
GENERATING ORIENTED POINTSETS FROM REDUNDANT DEPTH MAPS USING
RESTRICTED QUADTREES

M. Rothermel∗, N. Haala, D. Fritsch

Institute for Photogrammetry, University Stuttgart, Germany - forename.lastname@ifp.uni-stuttgart.de

KEY WORDS: Matching, Surface, Three-dimensional, Point Cloud, Fusion, Triangulation

ABSTRACT:

In this article we present an algorithm for the fusion of depth images derived by dense image matching (DIM). One key idea of our
algorithm is to generate a 2D triangulation for each available depth map in the image sequence using a restricted quadtrees (RQT). On
the one hand this guaranteesmatching triangulations, on the other hand this creates the possibility to reduce points in the noise range
not contributing to the geometry in a controlled manner. By vertex decimation computational efforts in subsequent processing steps
are eased. In order to reduce IO overhead, the algorithm is designed in an iterative way: an initial triangulation is lifted to 3D space
and, if pixel footprints are comparable, updated using depths of the subsequent map in the sequence. Previously not observed surface
regions or surface patches observed only with adverse precision are removed from the existing model and updated by more appropriate
triangulations. Thereby differences in scale across depthmaps are handled which is particularly important to preserve details and
obtain surfaces with the best reconstruction geometry. To remove outliers visibility constraints are forced. The input is overlapping
depth images and their poses in space, the output are point coordinates representing the surface, their respective normals and to some
degree spatial neighbourhood information of points represented as a non-watertight mesh. The performance of the algorithm will be
evaluated on a close range and a oblique aerial dataset.

1. INTRODUCTION

Image based surface reconstruction has been a vivid research area
in the last decades. Advances in both sensors and algorithmsen-
able reconstruction of high quality point clouds providingdepth
information for almost every pixel at accuracies up to ground
sampling distance (GSD) level (Haala and Rothermel, 2012).To
guarantee completeness, robustness and precision, image sets for
the purpose of 3D reconstruction are typically collected with high
redundancy (high image overlap). Particularly the class ofim-
age based multi-view reconstruction systems (MVS) (Seitz et al.,
2006) which generate one or more depth maps per frame face one
problem: spatial information of the same surface point is recon-
structed multiple times within the image sequence, which leads
to a significant amount of redundant observations varying inpre-
cision and reliability. The reason for variances in reconstruction
quality of depths across stereo models are manifold and comprise

• Differences in image scale

• Differences in the number of observations available across
the views used for depth reconstruction at image matching /
forward intersection stage

• Differences in ray intersection angels across views

• Matching errors due to image blur, fronto parallel effects,
pixel locking effects, etc.

To reduce data, removing erroneous depths and exploit redun-
dancy an adequate fusion strategy is required. Based on the cleansed
data subsequent meshing algorithms can be applied.

Some MVS systems avoid the depth map fusion step by link-
ing surface points directly at the matching stage. Beside the ex-
pandability of the integration step these algorithms take advan-
tage of multi-photo consistency measures. Starting with a sparse
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set of points, PMVS (Furukawa and Ponce, 2010) optimizes posi-
tion and normals of surface patches based on multi-photo consis-
tency. Iteratively the surface is grown by propagating patches to
proximate regions. If no foreground / background information is
available, the final oriented point sets are meshed using Poisson
Reconstruction (Kazhdan and Hoppe, 2013) followed by a re-
finement step evaluating photo consistency of each mesh vertex.
Starting with an even more coarse mesh produced by Delaunay
triangulation of SIFT (Lowe, 1999) feature points the approach
proposed by (Hiep et al., 2009) grow / reconstruct detailed sur-
face using variational optimization of a global cost function based
on multi-view consistency measures.

