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ABSTRACT:

Developing fully automatic systems is still an active research topic in 3D building model reconstruction. While a general solution
to the building reconstruction problem relies on collecting and grouping the modeling cues (e.g., lines, corners, planes) from Digital
Surface Model (DSM) data, failure in finding the cues due to noise in the DSM and the object complexities is a big challenge. In this
paper, we introduce a clustering-based method for cue discovery from Pan-chromatic satellite images which reduces the dependencies
of the reconstruction techniques on DSM data. Experimental results show that the proposed method is not only able to effectively refine
building masks by discriminating building boundaries from nearby clutter, but also is able to determine the roof types (e.g., pitched,
flat). The latter, allows to establish a reconstruction method to reduces the search effort and the failure probability regions in finding a

particular cue by leading the system to an appropriate area.

1 INTRODUCTION

3D building models of urban areas are necessary for various ap-
plications such as urban planning, network planning for mobile
communication, and tourism information systems. Even though
several methods have been introduced for 3D building model re-
construction, developing fully automatic systems is still an active
research topic. A general solution to the building reconstruction
problem relies on collecting modeling cues (e.g., lines, corners,
planes) from Digital Surface Model (DSM) data, and then group-
ing them by considering geometric topologies between the adja-
cent cues. However, missing some of the cues due to noise in the
DSM and the object complexities is a big difficulty to make this
method perform automatically. To tackle this problem, integrat-
ing DSM with an additional data such as 2D cadaster maps and
optical image data has been shown to be helpful (Vosselman et al.,
2001, Haala et al., 2007). Moreover, recovering the incomplete
cues is an important post processing step. Data-driven-based re-
construction has been demonstrated to provide promising results
by extracting cues from either DSM data or the integration of
DSM and optical Earth Observation (EO) image data (Haala et
al., 2007). This method then reconstructs the 3D building models
based on various conditions such as closeness, symmetry, and or-
thogonality between the cues. Most of the previously introduced
data-driven reconstruction methods use DSM obtained from Li-
DAR data (Sohn et al., 2008, Tarsha-Kurdi et al., 2008). This
data is usually dense with high signal to noise ratio. However,
there are other sources of DSM data obtained, for example, by
stereo matching of satellite images which suffer noise and arti-
facts. The existing noise makes discovering meaningful patterns,
based on the information from the neighboring points, very dif-
ficult. For example, in some regions, the slopes of neighboring
points in the same roof plane are significantly different. Figure 1
shows an example of this data, where (b) is the DSM of a sample
scene of Munich city ' represented in (a), which is generated us-
ing Semi-Global Matching (SGM) method (Hirschmuller, 2008,
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Figure 1: DSM of a sample scene of city Munich and the pro-
files of some building roofs for better interpretation of the DSM
precision.

d’ Angelo et al., 2008) from DigitalGlobes’ WorldView-2 data. In
order to better representation of the DSM data, profiles of three
regions (as depicted in the DSM image) are taken and shown in
(c), (d), and (e). In these images the green lines are the origi-
nal roof planes, where the representation of the planes by DSM
data is demonstrated by red. According to the results, DSM pro-
vides noisy representations of the roof planes. Previous results
in deriving building outlines and ridge lines have demonstrated
the potential for using these data to extract single buildings but
they still exhibit several shortcomings due to the low quality of
the DSM data (Sirmacek et al., 2012, Arefi and Reinartz, 2013,
Partovi et al., 2013).

