The methods are: a median filter, followed by angeed However, in literature we did not find methods whiaddress

preserving smoothing from a standard image procgdirary
(bilateral filter), a variational approach (TGV: fab
Generalized Variation), as well as our own approadfich is

embedded into a Markov Random Field (MRF) framewarit a degredated height

optimized through graph-cuts. In addition, the deaped

algorithm will be tested on a urban area DSM tolitatavely

assess the quality of the denoising in a real case.

In the following we will review some related workdamethods
and motivate the development of our MRF-based approa
DSM denoising. This approach will be explainedséttion 3,
while extensive experiments and their analysis dsled in
section 4. The last section concludes the paper.

2. RELATED WORK

Still today, a raster DSM where the heights valaesstored in
the grey values is the most common way to disseéminad
analyse surface information. The main reason isittgan then
easily be overlaid with ortho images. In the caSester DSM
the denoising problem boils down to an image resion task.
In the past kernel-based filters have been usedeinove
outliers, like median filters, and edge presenamgoothing to
remove random noise effects. Two general problemseaated
to the standard methods. First, in the case pdanids derived
by dense image matching the outliers are often isaiated
pixels, as mentioned above. This means that todl snealian
kernel sizes will miss out many outliers, whilegarkernels will
result in a smoothed DSM, even smoothing out slealges.
The second problem is related to the edge pregesrimoothing
algorithms employed, like e.g. anisotropic diffusior bilateral
filters. Those assume piecewise constant homogeaoess,
bounded by strong gradients. The assumption on fenety
results in an undesired staircase-effect at slopeds, like
building roofs.

Besides kernel based methods, energy minimizatipnoaghes
have been investigated in the past. Variationat@gghes have
become an interesting means to solve different coenprision
problems . While traditional graph-based approaditesMRF
work in discrete space, variational functionals@éned in the
continuous domain. This seems very appealing, satee the
real world, modelled e.g. in a DSM is continuous,vell. In
fact, also in the field of image restoration andMDSmoothing

both, large blunder errors, as well as random naieetypical
problems of (urban) photogrammetric DSM, at theestime.

The random noise and both isolated and large avnéts
information with errors of differ
amplitudes must be properly managed at the same fim do
that, the generation of staircasing effects ontsthsurfaces and
of unexpected smoothing on height variations must b
prevented, as well.

3. DEVELOPED ALGORITHM

Both gross error and random noise have peculiar viains
that are common to most of the matching algoritlamd that
can be detected in most of the generated DSM. @gakin
advantage of these peculiarities, an optimizatippr@ach can
be assumed to mitigate these erroneous and retheveorrect
position of wrong points in the DSM.

In this paper, a Markov Random Field formulation H&en
adopted. The advantage of this formulation for dising and
smoothing tasks is that it combines observatiorata(derm)
with a neighbourhood smoothness constraint usiegctintext
information (Li, 2009; Ardila Lopez et al., 2011Among a
selection of optimization methods to minimize theemll
energy, the graph-cut (Boykov et al., 2001) approstobwed
good performances and in particular the implemantat
provided by (Boykov et al., 2004) has already predidjood
results in former papers (Gerke and Xiao, 2014).

The total E energy is composed out of the data tenmh a
pairwise interaction term:

E :p%:PDp(lp)*'(p'&Nqu(lp'lq) @)

whereD(l) is the data energy at point (i.e. image pixefpr
label 1, (i.e. height value).V,, is the pairwise interaction
potential, considering the neighbourholNd In the smoothing
term, the Potts interaction potential, as propdsgedLi, 2009)
and adding a simple label smoothness term, hasdnssted.
The input information is only provided by the 2.3DSM.
Additional information about matching correlatioralwes,
image radiometric information, etc. has been interatly
avoided in this release of the algorithm.

some TGV-based work can be found (Pock et al., 201lrpg jnitial DSM is resampled in discrete heighpstethe GSD

Meixner et al., 2011). The advantage of TGV-basedhods
over the aforementioned ones is that it allows toden
piecewise polynomial functions, i.e. in the case DEM
restoration it would preserve slanted roof faces.

dimension is adopted to define the height stepevalu

Each step represents a different Labelnd each poirp has an
initial labell;: the lowest point of the DSM ha#s0 by default.
The cost to change in height the position of a pppidepends

The use of MRF and graph-cuts optimisation for imagey, several features that are included in the data bf the cost

restoration have been presented in many papers (Bogid

Kolmogorov, 2004; Yan and Yongzhaung, 2007; Baelgt a

2011) showing the reliability of this approach terfprm
images smoothing. Additional models such as TV migzation
problems (Bae et al., 2011) or Gaussian filteringr(Yand
Yongzhaung,
function, as well, in order to make the smoothiittgring more
effective. Anyway, the goal of those methods isaliguto

reduce the random, salt and pepper, noise of thgeamthat is
usually randomly generated and homogeneously hiiged all
over the image.