The class of MVSs we are focusing on is based on stereo match-
ing producing depth maps for each stereo model which conse-
quently have to be merged. An example of a stereo algorithm
which gained popularity in recent years is the Semi-Global Match-
ing method (SGM) proposed by (Hirschmüller, 2008). Due to its
high robustness regarding parametrization, limited hardware re-
quirements and moderate computation times it is often the tech-
nique of choice for real world applications, such as automotive
driver assistance systems (Hermann and Klette, 2012) or thegen-
eration of digital elevation or city models (Rothermel et al., 2014).
SGM is a stereo method solving the correspondence problem for
an image pair, ideally leading to one 3D coordinate or depth per
pixel. For high redundant image sets proximate stereo pairsover-
lap which results in a tremendous amount of (redundant) points.
Depth maps used by the method presented in this article were
generated using a coarse-to-fine adoption of SGM (Rothermel
et al., 2012). Besides reducing memory load and computational
costs an approach for the fusion of stereo pairs corresponding to
the same reference image is implemented. This fusion is based
on geometric consistency of depth estimations and produceshigh
quality depth maps for image sets which provide sufficient ac-
curate orientations. Assuming 2.5D structure of reconstructed
surfaces, depth estimations can be fused using orthographic pro-
jection onto a plane, rasterization and cell-wise filteringwhich
results in one height value per cell. Thereby the number of points
can be reduced significantly whereas redundancy is exploited to
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eliminate outliers and increase accuracy. While 2.5D assumption
is sufficient for airborne nadir scenarios, applications like oblique
aerial images in urban areas or terrestrial data collectionrequire
more general approaches. In this article we want to address the
problem of depth map fusion capable of preserving real 3D infor-
mation. Apart from the computation of reliable point coordinates
also the computation of robust normals is also of interest, since
the latter can serve as input for subsequent meshing techniques as
Poisson Reconstruction (Kazhdan and Hoppe, 2013).

A purely geometric algorithm for depth map merging was pro-
posed in Polygon Zippering (Turk and Levoy, 1994). The method
generates triangle meshes by simply constructing two facesfrom
four adjacent depth estimations. Suspicious triangles areremoved
by evaluation of the triangle side lengths. After alignmentof
meshes, redundant triangles are removed from the boundaries of
single patches and remainders are connected. However, redun-
dancy is not exploited and visibility constraints are not imple-
mented. Perhaps most similar to our approach is a method pre-
sented for the fusion of noisy depth maps (Merrell et al., 2007)
in real-time applications. Proximate depths maps are rendered in
one reference view. Redundant depths per pixel are checked for
geometric consistency and are filtered using occlusion and confi-
dence checks. After consistent depth estimations are averaged a
mesh is constructed on the depth maps using quadtrees and lifted
to 3D space. In contrast, we emphasize image scale within our
fusion method and prefer a restricted quadtree for meshing.

Region quadtrees are data structures spatially separating2D space.
Starting from an initial quad (node), each quad is recursively split
into four sub-quads (sub-nodes) until a certain level is reached or
each node satisfies a specific criteria. Quadtree triangulations of
2.5D elevation data was covered in multiple works, mainly inthe
field of computer graphics, for regular and irregular data points,
see (Sivan and Samet, 1992), (Pajarola et al., 2002) and (Pajarola,
2002) for an excellent overview. In (Pajarola, 1998) a special
type of this structure, a restricted quadtree (RQT), was used for
the triangulation of digital elevation data for the purposeof ter-
rain visualization. The idea is to build a RQT on regular 2.5D
height data raster from which then a simplified triangulation can
be derived. One of the key properties of RQTs is the option to
extract matching triangulations from regular grids, meaning that
resultant surfaces represented as triangle meshes are crack-free.
Moreover, vertices of such triangulations are guaranteed to fulfill
specific error criteria, or in other words, allow to discard vertices
(linked to depth estimations) satisfying this criteria. Weexploit
this property to discard depth estimations not contributing to the
geometry at an early stage of the fusion process.