In this work, we introduce a new method which uses optical
EO image data for cue discovery. This reduces the dependen-
cies of the reconstruction techniques on DSM data. The pro-
posed method clusters various local features of an optical EO
image (e.g., pixel intensities, texture, geometrical structures) ex-
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tracted by various feature extraction techniques such as Intensity
Histogram (IntHist), Weber Local Descriptor (WLD) (Chen et
al., 2010), and Scale Invariant Feature Transform (SIFT) (Lowe,
1999). In previous works, finding the relations between various
segments of an optical EO image has been performed usually
based on the height information, proximity of the points, locally
planar areas, and normal vectors obtained from the DSM (Vos-
selman et al., 2004). However, our clustering-based method al-
lows integrating similar information over the entire scene using
the local features extracted from an optical image. In our experi-
ments, we use merely orthorectified panchromatic images. These
images exhibit high spatial resolution and precise 2D geometry
information. Experimental results show that various clusters not
only discriminate building roofs from other image parts but also
distinguish different roof types (e.g., pitched, flat). Determin-
ing roof types helps building reconstruction methods to concen-
trate on proper areas in finding specific cues. For example, they
look for roof ridge lines only in the areas which are recognized as
pitched roofs. This not only reduces the search and computation
effort, but also reduces the rate of failure in detecting cues. More-
over, our experiments show that the proposed method is able to
discriminate the building boundaries from the nearby clutter. This
can help to refine the building masks, used to discriminate build-
ings from the reset of a scene, for building boundary regions. The
performance of the proposed method is then assessed both qual-
itatively and quantitatively by comparing to a ground truth data.
Results show that the method can effectively refine the building
masks. Furthermore, it is able to recognize the pitched and flat
roofs to a large extent.

Rest of the paper is organized as the following. Section 2 in-
troduces k-means clustering. In section 3, the methodologies for
refining building masks and determining roof types are explained.
Section 4 provides the experimental results and discussions. Fi-
nally, Section 5 concludes the paper.

2 K-MEANS CLUSTERING

Clustering is one of the main used methods for explorative data
analysis in vast variety of applications such as machine learning,
pattern recognition, and information retrieval. The main goal of
clustering is to divide a set of points X = {z1,z2,..., 25} into
several groups in such a way that similar points are grouped in
the same cluster.

K-means is one of the most popular clustering method in data
mining. It aims to partition a given set of points into k (k < n)
clusters S = {s1, s2, ..., Sn } by assigning each point to the clus-
ter with the nearest mean and minimizing the squared distances
between the points and the means, for all the k clusters,

k
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where u; is the euclidean mean of the cluster s;. Since in k-
means the minimization is an NP-hard problem, heuristic algo-
rithms such as iterative refinement technique (MacKay, 2003) are
commonly employed to find a local optimum. Iterative refine-
ment technique alternates between assignment and update steps.
In each iteration ¢, in the assignment step, each point is assigned
to the cluster with the smallest squared euclidean distance mean,
as the following,
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Figure 2: High resolution Pan-chromatic image /

Considering the point assignments, in the update step, new means
are computed for the clusters as follows,

@+ 1
= 2 @

The convergence is occurred when there is no more change in the
assignments.

3 METHODOLOGY

In this section, refining the building masks and distinguishing the
roof types in merely orthorectified panchromatic images using k-
means clustering is explained. In order to process an image, it is
described, first by a set of its important and descriptive features
from various aspects such as pixel intensities, texture, geomet-
rical structures. To this end, various feature extraction methods
(e.g., IntHist, WLD, SIFT) are applied to every pixel of the im-
age. Then k-means is applied to the extracted feature vectors.
The idea is that clustering integrates information from the entire
image to group similar regions together.

3.1 Building mask refinement

In satellite image analysis, based on applications, an image can be
decomposed into foreground and background. In roof modeling,
for example, the focused objects are the buildings. Therefore,
discriminating the buildings from background components such
as shadows and vegetations, so-called building mask generation,
is usually performed before extracting the roof components. To
create a mask, first, the ground level objects are discriminated
from the higher level ones by computing the normalized Dig-
ital Surface Model (nDSM) according to (Weidner and Foerst-
ner, 1995). Then the buildings are extracted from the surround-
ing patterns and clutter by applying Advanced Rule-based Fuzzy
Spectral Classification to the image followed by height thresh-
olding (Krauss et al., 2012). The obtained mask usually provides
rough building boundaries. Moreover, usually some patterns and
objects such as shadows and trees are considered as building ele-
ments due to their similar characteristics or heights.

