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ABSTRACT:

In this article we present an algorithm for the fusion of dielphages derived by dense image matching (DIM). One key ideaio
algorithm is to generate a 2D triangulation for each avélaepth map in the image sequence using a restricted qeadR&T). On
the one hand this guarantematching triangulations, on the other hand this creates the possibility to reducetpdi the noise range
not contributing to the geometry in a controlled manner. Bytex decimation computational efforts in subsequentgssiog steps
are eased. In order to reduce IO overhead, the algorithmsigried in an iterative way: an initial triangulation is ¢ift to 3D space
and, if pixel footprints are comparable, updated using ltepf the subsequent map in the sequence. Previously natvedssurface
regions or surface patches observed only with adversesimacire removed from the existing model and updated by nppeogriate
triangulations. Thereby differences in scale across depths are handled which is particularly important to presefstails and
obtain surfaces with the best reconstruction geometry.efore outliers visibility constraints are forced. The ihjguoverlapping
depth images and their poses in space, the output are pairtinates representing the surface, their respective alsrand to some
degree spatial neighbourhood information of points represd as a non-watertight mesh. The performance of theitdgowill be
evaluated on a close range and a oblique aerial dataset.

1. INTRODUCTION set of points, PMVS (Furukawa and Ponce, 2010) optimizeis pos
tion and normals of surface patches based on multi-photsigon

Image based surface reconstruction has been a vivid résm@a  tency. Iteratively the surface is grown by propagating ipascto
in the last decades. Advances in both sensors and algoréhms proximate regions. If no foreground / background informatis
able reconstruction of high quality point clouds providuhgpth  available, the final oriented point sets are meshed usingsBoi
information for almost every pixel at accuracies up to goun Reconstruction (Kazhdan and Hoppe, 2013) followed by a re-
sampling distance (GSD) level (Haala and Rothermel, 20I&). finement step evaluating photo consistency of each mesexvert
guarantee completeness, robustness and precision, imgers  Starting with an even more coarse mesh produced by Delaunay
the purpose of 3D reconstruction are typically collectethwigh  triangulation of SIFT (Lowe, 1999) feature points the agmto
redundancy (high image overlap). Particularly the clasBef  proposed by (Hiep et al., 2009) grow / reconstruct detailed s
age based multi-view reconstruction systems (MVS) (Se¢itd.e  face using variational optimization of a global cost fuontbased
2006) which generate one or more depth maps per frame face om@ multi-view consistency measures.
problem: spatial information of the same surface point t®nre
structed multiple times within the image sequence, whicti$e
to a significant amount of redundant observations varyingéa
cision and reliability. The reason for variances in recargton
quality of depths across stereo models are manifold and isenp

The class of MVSs we are focusing on is based on stereo match-
ing producing depth maps for each stereo model which conse-
quently have to be merged. An example of a stereo algorithm
which gained popularity in recent years is the Semi-Globaid¥i-

ing method (SGM) proposed by (Hirschmdller, 2008). Due$o i

) . high robustness regarding parametrization, limited hardwe-

o Differences in image scale quirements and moderate computation times it is often tttete

o Differences in the number of observations available acros§i9ue of choice for real world applications, such as autoreot
the views used for depth reconstruction at image matching #fiver assistance systems (Hermann and Klette, 2012) gethe
forward intersection stage eratlon of digital elevation or c_|ty models (Rothermel e 2014).

SGM is a stereo method solving the correspondence problem fo
e Differences in ray intersection angels across views an image pair, ideally leading to one 3D coordinate or depth p
) ) pixel. For high redundant image sets proximate stereo paes
* Matching errors due to image blur, fronto parallel effects, |55 \which results in a tremendous amount of (redundant)tgoin
pixel locking effects, etc. Depth maps used by the method presented in this article were
generated using a coarse-to-fine adoption of SGM (Rothermel

To reduce data, removing erroneous depths and exploit reduret al., 2012). Besides reducing memory load and computtion

dancy an adequate fusion strategy is required. Based otetinesed costs an approach for the fusion of stereo pairs correspgrtdi

data subsequent meshing algorithms can be applied. the same reference image is implemented. This fusion isdbase
) . . on geometric consistency of depth estimations and prochigas