Very effective smoothing algorithms are presented the
computer graphics domain, in order to smooth rancamise
from 3D meshes or point clouds and retrieve theecbrshape
of objects (Digne, 2012).

function. These features, exploiting both the #itheight
values and the information about the local shapB®f, are
used to model the optimal position of a point. artigular, the
local planarity of man-made objects is also assutoefit an
effective cost function devoted to this tasks.

2011) have been embedded in the energy

Local reliability (ng,): man-made objects are usually defined
by locally smooth and planar surfaces: height valygmust be
consistent with height values of neighbouring paifthe local
smoothness of the DSM represents an indirect itidicabout
the quality of the matching result on that area afdthe
reliability of the initial position of points. Noysareas are
usually characterized by rough height variationshe T
determination of the local DSM smoothness is penéat
considering the local planarity of the point cland directions
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(2 verticals, 2 horizontals and 4diagonals) ovaegion of 5
pixels. The standard deviation of each point frdme fitted
straight line is evaluated in each direction arelttireshold. is
usually set to define the directional planaritytieé DSM.\ is
manually defined according to expected mean lef/@lotse of
the DSM and in normal cases it ranges from 1 toSDGizes.
A point is supposed to be on a reliable area ifttireshold is
maintained in 3 or more directiong;().

Height distance QLp): each pixelp of the DSM has an initial
height value corresponding to a labél)( AL defines the
relative distance between the initial label pfand other
neighbouring labeld. A linear relation is used to define this
value, as reported in (2).
AL (,)=(L-Lp)+R )
where R is additional cost that is summeditg whenng,<3
and it is equal to:
=2 ifL<L

Rll . )= P 3

(") {2 if L>L, )
Slope index (4,): the cost will increase considering the
reliability of the point too. Unreliable points musave a wider
number of possible solutions with similar costs. @re

opposite, reliable points must have higher costsdtutions far
from the initial one.

| = 0.5 if ndr<3
T i ndr2 3

Label change direction (G): an height overestimation is
usually observed in photogrammetric DSMs on noiareas; a

parameter keeping in count this aspect is setde#se costs of
displacements on higher labels.

C(15)

“

{1 'n‘ L<L, 5)
2 ifL>=L,

Slant surfaces correction §): the graph-cut has a smoothing
effect on the data and it helps to reduce the ldiftdrences
between adjacent points. For this reason, it pigpenooth flat
areas, where the label differences between adjgents must
be flatted. On slant surfaces like roofs (Figure), lthe
smoothing allows to completely delete gross errbrg, it has
the drawback to generate “artificial” steps on tlsatfaces
(staircasing effect), making steep and flat segmaiternated
together, as shown in Figure 1b.

Assuming that roofs are mainly composed of loca $urfaces,
an additional constraint should be considered ideorto
preserve their slope. A transition between differiaoels on
adjacent points must be assured in a smoother Way woints
on a slant surface are considered (Figure 1c).rGike local
inclination of the roof, the label qf could be predicted.;cq)
from surrounding point positions and an additiopafameter
can be added to the solution.

@) (b) ©

Figure 1: ground truth (a) smoothing without (blusing (c)Sy
feature on a small DSM section.

s, (Ip)- {(Lp - Lpred) if tan(a) > 0.5 ®)

"o if tan(a)< 05
wherea defines the inclination of the tilted surfaces:

Neighbourhood index C,): each point is connected to 8-
neighbouring pointsPoints in correspondence of unreliable
areas are only connected to reliable points: ith eddhe eight
directions the first reliable point is consideradn@ighbour.
Assuming that points should be locally consistemtpoint
would have height values similar to (one or mom&yghbouring
points (negn). In the same way, an unreliable pomshould
have a label close to reliable points. An additiggerameter is
added for unreliable points when labels close tightmuring
points are considered.

culo)= |

C.», won't give any contribution to points in reliabdeeas and
on points far from neighbouring points, while itlwenforce
solutions close to neighbouring points.

~Loggn) i g, <38 abs(L-Legn)< 3

if ndar23

@)

All the features are integrated in the followingtalaerm
function.

Dyll5)= 1 on Ty HAL, +S, +Cy (8)
The D, is then normalized in order to have the lower galu
equal to 0. As the differences of labels can bey V@igh
(especially in correspondence on DSM in urban 3reas
maximum value is usually set to limit very high toghe range

is usually between 0 and 10. The adopted solutiorksvwith
integer data term values: for this reasbp(l,) is approximated

to the upper integer value.