In this paper, we perform morphological filtering coupled with
clustering to refine the masks generated by aforementioned method.
Figure 3 shows the refinement procedure of the mask M (Fig-
ure 3 (a)), generated for the high resolution Pan-chromatic image
1, Figure 2. In this procedure, first, a morphological opening,
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(e) Refined mask Mg

(f) Comparing M and Mp

Figure 3: Refining the mask M for the high resolution image 1
by employing morphological filtering and clustering. The refined
mask Mg represents finer details of the building boundaries.

using the disc shape structure element S with a sufficient large
radius is applied to the mask M to remove small particles from
the foreground, M = M o S. Figure 3 (b) indicates that opening
provides a more clear representation of the building boundaries;
however, the resulting building edges are usually uncertain due
to lack of high resolution information during opening. More-
over, applying the structure element causes coarse edges which
increases the uncertainty. In order to smooth down the edges and
to decrease the uncertainty by using detailed information derived
from the Pan-chromatic data, in the next step, a clustering method
(e.g., k-means) is applied to the image I for the building areas.
To this end, the pixel intensity and the geometry features of the
pixels are extracted using IntHist and SIFT methods. K-means is
then employed to cluster the extracted features. While for IntHist
features, clustering represents illumination diversities caused by
changes in the reflection characteristics and angles of the sur-
faces, SIFT clusters depict directions and intensities of various
edges and corners over the structures based on the illumination
gradients. Figure 3 (c) and (d) show the groupings of IntHist and
SIFT features into 10 clusters, respectively. In order to refine
the building mask, the SIFT and the IntHist clusters which rep-
resent the building edges are intersected. More precisely, IntHist
clusters provide precise and fine information about the intensity
change due to the small probe size of the feature descriptors. This
makes IntHist descriptors on the one hand suitable for detecting
the building edges, but on the other hand, sensitive to the illumi-
nation change. For example, some building edges can be faded
in the neighboring patterns and clutter such as the building shad-
ows. In order to compensate this problem, SIFT features are used
which are more stable against illumination change due to using
larger probe and gradient information. SIFT clusters can provide

Figure 4: Comparing the boundary depictions of sample regions
of the image I using the given mask M (blue), the filtered mask
M (red), and the refined mask Mg ( ).

coarse information about the edges and their elongations. There-
fore, combining IntHist clusters with SIFT ones allows searching
for the precise building edges in more correct and certain regions.
Then by removing the clusters which by both features determined
as edge regions, the non-building patterns are disconnected from
the building parts as small objects. These particles are then re-
moved by applying connected component thresholding and mor-
phological opening to achieve the final refined mask Mp. Fig-
ure 3 (e) shows the refined mask and Figure 3 (f) demonstrates
the refinement evolution of the building edges from M to Mg,
where the red parts depict the edges before refinement. In or-
der to provide better impression of the mask refinement, the three
masks (M, M, and Mpg) are mapped on sample parts of the im-
age I in Figure 4. As the results show, mask refinement helps to
achieve better localization of the building boundaries.

3.2 Determining building roof types

High resolution satellite images allow us to asses the human made
structures with details. For example, in roof modeling, one can
distinguish different roof types such as flat, hip, and gable based
on their components such as number of planes and roof pitches.
A flat roof, for example, consists of one flat plane while a hip roof
is a composition of three pitched planes.

In this section, we propose a method to distinguish pitched and
flat roofs by applying k-means clustering to the masked Pan-
chromatic images, where the masks are refined according to Sec-
tion 3.1, e.g., the masked image I; is obtained as I,; = I - M.
In order to apply k-means, first descriptive features of the image
are extracted by various methods. In this paper, a combination
of WLD and Histogram of Oriented Gradients (HOG) (Dalal and
Triggs, 2005) feature descriptors is used for recognizing pitched
and flat roofs. Clustering then allows to find representative fea-
tures of each roof type by grouping similar features from en-
tire a scene. While WLD describe images based on their tex-
tural patterns, HOG represent the features related to the direc-
tion and size of the gradients. The two descriptors are then fused
by concatenating the WLD and HOG feature vectors, Fiwrp =
[w1 wa ... ww] and Frog = [h1 he ... hy], which results in
Fwip-Hoc = [w1 w2 ... W h1 ha ... hy]. Among the re-
sulted clusters, the most descriptive ones are then selected man-
vally. Figure 5 shows the areas which by the selected clusters
determined as pitched and flat roof areas. As the results show,
clustering leads to detect representative features of each roof type.
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Figure 6: High resolution Pan-chromatic image J

Image Imagesize  GSD
1 720 x 907 50 cm
J 852 x 915 50 cm

Table 1: The specifications of the used image samples of Munich
city, the images’ sizes and Ground Sampling Distance (GSD).