Some MVS systems avoid the depth map fusion step by linkgyality depth maps for image sets which provide sufficient ac

ing surface points directly at the matching stage. Besideett  yrate orientations. Assuming 2.5D structure of reconsdi

pandability of the integration step these algorithms takeas- gy rfaces, depth estimations can be fused using orthograpb

tage of multi-photo consistency measures. Starting withe&lS®  jection onto a plane, rasterization and cell-wise filterimigich
*Corresponding author. This is useful to know for commuiicat ~ results in one height value per cell. Thereby the number witpo

with the appropriate person in cases with more than one autho can be reduced significantly whereas redundancy is exgltite

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-281-2014 281



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission Il Symposium, 5 — 7 September 2014, Zurich, Switzerland

eliminate outliers and increase accuracy. While 2.5D aptiom  For iso-surface extraction the most detailed surface septa-
is sufficient for airborne nadir scenarios, applicatioks tiblique  tion is preferred.

aerial images in urban areas or terrestrial data collecggnire
more general approaches. In this article we want to addhess t
problem of depth map fusion capable of preserving real 3Brinf
mation. Apart from the computation of reliable point cooaties
also the computation of robust normals is also of interestes
the latter can serve as input for subsequent meshing tactsap
Poisson Reconstruction (Kazhdan and Hoppe, 2013).

Our approach can be divided into two stages: Depth map fiieri
and the actual fusion step. First, in order to remove outlidepth
maps are filtered based on the local density of depth estinsti

In the fusion step a RQT is used to extract a matching triangu-
lation of an initial depth map. The error criteria is formaid
using local pixel footprints as a measure of precision. Ipe-s
cific depth value is assumed to be located in the noise basd it i
not considered for further processing. The compressed gsh m
is then lifted to 3D space and builds the initial part of thedelo

: L s - state. Iteratively the model is projected to the next depip ons-
four adjacent depth estimations. Suspicious trianglessaneved ing depth buffering as well as frustum- and backface cullitig

by evaluation of the triangle side lengths. After alignmeht the pixel footprints (the image scale) of existing vertiaasl ma|
meshes, redundant triangles are removed from the bousdzrie P P ge sce 9 P
values are comparable the existing surface points are defifie

single patches and remainders are connected. Howeven-reduthe scale differs, the most accurate surface represemiatio-
dancy is not exploited and visibility constraints are noplea ' P

L . en. Surface patches not contained by the model are trizegul
mented. Perhaps most similar to our approach is a method pré— ha .
sented for the fusion of noisy depth maps (Merrell et al., 7200 and added. Note that this is a purely geometric approacbuth

in real-time applications. Proximate depths maps are rexdde regularization was applied during DIM process.

one reference view. Redundant depths per pixel are checked f

geometric consistency and are filtered using occlusion anti-c

dence checks. After consistent depth estimations are gegra 2. METHODOLOGY

mesh is constructed on the depth maps using quadtrees i lif

to 3D space. In contrast, we emphasize image scale within our

fusion method and prefer a restricted quadtree for meshing. In this chapter we describe the single steps performed taaxt
oriented point sets from a set of oriented depth maps. Eaih av

Region quadtrees are data structures spatially sepalddisgace. able map is initially filtered to remove obvious errors ittneed

Starting from an initial quad (node), each quad is reculgisplit by the DIM process. This is discussed in section 2.1. In eecti

into four sub-quads (sub-nodes) until a certain level istied or 2.2 properties of RQT and extraction of matching triandgatat

each node satisfies a specific criteria. Quadtree triangotabf  from depth maps using an error criteria based on the pixet foo

2.5D elevation data was covered in multiple works, mainlthim  print is explained. In section 2.3 we describe the iterdiigon

field of computer graphics, for regular and irregular datengzp  of depth maps and triangulations to get the final set of ceknt

see (Sivan and Samet, 1992), (Pajarola et al., 2002) anar(aj  points.

2002) for an excellent overview. In (Pajarola, 1998) a sgeci

type of this structure, a restricted quadtree (RQT), wasl tige

the triangulation of digital elevation data for the purpogg¢er- 2.1 Filtering of Depth Maps

rain visualization. The idea is to build a RQT on regular 2.5D

height data raster from which then a simplified triangulaiban

be derived. One of the key properties of RQTSs is the option t

extract matching triangulations from regular grids, magrthat

resultant surfaces represented as triangle meshes akefizac

Moreover, vertices of such triangulations are guaranteddlfill

specific error criteria, or in other words, allow to discarttices

(linked to depth estimations) satisfying this criteria. @k ploit

this property to discard depth estimations not contrilgutmthe

geometry at an early stage of the fusion process.