In general AL defines that the cost increases for labels treat ar
far from the initial position of poinp. The displacement to
lower labels are advantaged By and the cost increases faster
on points considered as reliable than on unrelipbiets thanks
to lg. On unreliable points, labels corresponding
neighbouring points are enforced 8y, Finally, S shifts the
minimum cost in the direction of the predicted sl only on
slanted surfaces.

The solution is influenced by the estimation ofdlbemoothness
of the point cloud defined byas most of the additional costs or
the reductions are dependent from the estimatethefiocal
smoothness of each point. Anyway, from the perfarrests,
the solutions has shown to be insensitive to madefariations
of A providing very similar results.

to
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4. PERFORMED TESTS

Several tests have been performed on the algofithonder to

tests its performances. Both synthetic and real @ségve been
considered. In the following some of the achievesults are
shown.

4.1 Synthetic DSM

The synthetic 2.5D DSM was created using an imaijore
The height values are provided by the grey vallepth was
defined in order to create simple but meaningfuldings able
to simulate a real scenario. Roofs of different disiens and
shapes have been considered
performance of the algorithms (Figure 2a).

Figure 2: ground truth (a) and noisy DSM (b).

Then, additional noise has been added on the wb8M as it

is shown in Figure 2b:

+2 GSD of random depth noise to simulate the randoise

of a photogrammetric DSM. The noise was in botheugmd

lower directions;

Outliers have been added around some roof sideshen

ground or on adjacent buildings, to simulate gerssrs due

to occlusions and shadows. These outliers are mlydo
determined with a maximum amplitude of 40 GSD; ghass
errors are in both upper and lower directions,thatoutliers
in the higher direction are bigger and mostly abdke
ground height.

- 10000 outliers spatially distributed and isolatédy simulate
the matching outliers that can be found on the DSRKkeir
position is randomly generated, but they have mawim
amplitude of £10 GSD.

- Some mixed pixels: these points are in corresporelefithe
building borders, and they represent points withiglhte
between the roof and the ground.

All these noise has been added to the original Di$krder to

evaluate the capability of the developed algoritbrmeduce and

recover the noise.

In Figure 3a, the differences between the grounthtand the

noisy DSMs are presented. The white parts reprebenareas

where the two DSMs are coincident. The greyish wdo

represent points with differences that are comgrisetween 1

and 10 GSD: grey values ranges between 1 GSD fefrelifice

(brighter colours) to 10 GSD (darker colours). Bi#nces

larger than 10 GSD are represented in black. Bindhe

differences (defined in GSD) and their relativegfrencies are

reported in the histogram in Figure 3b. The histogmgives a
global statistics on the remaining degradationpractice such
charts, however, do not sufficiently reflect thefpamance of
an algorithm: local problems might still remain etetted. In
this context the visualisation is very helpful: tire first sight
one can see where a certain method fails.

in order to evaluate th

f it o
T
(a)
BEFORE SIMOOTHING
60| B
50| 1
40 4
R
£ 30 4
2
0} 1
" ’_‘ |
L. N —
AV OV 4o L O =~ N w oy vV
&y &% X
s & b Anooa @
s 2 Lo
ok =
&
DIFFERENCE [GSD]
(b)

Figure 3: differences between ground truth andyndiSM (a)
and histogram of the differences expressed in G§D (

As it is possible to see from figure 3b points fHosiis almost
equally distributed in a range of +2 GSD from therrect
position and outliers are mainly distributed on thigher
extreme.

In the following the results achieved using the criéed
algorithms will be shown.

- Median Filter: the median filter reduces the random noise as

it is shown by the histogram distribution; residuahre
homogeneously distributed all over the DSM. Anywkyge
noisy areas around buildings still persist andrtheiplitude is
not changed appreciably (Figure 4). It is more ollger way
around: the fine roof structures on the buildingtlae left
border, centre area, do get enhanced.
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Figure 4: denoised DSM (a), differences betweenmadruth
and the smoothed DSM using the median filter (lo) an
histogram of the differences (c).

- Bilateral filter: the bilateral filter (the OpenCV libraries were
used to implement this algorithm) was able to &ffidy smooth
the flat surfaces like the ground, but shows #iih random
noise residuals on the slanted surfaces. The grosss are still
visible and they are not reduced. In Figure 5athélse results
are reported. Some artefacts and medium differefeteeen 3
and 10 GSD) are generated on edges of the buildingshey
are more evident in the histogram (Figure 5c).
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Figure 5: denoised DSM (a), differences betweenmudruth
and the smoothed DSM using the bilateral filtergbdl
histogram of the differences (c).