In a next step, a more detailed exploration of pitched roofs can be
performed to discriminate the gable and hip roofs. Determining
the roof types leads to look for a particular component of each
roof type in an appropriate region e.g., ridge lines in pitched roof
areas.

4 RESULTS AND DISCUSSION

The proposed method has been applied to panchromatic images
of DigitalGlobe’s WorldView-2 for two sample regions of Mu-
nich city. Figure 2 and 6 show these samples, while their specifi-
cations are mentioned in Table 1.

4.1 Feature descriptors

In our experiments, we take advantage of four feature extraction
methods, namely IntHist, WLD, SIFT, and HOG. IntHist is a
method to discover the intensity features of images as local vec-
tors of pixel values. The size of each feature vector depends on
the number of neighbors considered by local window around each
pixel, which in our experiment is 25. WLD (Chen et al., 2010)
is a feature descriptor proposed to represent textural patterns of
images. It performs based on Orientation, the gradient orienta-
tion of each pixel x, and Differential Excitation, the intensity of
a pixel x divided by the difference between the intensity of the
pixel x and those of its neighbors. The size of the WLD feature
vectors in our experiments is 144. SIFT (Lowe, 1999) is a method
to extract local geometry-based information of an image such as
edges and corners. The size of each SIFT feature vector is 128.
HOG (Dalal and Triggs, 2005) is a technique proposed to extract
gradient features of a given image by counting occurrences of
gradient orientations in localized portions of the image. Size of
each feature vector is 81 in our experiments.

Figure 7: The original mask (a) and the refined (b) masked using
the proposed method.

4.2 Building mask refinement

In order to evaluate the proposed mask refinement method, it is
applied to high resolution Pan-chromatic images I and J and
their corresponding masks. The original masks and the refined
ones are shown in Figure 3 and 7. As the results show the pro-
posed method not only removes the small patterns which usually
are not part of buildings, but also refines the building edges. In
order to evaluate the accuracies of the masks quantitatively, the
original, filtered, and refined mask are compared to the reference
building outlines (footprints), provided by Munich Department of
Environment and Health, of the buildings according to the perfor-
mance measures introduced in (Sohn et al., 2009). To this end, the
difference between the binary maps of the masks and the footprint
is measured pixel by pixel. The results are then used to compute
four error types, namely True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). In evaluating the
accuracies of the masks the errors are defined as the pixels which
are determined as building by both the mask and footprint (TP),
non-building by both the mask and footprint (TN), building only
by the footprint (FP), and building only by the mask (FN). Using
the computed error types, the correctness and the quality of the
masks are computed as:

___ N@P)
Correctness = N(TP)+ N(FP)’ 4
Quality = N(TP) (5)

N(TP) + N(FP) + N(FN)’

where N (.) denotes the number of pixels which are assigned
to one of the four error types. While Correctness measures the
building detection performance of the masks, Quality provides
an overall performance measure of the masks by considering both
building detection and boundary delineation. Table 2 shows the
Correctness and Quality of the original, filtered, and refined masks
for the images I and J. As the results show for the both images,
morphological filtering does not improve the correctness of the
masks. In other words, the building detection is not improved due
to increasing the uncertainty, especially in building edges, caused
by not using high resolution Pan-chromatic images and the coarse
edges resulted by applying the structure element during morpho-
logical opening. However, using the features extracted from high
resolution Pan-chromatic images lead to decreasing the uncer-
tainty by not only refining the edges but also by removing most of
the small errors at the building edges. Therefore, the refinement
method significantly improves both the correctness and quality of
the masks.

