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ABSTRACT: 

 

We propose a method for the automatic extraction of fluvial networks in lidar data with the aim to obtain a connected network 

represented by the fluvial channels' skeleton. For that purpose we develop a two-step approach. First, we fit rectangles to the data 

using a stochastic optimization based on a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampler and simulated 

annealing. High gradients on the rectangles' border and non-overlapping areas of the objects are introduced as model in the 

optimization process. In a second step, we determine the principal axes of the rectangles and their intersection points. Based on this a 

network graph is constructed in which nodes represent junction points or end points, respectively, and edges in-between straight line 

segments. We evaluate our method on lidar data with a tidal channel network and show some preliminary results.  

 

 

1. INTRODUCTION 

The automatic extraction of line-networks from images or lidar 

data (e.g. from Digital Terrain Models, DTM) is of great 

interest in various disciplines. For instance, roads in remote 

sensing data represent line-networks. In medical data neurons 

and vessels can be described as network structures. In this 

study, we focus on the extraction of a special type of fluvial 

networks: tidal channels in Wadden Sea areas. Tidal channels 

are very important concerning the morphology of coastal 

waters. They connect salt marshes and mudflats to the sea and, 

thus, enable the daily flow of the water between those zones. 

That is why tidal channels have a great impact on the 

sedimentation and ecology of the flat coastal waters. On the 

other hand, the morphology of the tidal channels is influenced 

by the tides which cause a continuous change of the location, 

shape and topology of the fluvial network. A detailed 

understanding of the characteristic of the tidal channels and its 

change over time is required in order to enable reliable 

predictions, e.g. caused by the rise in sea-level, and thus, to 

contribute to coastal protection and to the preservation of plant 

species in the salt marshes. A main characteristic of the tidal 

channels is their network structure. They often form dendritic 

networks and exhibit a hierarchical structure in such a way that 

two smaller channels typically join to form a larger channel 

(Ashley and Zeff, 1988).  

 

There are only few studies in the literature which aim at the 

automatic extraction of tidal channels from remote sensing data. 

For instance, Fagherazzi et al. (1999) develop a threshold-based 

approach for that purpose. The authors use a DTM as input and 

derive two significant features of the tidal channels in these 

data. On the one hand, they determine the relative heights of the 

raster cells with respect to a reference horizontal plane near the 

mean sea level. On the other hand, they consider the 

topographic concavity and calculate local curvatures in the 

DTM. By combining criteria for both features, nearly 80 % of 

the pixels compared to ground truth data from SPOT images are 

detected as tidal channels. A semi-automatic approach for the 

detection of tidal channels from DTMs is presented by Mason et 

al. (2006). The method is divided into two steps. First, different 

edge detectors are combined for the extraction of channel 

fragments. Then, a knowledge-based approach is implemented 

in order to find parallel edges and derive the skeleton of the 

channels. For that purpose, the direction of each edge and the 

distance of each pixel to the nearest edge are considered. The 

skeleton fragments are linked by determining the optimal path 

considering height criteria. The authors also apply the approach 

to image data and obtain similar results to those achieved using 

lidar data as input data only. The combination of optical and 

lidar data does not improve the results (Lohani et al., 2006).   

 

The methods described so far work locally and extract tidal 

channels based on local criteria. In addition, they do not utilize 

the network characteristic. That is why the extracted channels 

are not necessarily connected in the final result or can only be 

connected in post processing. It is our aim to avoid these 

disadvantages and to develop a global method which is flexible 

for different input data. In this context, stochastic approaches 

like marked point processes look promising. Marked point 

processes (Daley and Vere-Jones, 2003) achieve good results in 

various disciplines. In image analysis they were introduced for 

the extraction of buildings (Lafarge et al., 2008), road networks 

(Chai et al., 2013, Lacoste et al., 2005), vascular trees (Sun et 

al., 2007), road markings (Tournaire et al., 2007) and tree 

crowns (Perrin et al., 2005). The approaches are based on 

Monte Carlo sampling, which enables optimisation of random 

variables whose statistical distributions are known only 

incompletely by approximating the true distribution using a 

sufficiently large number of samples.  

 

In this paper, we apply marked point processes for the 

extraction of a tidal channels network in lidar data. We adapt 

the method of Tournaire et al. (2010) for detecting rectangular 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-297-2014 297



 

building footprints in Digital Surface Models (DSM) to our 

problem with the goal to find the configuration of rectangles 

which optimally fills the area of the fluvial network. The 

marked point process is realised by using a Reversible Jump 

Markov Chain Monte Carlo (RJMCMC) sampler coupled with a 

simulated annealing relaxation. As the extracted rectangles in 

our model usually do not overlap or touch each other, gaps 

typically occur in the result and the tidal network is not 

completely covered by rectangles. Furthermore, the network 

characteristic is not directly used in our approach yet. This is 

why we perform a second step and derive a final graph from the 

rectangles obtained in the first step (Fig. 1).  