A large portion of depth map fusion builds up on volumetric range
integration of depth maps (VRIP) (Curless and Levoy, 1996).
Typically a signed distance field is computed on a (multi-level)
octree structure by projection of depth estimations from which
then a triangulation can be derived for example using the March-
ing Cube algorithm (Lorensen and Cline, 1987). In a similar
way (Zach et al., 2007) and (Zach, 2008) reconstruct a zero level
set in voxel space. Then a surface is extracted by minimizing
a global energy functional based on the TV-L1 norm, claiming
smoothness and small differences to the zero level set. Although
giving impressive results, the computational effort and memory
demands are significant. Moreover, depth samples across views
possessing different scales is challenging for VRIP approaches.
One example addressing this issue is the scale space representa-
tion presented in (Fuhrmann and Goesele, 2011). They build a
multi-level octree holding vertices at different scales. Triangles
from the depth maps are inserted according to their pixel foot-
print. This way a hierarchical signed distance field is generated.

For iso-surface extraction the most detailed surface representa-
tion is preferred.

Our approach can be divided into two stages: Depth map filtering
and the actual fusion step. First, in order to remove outliers, depth
maps are filtered based on the local density of depth estimations.
In the fusion step a RQT is used to extract a matching triangu-
lation of an initial depth map. The error criteria is formulated
using local pixel footprints as a measure of precision. If a spe-
cific depth value is assumed to be located in the noise band it is
not considered for further processing. The compressed sub mesh
is then lifted to 3D space and builds the initial part of the model
state. Iteratively the model is projected to the next depth map us-
ing depth buffering as well as frustum- and backface culling. If
the pixel footprints (the image scale) of existing verticesand map
values are comparable the existing surface points are refined. If
the scale differs, the most accurate surface representation is cho-
sen. Surface patches not contained by the model are triangulated
and added. Note that this is a purely geometric approach although
regularization was applied during DIM process.

2. METHODOLOGY

In this chapter we describe the single steps performed to extract
oriented point sets from a set of oriented depth maps. Each avail-
able map is initially filtered to remove obvious errors introduced
by the DIM process. This is discussed in section 2.1. In section
2.2 properties of RQT and extraction of matching triangulation
from depth maps using an error criteria based on the pixel foot-
print is explained. In section 2.3 we describe the iterativefusion
of depth maps and triangulations to get the final set of oriented
points.

2.1 Filtering of Depth Maps

Prior to the actual meshing process the single depth images are fil-
tered in order to remove spurious depth values. Although multi-
view approaches may result in rather clean point clouds not all
erroneous elements can be detected based on the evaluation of
geometric and/or radiometric consistency across multipleviews.
One major problem, for example, are regions of object borders
in combination with low-textured background (see the red cir-
cle in 1). In these parts pixel consistency measures are not dis-
tinctive and depth estimation is mainly powered by smoothness
constraints. As a result edges are over-matched what cannotbe
reliably detected by consistency constraints across the images.
These erroneous depths are typically represented by small-sized
pixel patches. In order to filter these elements we compute the
connectivity of each pixel within its local neighbourhood.This
measure will be referred to as support in the following text.In-
spired by the path-wise accumulation process of SGM, for each
pixel x(x, y) the support is computed by the evaluation of con-
sistency with its proximate pixels along 16 image paths.

S(x(x, y)) =

16
∑

i=1

si(x(x, y)) (1)

The pixel-wise support values are computed evaluating subse-
quent pixelsxn,xn+1 along a pathi as

si(x) =
∞
∑

n=0

T (xn, xn+1) (2)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-281-2014 282



Figure 1: Point clouds corresponding to the filtered depth maps
for different thresholdst. Figures in the upper row are detailed
views of the area depicted by the green rectangles. Left:ts = 0;
Middle: ts = 21; Right: ts = 41

therebyn denotes the offset with respect tox along the path di-
rection.T () is a operator evaluating to 0 or 1 according to

T (xn,xn+1) =

{

1 for d(xn), d(xn+1) valid

0 else
(3)

If the final supportS(x(x, y)) is below a certain valuets its depth
will not be considered for further processing. Figure 1 displays
results for different thresholdsts. The red circles mark areas of
erroneous depths due to overmatching. For a threshold ofts = 41
we got overall satisfying point filtering within our tests. We used
this threshold for all of our experiments.