A purely geometric algorithm for depth map merging was pro-
posed in Polygon Zippering (Turk and Levoy, 1994). The métho
generates triangle meshes by simply constructing two fioes

Jrior to the actual meshing process the single depth imagdi-a
tered in order to remove spurious depth values. Althoughimul
view approaches may result in rather clean point clouds kot a
erroneous elements can be detected based on the evaluftion
geometric and/or radiometric consistency across multijgess.
One major problem, for example, are regions of object barder
in combination with low-textured background (see the red ci
cle in 1). In these parts pixel consistency measures areisot d
tinctive and depth estimation is mainly powered by smoatkne

Alarge portion of depth map fusion builds up on volumetriage constraints. As a result edges are over-matched what céenot

integration of depth maps (VRIP) (Curless and Levoy, 1996).reliably detected by consistency_ constraints across tfm_gém
Typically a signed distance field is computed on a (multelpv | N€S€ erroneous depths are typically represented by simatl-
octree structure by projection of depth estimations froniciwh ~ Pixel patches. In order to filter these elements we compuge th
then a triangulation can be derived for example using thechtar connectivity of each pixel within its Ioce_tl nelghbourhoomhls

ing Cube algorithm (Lorensen and Cline, 1987). In a similarmeasure will be referred to as support in the following tdrt.
way (Zach et al., 2007) and (Zach, 2008) reconstruct a zeeb le splred by the path-wise e_tccumulatlon process of SG_-M, foheac
set in voxel space. Then a surface is extracted by minimizing™® X(2,y) the support is computed by the evaluation of con-
a global energy functional based on the TV-L1 norm, claimingSiStency with its proximate pixels along 16 image paths.
smoothness and small differences to the zero level setoidi 16

giving impressiye _r(_esults, the computational effort andrmogy _ S(x(z,y)) = Z&(X(z,y)) 1)
demands are significant. Moreover, depth samples acroas vie
possessing different scales is challenging for VRIP apgres.
One example addressing this issue is the scale space nefarese The pixel-wise support values are computed evaluatingesubs
tion presented in (Fuhrmann and Goesele, 2011). They build guent pixelsx, x, 1 along a path as

multi-level octree holding vertices at different scalesiaiigles -

from the depth maps are inserted according to their pixetfoo , _

print. This way a hierarchical signed distance field is gateet. si(x) = Z T, Xn1) (2)

=1

n=0
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Figure 1: Point clouds corresponding to the filtered deptpsna
for different thresholdg. Figures in the upper row are detailed
views of the area depicted by the green rectangles. Left 0;
Middle: t; = 21; Right: t, = 41

therebyn denotes the offset with respecttoalong the path di-
rection.T'() is a operator evaluating to 0 or 1 according to

1 for
0 ese

d(%n),d(xn+1) valid

T(xn, Xnt1) = { ®)

If the final supportS(x(x, y)) is below a certain valug, its depth
will not be considered for further processing. Figure 1 digp
results for different thresholds. The red circles mark areas of
erroneous depths due to overmatching. For a threshaeld-ef41
we got overall satisfying point filtering within our tests e\Wsed
this threshold for all of our experiments.

2.2 2.5D Mesh Extraction from Depth Mapsusing Restricted
Quadtrees

Generally there are two different approaches for the RQTF con

struction. The bottom-up strategy initially starts by difghnodes
on the lowest (full resolution) level. Then, each node iduaizd
based on quadtree and error criteria. The quadtree critese
sures that side lengths of proximate grid cells are the sémee,
half or the double. This property allows to obtain matchirignt-
gulations. The error condition, typically the approxinoatierror
describes to what extend geometric errors are introducttkif
particular node is removed. If these two conditions are mates

Figure 2: Visualization of the error criterion, point cadiie red,
dependent node points blue. Left: error criteria is not ifetfi
point candidate is inserted to triangulation. Right: ewoteria
is fulfilled, point candidate is not inserted to triangubeati

In this work the concept of RQT is applied for constructingsimes
from depth maps generated by multi-view matching systers. T
goal is to extract robust normals from these meshes on noisy
depth estimation whilst preserving as much as possible ge@m
information. The RQT approach holds the error criteria fache
node and gives us the option to extract normals in a conttolle
manner. For the meshing of elevation data presented in ifie or
nal work approximation errors are computed in object space a
added to the triangulation if larger than a constant thrigshdNe
base our dynamic error criterion on the pixel footprint assg

that precision of depth maps linearly decreases with thehdep
(and therefore the GSD). Letbe a node with the depti(x, y)

and its dependent nodes, na with di(z,y) andda(z,y) re-
spectively. Each depth point is assumed to be measured with a
uncertainty ofe = gsd * t4. The noden is inserted to the tri-
angulation if it is not contained by the local noise band \whig
defined byd; £ ¢; anddz + e (figure 2). Hence, a depth value
is considered to contribute to the geometry if