4.3 Detecting pitched and flat roofs

In this section, the proposed method is used to detect pitched and
flat roofs in sample images I and J. In order to describe the im-

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-247-2014 250



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission Il Symposium, 5 — 7 September 2014, Zurich, Switzerland

Figure 5: The ground truth (a), and demonstration of the areas in image I detected as pitched (b) and flat (c) roofs. In the ground truth

pitched and flat roofs are depicted by and , respectively
Image | Performance measure | Original mask (M) | Filtered mask (M ) | Refined mask (Mr)
s Correctness (%) 71.28 71.83 80.81
Quality (%) 63.45 65.12 70.98
J Correctness (%) 71.07 70.86 82.48
Quality (%) 54.72 57.26 62.32

Table 2: Correctness and Quality measures of the original, filtered, and refined masks in detecting the boundaries of the buildings in

images [ and J.

ages, WLD-HOG (explained in Section 3.2) feature descriptors
are performed to extract their descriptive textural and gradient
features. To determine buildings’ roof types, k-means is applied
to the feature descriptors. The representative clusters of each roof
type are then selected manually. In order to make use of knowl-
edge transfers between scenes, the clusters obtained from image
I are used to initialize k-means for image J. Experimental re-
sults show that the clusters which are selected as representatives
of each type in image I mostly represent the type in image J
too. This allows enriching the representative clusters (features)
by learning from various scenes to generalize the learned model
in a future work. Figure 8 shows the ground truth as well as the
detected pitched and flat roof areas in image J. In Figure 8 (b),
for example, the areas in the building mask which have been rec-
ognized to contain pitched roof features are depicted in red. Com-
paring to the ground truth, most of the pitched roofs have been
detected correctly; however, in some regions they are missed due
to either ambiguity of the extracted features (e.g., the roofs slopes
are very small), or occurring new features which have not been
seen in the previous experiment (clustering is initialized by the
clusters obtained from image ).

In order to assess the performance of the proposed method in
detecting roof types quantitatively, the Quality measure (Equa-
tion 5) is used, where the detected areas are compared to the
ground truth. The four error types are then derived, for exam-
pled for the pitched roof detection, by counting the number of
pitched building blocks which are correctly distinguished (TP),
the non-pitched blocks which are detected to be pitched (FP), and
the pitched blocks which are not detected (FN). Table 3 shows
the quantitative performance assessment of the proposed method.
According to the results, the proposed method detected the roof
types correctly in both sample images to a large extent. More-
over, the higher performance in detecting pitched roofs shows the
higher ability of the used feature descriptors in extracting repre-
sentative features of the pitched roofs. The detected areas can
further be used by building reconstruction methods to look for
relevant cues in appropriate regions. This not only decrease the
search and computation effort, but also decrease the failure in

Image | Pitched roofs | Flat roofs
1 92 62
J 83 79

Table 3: The Quality measure (%) of the clustering method in
categorizing the buildings into pitched and flat roofs for images /
and J.

finding detail components. For example, systems can discard flat
roof areas when they search for roofs’ ridge lines.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a clustering-based method for cue dis-
covery from Pan-chromatic satellite images to reduce the depen-
dencies of the building reconstruction techniques on DSM data.
The proposed method clusters various local features of the im-
ages to find the representative features by integrate similar infor-
mation over the entire scene. Experimental result show that the
proposed method is able to refine building masks by discriminat-
ing building boundaries from nearby clutter. Moreover, it is able
to determine roof types (e.g., pitched, flat) by detecting represen-
tative features of each roof type. This reduces the search effort
and failure of building reconstruction methods in finding a par-
ticular cue by leading them to search in appropriate regions.

Since the performance of this method is highly depends on the
feature descriptors, in a future work, one can assess other fea-
ture extraction techniques in discovery of representative features.
Moreover, other unsupervised and semi-supervised learning sys-
tems can be used to integrate the local information of the images.
Furthermore, using more diverse image samples allows general-
izing the learned models for both mask refinement and roof type
detection.
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Figure 8: The ground truth (a), and demonstration of the areas in image J detected as pitched (b) and flat (c) roofs. In the ground truth

pitched and flat roofs are depicted by and
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