2.2 2.5D Mesh Extraction from Depth Maps using Restricted
Quadtrees

Generally there are two different approaches for the RQT con-
struction. The bottom-up strategy initially starts by defining nodes
on the lowest (full resolution) level. Then, each node is evaluated
based on quadtree and error criteria. The quadtree criterion as-
sures that side lengths of proximate grid cells are the same,the
half or the double. This property allows to obtain matching trian-
gulations. The error condition, typically the approximation error
describes to what extend geometric errors are introduced ifthe
particular node is removed. If these two conditions are met,nodes
are fused and higher level nodes are examined. The major draw
back of this approach is that error conditions can not be guaran-
teed. Although conditions are fulfilled for local evaluations the
errors accumulate over multiple levels.

This drawback can be overcome by a top-down construction strat-
egy. Thereby initially the raster data is represented by a single
node. Nodes are added recursively if error criteria are not ful-
filled. However, compared to the bottom-up methods the imple-
mentation is more sophisticated because when adding a node on
level l also updates on higher levelsl + n might be necessary to
maintain the restricted quadtree structure. An efficient implemen-
tation is given in (Pajarola, 1998) which is based on dependency
graphs. Each node depends on two other nodes from the same
or the next upper level. Recursively, in a top-down manner, all
nodes are checked for error criteria based on their two dependent
nodes and activated if these are fulfilled. If a node is evaluated to
be a part of the triangulation then its dependent nodes and their
dependencies have to be activated too. From the set of finallyac-
tivated nodes a matching triangulation can be extracted. For more
detailed information of implementation the reader is referred to
the original publication.

Figure 2: Visualization of the error criterion, point candidate red,
dependent node points blue. Left: error criteria is not fulfilled,
point candidate is inserted to triangulation. Right: errorcriteria
is fulfilled, point candidate is not inserted to triangulation.

In this work the concept of RQT is applied for constructing meshes
from depth maps generated by multi-view matching systems. The
goal is to extract robust normals from these meshes on noisy
depth estimation whilst preserving as much as possible geometric
information. The RQT approach holds the error criteria for each
node and gives us the option to extract normals in a controlled
manner. For the meshing of elevation data presented in the origi-
nal work approximation errors are computed in object space and
added to the triangulation if larger than a constant threshold ǫ. We
base our dynamic error criterion on the pixel footprint assuming
that precision of depth maps linearly decreases with the depth
(and therefore the GSD). Letn be a node with the depthd(x, y)
and its dependent nodesn1, n2 with d1(x, y) andd2(x, y) re-
spectively. Each depth point is assumed to be measured with an
uncertainty ofǫ = gsd ∗ tq. The noden is inserted to the tri-
angulation if it is not contained by the local noise band which is
defined byd1 ± ǫ1 andd2 ± ǫ2 (figure 2). Hence, a depth value
is considered to contribute to the geometry if

d− ǫ >
(d1 + d2 + ǫ1 + ǫ2)

2
or

d + ǫ <
(d1 + d2 − ǫ1 − ǫ2)

2

(4)

The pixel footprints are approximated by projecting the pixel
pitch onto the fronto-parallel plane at depthd, d1, d2. Within the
mesh generation step we discard triangles made up by vertices
varying by more than six times the local pixel footprint in depth.
Dependent ofǫ the number depth measurements can be reduced
in a controlled way. For an example of the quadtree structuresee
figure 3. Note that vertices not representing actual structure but
local noise can be removed.