(di +d2 + €1+ €2) or

2 (@)
(di +d2 — e1 — €2)

2

d—e>

d+e<

The pixel footprints are approximated by projecting theepix
pitch onto the fronto-parallel plane at depthd:, d-. Within the
mesh generation step we discard triangles made up by \&rtice
varying by more than six times the local pixel footprint irptte
Dependent of the number depth measurements can be reduced
in a controlled way. For an example of the quadtree structeee
figure 3. Note that vertices not representing actual stradbut
local noise can be removed.

are fused and higher level nodes are examined. The major draw

back of this approach is that error conditions can not beaguar
teed. Although conditions are fulfilled for local evaluatsothe
errors accumulate over multiple levels.

This drawback can be overcome by a top-down constructiat str
egy. Thereby initially the raster data is represented byglsi
node. Nodes are added recursively if error criteria are ubt f

filled. However, compared to the bottom-up methods the imple ;.05 of one depth map;.

2.3 Mode Fusion

In this section we discuss how we fuse estimations of alllavai
able filtered maps to generate a non-redundant point sethend t
respective normals indicating the surface orientationr &ver-

all model M (i) at the iteration stepis represented as a setiof
sub-modelsS;. Each sub model contains vertices and respective
To update the model by a depth map

mentation is more sophisticated because when adding a mode ¢y iteratively perform the following four steps:

levell also updates on higher levéls- n might be necessary to
maintain the restricted quadtree structure. An efficieqi@men-
tation is given in (Pajarola, 1998) which is based on depecyle

1. Generate virtual vertex imagé and virtual face imagé”’;

graphs. Each node depends on two other nodes from the same py projecting vertices and faces of all sub modslsfor

or the next upper level. Recursively, in a top-down mannir, a

nodes are checked for error criteria based on their two akgren
nodes and activated if these are fulfilled. If a node is evallito

be a part of the triangulation then its dependent nodes aid th

dependencies have to be activated too. From the set of fiaally
tivated nodes a matching triangulation can be extractedmeoe
detailed information of implementation the reader is nefdrto
the original publication.

ief0,i—1]

2. Fusion of vertices contained in the depth miapand the
model vertices stored in imagdg.

3. Invalidation of obsolete vertices and faces in the models
S;. Invalidation of obsolete depth estimates/in using the
faces stored irF;.
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the physically impossible case that the depth candidais lo-
cated behind the model vertek, is invalidated and the reliability

of the vertexv; is decremented. If the reliability is equal to zero
the vertex is marked to be removed from the model. On the other
hand, ifd; is in front of the model plane we keep the old model
vertex and mark the new depth to be part of the new triangulati

In case of geometric consistency we update the model differe
tiating two cases. Paying respect to scale differences @@ ag
evaluate the local footprings; anp.,,. If the scale is comparable,
the vertex coordinates are projected to the depth map anpth de
is bilinearly interpolated. The model vertex coordinates @p-
dated taking into account the number of detections and fim¢p
Given that scale differences are more significant the sef@mnt
providing the smallest resolution is kept and the other valin
dated.

In the course of the fusion process, all model vertices which
should be removed as well as the values in the depth maps which
should not be considered for triangulation are identifieabs®-
quently, model vertices are erased by scanning the vedesifi

all sub modelsS;. Moreover, faces based on these obsolete ver-
tices are removed. Invalidated depths in the current degth m
D; are not considered for triangulation. However, in order to
also remove pixels corresponding to faces between the ¥hé in
idated depths, image areas covered by projected facesdaee t
invalidated. Thereforé”;(x,y) at all invalidated depthl; (z)y

are scanned and pixels covered by the triangles are marked in
valid. Note that this is a rather conservative approach dfrad
new depths since image regions of up to nine adjoining tténg
are invalidated per depth.