- TGV regularization: The TGV filtering was used adopting
the implementation available on the web and praVvidey
(Getreuer, 2012). The TGV regularization algoritivas able to
properly filter the random noise on the surfacdguyfe 6a, 6b)
and a higher percentage of correct points (compaoethe
former methods) was achieved (Figure 6c). Anywdye t
smoothing effect did not preserve the shape ofpthiat cloud
in correspondence of the building edges, where efarg
differences are visible (Figure 6a, 6b). Finaltwvas not able to
retrieve the correct position of large noisy regioaround
buildings.
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Figure 6: denoised DSM (a), differences betweenimguldaruth
and the smoothed DSM using the TGV regularizatiiver f(b)
and histogram of the differences (c).
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Figure 7: denoised DSM (a), differences betweenmgaiaruth
and the smoothed DSM using the proposed algorithrar{d
histogram of the differences (c).

- Proposed algorithm: the de-noising allows to remove almost
completely the noisy regions around building ancetoieve the
correct position of points. Some problems are sidible in
correspondence of building edges, where some pigets
sometimes eroded and their height values can bestsoes
underestimated.

The mean level of random noise of the DSM is gyeatl
improved as shown in Figure 7a, b, where usualiijtér grey
colours are visible. This analysis is confirmedtiwy differences
in Figure 7c, where more than the 90% of the DSM ar
concentrated in the error interval +1 GSD: only rehdew
points exceed this interval.

4.2 Real photogrammetric DSM

The DSM of the town of Transacqua (Italy) was gatest using
images acquired by a consumer grade single lefexredmera
(installed on an helicopter). 80% along track cxesl and 60%
across track overlaps have been adopted in tha;flilge DSM
was generated using the MicMac software (IGN, Feaand it
has 18 cm of GSD. In the original point cloud, sel/eutliers
are visible, mainly due to building shadows andlusions,
while some noisy regions can be detected on thiestoaces.

A ground truth is not available, anyway a qualtatevaluation
of the DSM before and after the DSM denoising can b
performed to assess the effectiveness of the deselo
algorithm.

In Figure 8, the orthophoto of the analysed ar#as,shaded
visualization of the DSM before (Figure 8b) andeafthe
denoising process are presented (Figure 8c).

The developed algorithm allowed to improve the itssin

correspondence of building borders. Black regionsured

buildings in Figures 8b describe the noisy arethefDSM: the
dark colour is due to the rough height variatiohshe DSM.

These areas appear strongly reduced in Figuresm@cgeoss
errors are efficiently recovered in most of theesasPoints on
noisy areas are usually moved on the ground bwlterithm.

Isolated wrong points on the roof surfaces are ecoly
retrieved. Random noise is reduced on the roofacesf

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

Photogrammetric DSM are usually affected by bothdoem
noise and gross errors. These errors are gene@ilyentrated
in correspondence of occluded or shadowed areasasmd
strongly influenced by the texture of the objectatthis
considered, or the number of images employed fa th
matching.

In this paper, different denoising methods havenbeeluated
to retrieve the correct point positions and deli@ecurate point
clouds. In particular, the effectiveness of comraod a newly
developed method to manage both these problemsbéms
assessed.

To do that, a synthetic DSM, reproducing a realisirban
environment has been first generated. Differerdrerhave been
introduced to reproduce some typical errors thah ¢e
commonly detected on real DSM: the noise levelpteefand
after the denoising process has been assessed tlsing
algorithms, performing a quantitative evaluation.

The performed tests have shown that standard mei{lmeedian,
bilateral smoothing, TGV-based) are only able tdure the
random noise problems, but they do not efficientignage the
presence of large noisy areas around buildings, kaniding
corners get smoothed.

On the other hand, the developed algorithm basedV&ir
formulation has shown to provide better result$hbmt random
noise and gross error reduction: few remainingrerane mainly
concentrated on the buildings borders. The algoritises as
input a DSM and exploits few assumptions aboutstepe of
the man-made objects and the height error distdbub set up
an effective cost function. Tests on a real DSM ehalso
confirmed the good performances of the algorithrieast from
a qualitative point of view showing the ability tife presented
methodology to reduce the noise on the buildinglexs.

The use of this prior information can strongly emte the
performance of the denoising process; on the olfaerd, it
could limit the performance of the smoothing when
unconventional errors patterns have to be recovered
Another disadvantage of this method is the possibib get
stuck in local minima since the data term is nohvex.
Anyway, for the denoising application this probléna minor
drawback since a good initialization, the noisy DS#always
available.

In the future, further tests will be performed dhey real DSM
in order to assess the reliability of the developwdhod in very
different operative conditions. Then, the extensfoom the
2.5D case to the fully 3D will be performed and thar
comparisons with other available denoising alganghwill be
performed, as well.
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Figure 8: Qualitative comparison of real case:tthe ortho-photo of the area (a), the DSM b
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