2.3 Model Fusion

In this section we discuss how we fuse estimations of all avail-
able filtered maps to generate a non-redundant point set and the
respective normals indicating the surface orientation. Our over-
all modelM(i) at the iteration stepi is represented as a set ofi
sub-modelsSi. Each sub model contains vertices and respective
faces of one depth mapDi. To update the model by a depth map
Di we iteratively perform the following four steps:

1. Generate virtual vertex imageVi and virtual face imageFi

by projecting vertices and faces of all sub modelsSi for
i ∈ [0, i− 1]

2. Fusion of vertices contained in the depth mapDi and the
model vertices stored in imageVi.

3. Invalidation of obsolete vertices and faces in the models
Si. Invalidation of obsolete depth estimates inDi using the
faces stored inFi.
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Figure 3: Meshes generated by quadtree approach in dependence
of ǫ. Upper: Uncompressed triangulation forǫ = 0. Middle:
RQT triangulation withǫ = 1.2. Lower: Overlay of shaded sur-
facesǫ = 0 (green) andǫ = 1.2 (orange)

4. RQT meshing ofDi and insertion toM

For the generation ofVi we skim all the models contained byM
and project them to a virtual view corresponding to the depthim-
ageDi. Thereby we use backface and frustum culling as well
as z-buffering. If a vertex is successfully projected, its pointer is
stored toVi. This way pointers to all vertices observable from
the ith frame are stored. With the same intention, all faces of M
are projected to the virtual imageFi. This way a set of adjoin-
ing faces for each vertex ofVi is derived. Since each vertex can
touch a maximum of nine facesFi has to be designed as a three
dimensional data structure. The virtual face image is laterused to
invalidate redundant or obsolete depth estimations inDi.

Once the virtual views are generated, the depth estimationsdi(x, y)
in the current depth imageDi are fused with depthsdm(x, y) im-
plied by the model verticesvi(x, y) stored inVi. If for the same
coordinates(x, y) only one of the depthsdi or dm is available
no fusion is carried out. Otherwise the depths are checked for
geometric consistency. We evaluate consistency by means ofthe
local pixel footprintspi of depth image pixel andpm the footprint
of the model depth. Depending on the factortc we consider the
two candidates to be consistent if

|(di − dm)| < (pi + pm)tc. (5)

In this case a counter expressing the reliability of an vertex is in-
creased. If equation 5 is not fulfilled the visibility is verified. In

the physically impossible case that the depth candidatedi is lo-
cated behind the model vertex,di is invalidated and the reliability
of the vertexvi is decremented. If the reliability is equal to zero
the vertex is marked to be removed from the model. On the other
hand, ifdi is in front of the model plane we keep the old model
vertex and mark the new depth to be part of the new triangulation.

In case of geometric consistency we update the model differen-
tiating two cases. Paying respect to scale differences we again
evaluate the local footprintspi anpm. If the scale is comparable,
the vertex coordinates are projected to the depth map and a depth
is bilinearly interpolated. The model vertex coordinates are up-
dated taking into account the number of detections and footprints.
Given that scale differences are more significant the surface point
providing the smallest resolution is kept and the other is invali-
dated.

In the course of the fusion process, all model vertices which
should be removed as well as the values in the depth maps which
should not be considered for triangulation are identified. Subse-
quently, model vertices are erased by scanning the vertex lists in
all sub modelsSi. Moreover, faces based on these obsolete ver-
tices are removed. Invalidated depths in the current depth map
Di are not considered for triangulation. However, in order to
also remove pixels corresponding to faces between the the inval-
idated depths, image areas covered by projected faces have to be
invalidated. ThereforeFi(x, y) at all invalidated depthdi(x)y
are scanned and pixels covered by the triangles are marked in-
valid. Note that this is a rather conservative approach of adding
new depths since image regions of up to nine adjoining triangles
are invalidated per depth.