3. RESULTS

Figure 3: Meshes generated by quadtree approach in depender8.1 Close Range Dataset
of e. Upper: Uncompressed triangulation for= 0. Middle: ) _ )
RQT triangulation withe = 1.2. Lower: Overlay of shaded sur- We use the lion data set ( publicly available at (JancosekPand

facese = 0 (green) and = 1.2 (orange) jdla, 2008)) to evaluate the proposed algorithm regardarfop-
mance in presence of scale variances, advanced 3D stractdre
4. RQT meshing of; and insertion ta\/ occlusions. Depth maps for the 56 images were generated usin

SURE (Rothermel et al., 2012). Then the resulting depth @sag
were fused using two different thresholds- 1.0 ande = 1.2 for
the RQT construction. In our experiments we found theseegalu
to be a good trade off between data reduction and presemnvatio
of geometry. Moderate changes «éffect point density signif-
icantly. The number of original depths estimations was cedu
from 62.9 million to 11.7 and5.7 million points respectively. As
expected, the number of points for largés smaller. However, as
can be seen in figure 4, rather complete surfaces can be ethtain
As shown in figure 6 for water tight Poisson reconstructiosis u
ing an octree level of 1, the visual appearance is rather similar.
The surface in large parts possesses the same noise legiélsean
similar amount of detail. Obtained reconstructions areaowi-

Once the virtual views are generated, the depth estimafignsy) sistent in some parts, meaning triangles are overlappingrer
in the current depth imagP; are fused with depths,, (z, ) im- located in front of each other. This is mainly due to the fasio
plied by the model vertices; (x, y) stored inV;. If for the same of depths representing slanted surfaces. To avoid this,lare p
coordinates(z, y) only one of the depths; or d., is available to incorporate the available normal information in futurégure
no fusion is carried out. Otherwise the depths are checked fo° depicts the color coded normals of the resulting pointsefik
geometric consistency. We evaluate consistency by meathe of for few outliers, extracted normals are extracted relialyich is
local pixel footprintsp; of depth image pixel ang,,, the footprint particularly important for the subsequent extraction ofevéight
of the model depth. Depending on the factomwe consider the ~ Surfaces.
tw ndidates t nsistent if . .

0 candidates to be consiste 3.2 ObliqueAirborne Dataset

For the generation df; we skim all the models contained By
and project them to a virtual view corresponding to the dapth
age D;. Thereby we use backface and frustum culling as well
as z-buffering. If a vertex is successfully projected, mper is
stored toV;. This way pointers to all vertices observable from
the ith frame are stored. With the same intention, all fadelfo
are projected to the virtual imag€. This way a set of adjoin-
ing faces for each vertex df; is derived. Since each vertex can
touch a maximum of nine facés has to be designed as a three
dimensional data structure. The virtual face image is lased to
invalidate redundant or obsolete depth estimation8;in

di —dm)| < (pi m ) te. 5 I . .

I )< i+ pm) ®) Within a second test the algorithm was tested on 24 mid-forma
In this case a counter expressing the reliability of an weigén-  images collected using a RCD30 Oblique Penta camera. The av-
creased. If equation 5 is not fulfilled the visibility is viéeid. In  erage pixel footprint ranges from 6cm to 13cm. The frames
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() (b)

Figure 4: Resulting oriented points of the lion data set. RE)T error threshold = 1.0. (b): RQT error threshold = 1.2

(@ (b)

Figure 5: Resulting color coded normals of the lion data(®gt.RQT error threshold = 1.0. (b): RQT error threshold = 1.2

(@) (b)

Figure 6: Poison reconstructions based on our oriented peta. (a): RQT error threshotd= 1.0. (b): RQT error threshold = 1.2
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possess four different viewing directions and form a sutnkthe
benchmark data for matching oblique aerial imagery preskint
(Cavegn et al., 2014). The 3D structure is not as sophisticas
for the dataset discussed before. Nevertheless, redunadimo-
ited, particularly for the facades. Furthermore the amotfidata
is significant. The typical problem of processing obliquiadthe
variance in image scale and therefore inhomogeneous megis
throughout the point cloud, is well handled by our appro&aib-
ure 7 depicts extracted mesh patches. As before, recotistrsic
are complete, but some faces are not consistent. Normate-are
liably computed and are, along with the point coordinataffij-s
cient for Poisson reconstruction (figure 8). Thereby in sttto
typical 2.5D datasets 3D structures as balconies and strektw
bridges are successfully reconstructed.

Figure 7: Mesh patches generated from oblique airborneényag
RQT error threshold = 2.4

4. CONCLUSION

In this article we presented an algorithm iteratively meggiepth
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