3. RESULTS

3.1 Close Range Dataset

We use the lion data set ( publicly available at (Jancosek andPa-
jdla, 2008)) to evaluate the proposed algorithm regarding perfor-
mance in presence of scale variances, advanced 3D structureand
occlusions. Depth maps for the 56 images were generated using
SURE (Rothermel et al., 2012). Then the resulting depth images
were fused using two different thresholdsǫ = 1.0 andǫ = 1.2 for
the RQT construction. In our experiments we found these values
to be a good trade off between data reduction and preservation
of geometry. Moderate changes ofǫ effect point density signif-
icantly. The number of original depths estimations was reduced
from 62.9 million to 11.7 and5.7 million points respectively. As
expected, the number of points for largerǫ is smaller. However, as
can be seen in figure 4, rather complete surfaces can be obtained.
As shown in figure 6 for water tight Poisson reconstructions us-
ing an octree level of11, the visual appearance is rather similar.
The surface in large parts possesses the same noise levels and the
similar amount of detail. Obtained reconstructions are notcon-
sistent in some parts, meaning triangles are overlapping orare
located in front of each other. This is mainly due to the fusion
of depths representing slanted surfaces. To avoid this, we plan
to incorporate the available normal information in future.Figure
5 depicts the color coded normals of the resulting points. Except
for few outliers, extracted normals are extracted reliably, which is
particularly important for the subsequent extraction of water tight
surfaces.

3.2 Oblique Airborne Dataset

Within a second test the algorithm was tested on 24 mid-format
images collected using a RCD30 Oblique Penta camera. The av-
erage pixel footprint ranges from 6cm to 13cm. The frames
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(a) (b)

Figure 4: Resulting oriented points of the lion data set. (a): RQT error thresholdǫ = 1.0. (b): RQT error thresholdǫ = 1.2

(a) (b)

Figure 5: Resulting color coded normals of the lion data set.(a): RQT error thresholdǫ = 1.0. (b): RQT error thresholdǫ = 1.2

(a) (b)

Figure 6: Poison reconstructions based on our oriented point sets. (a): RQT error thresholdǫ = 1.0. (b): RQT error thresholdǫ = 1.2
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possess four different viewing directions and form a sub-set of the
benchmark data for matching oblique aerial imagery presented in
(Cavegn et al., 2014). The 3D structure is not as sophisticated as
for the dataset discussed before. Nevertheless, redundancy is lim-
ited, particularly for the facades. Furthermore the amountof data
is significant. The typical problem of processing oblique data, the
variance in image scale and therefore inhomogeneous precisions
throughout the point cloud, is well handled by our approach.Fig-
ure 7 depicts extracted mesh patches. As before, reconstructions
are complete, but some faces are not consistent. Normals arere-
liably computed and are, along with the point coordinates, suffi-
cient for Poisson reconstruction (figure 8). Thereby in contrast to
typical 2.5D datasets 3D structures as balconies and streets below
bridges are successfully reconstructed.

Figure 7: Mesh patches generated from oblique airborne imagery.
RQT error thresholdǫ = 2.4

4. CONCLUSION

In this article we presented an algorithm iteratively merging depth
maps derived by DIM. Thereby the model state is represented as
a set of oriented points and faces. The current model state isup-
dated by either supplementing new surface patches by RQT tri-
angulations of the depth maps or refining existing patches. If the
pixel footprints of model entities and candidates from the depth
maps largely vary, only the samples corresponding to the higher
resolution are considered. Sampling distance of depth mapsis
dynamically controlled using a RQT. Moreover, visibility con-
straints are implemented aiming at removing outliers. We tested
the approach on an aerial oblique and a close range dataset. For
both, the number of original points were reduced by up to90%
percent. Normals were computed reliably and outliers were re-
moved such that subsequent Poisson reconstructions gave satisfy-
ing results. For our test dataset increased sampling rates resulted
in a vertex reduction of factor 2 while giving comparable results.
This is because spatially proximate samples not contributing to
the geometry are excluded from further processing by the RQT
triangulation. However, the property of matching triangulations
is not maintained.
So far normals only serve as input for the extraction of water-
tight meshes. In future work we plan to incorporate the surface
normals into the fusion process to further improve precision, in-
crease consistency of faces and eliminate depth estimations de-
tected on slanted surfaces. Other issues we want to address is
parallelization of codes and the capability of processing image
tiles. This would allow for processing large frame imagery in a
more efficient way enabling airborne applications at even larger
scales.
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