 

In the following, we first describe the mathematical foundation 

of the stochastic optimization using marked point processes 

(Section 2). We then present the proposed models for our data 

(Section 3.1) and the construction of a network graph (Section 

3.2). In Section 4, we show some experiments and preliminary 

results on test data of the German Wadden Sea. Finally, 

conclusions and perspectives for future work are presented.  

 

 
 

 
 

Figure 1. Outline of our proposed method: (1) the fitting of 

rectangles to the data by using a sampling process and (2) the 

construction of a network graph.   

 

 

2. THEORETICAL BACKGROUND 

2.1 Marked point process 

In this section we give a brief introduction to marked point 

processes and their application for object detection tasks that is 

based on (Tournaire et al., 2010) and (Chai et al., 2013). For a 

formal definition of marked point processes the reader is 

referred to (Daley and Vere-Jones, 2003). 

 

Informally speaking, a point process is a stochastic model 

describing a random configuration of points in a bounded region 

S (here: a digital image, thus the points xi exist in R2), where the 

number of points is also a random variable. In a Poisson point 

process, the number of points follows a discrete Poisson 

distribution with parameter  (Chai et al., 2013). Given the 

number of objects, the locations are independent and identically 

distributed in S. In a marked point process, a mark mi is added 

to each point, typically a vector of parameters describing an 

object of a certain type that is also a multidimensional random 

variable. If we characterise an object ui = (xi, mi) by its location 

and its parameters, a marked point process can be thought of as 

a stochastic model of configurations of an unknown number of 

such objects in S. In object detection, it is our goal to detect the 

most probable configuration of objects in a scene given the data. 

For that purpose, we need to define the probability density h of 

the marked point process. This can be achieved with respect to a 

reference point process, which is usually defined as a Poisson 

point process. The density function h is usually expressed using 

a Gibbs energy U(.) with           . It can be modelled by 

the sum of a data energy Ud(.) and a prior energy Up(.) as used 

for instance by Mallet et al. (2009):  

 

                                            (1) 

 

The relative influence of both energy terms is modelled by 

       . The data energy Ud(.) measures the consistency of 

the object configuration with the input data. The energy Up(x) 

introduces prior knowledge about the object layout; our models 

for these two energy terms are described in Section 3. The 

optimal configuration              of objects can be 

determined by minimizing the Gibbs energy U(.), i.e.    
          . We estimate the global minimum by coupling a 

RJMCMC sampler and a simulated annealing relaxation.  

 

2.2 Reversible Jump Markov Chain Monte Carlo  

If the number of objects constituting the optimal configuration 

   were known or constant, Markov Chain Monte Carlo 

(MCMC) sampling (Metropolis et al., 1953, Hastings, 1970) 

could be used for its determination. RJMCMC is an extension 

of MCMC that can deal with an unknown number of objects 

(Green, 1995). For that purpose, a Markov Chain (Xt),     is 

simulated in the space of possible configurations. In each 

iteration t, the sampler proposes a change of the current 

configuration from a set of pre-defined types of changes 

accordingly to a density function, each of them associated with 

a density function Qi called kernel. Each kernel Qi is reversible, 

i.e. each change can be reversed applying another type of 

kernel. Following (Tournaire et al., 2010), we integrate three 

different types of change in our approach. First, an object can be 

added to or removed from the current configuration, which is 

accomplished by the birth and death kernels, Qb and Qd, 

respectively. Secondly, the parameters of an object of the 

current configuration can be modified (perturbation kernel Qp). 

A kernel Qi is chosen randomly according to a proposition 

probability     which may depend on the kernel type. The 

configuration Xt is changed according to the kernel Qi, which 

results in a new configuration Xt+1. Subsequently, the Green 

ratio R (Green, 1995) is calculated: 

 

           
            

           
     

             

  
                  

 

In (2), Tt is the temperature of simulated annealing in iteration t 

(cf. Section 2.3). The acceptance rate α of the new configuration 

Xt+1 is computed from R using  

 

                                                                                                
 

Following Metropolis et al. (1953) and Hastings (1970) the new 

configuration Xt+1 is accepted with the probability α and 

rejected with the probability 1-α. The four steps of (1) choosing 

a proposition kernel Qi, (2) building the new configuration Xt+1, 

(3) computing the acceptance rate α, and (4) accepting or 

rejecting the new configuration are repeated until a convergence 

criterion is achieved.  
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2.3 Simulated Annealing 

In order to find the optimum of the energy, the RJMCMC 

sampler is coupled with simulated annealing. For that reason, 

the parameter Tt referred to as temperature (Kirkpatrick et al., 

1983) is introduced in equation 2. The sequence of temperatures 

Tt tends to zero as    . Theoretically, convergence to the 

global optimum is guaranteed for all initial configurations X0 if 

Tt is reduced (“cooled off”) using a logarithmic scheme. In 

practice, a geometrical cooling scheme is generally introduced 

instead. It is faster and usually gives a good solution (Salamon 

et al., 2002; Tournaire et al., 2010).  

 

 

3. METHODOLOGY 

For the extraction of the tidal channel network we developed a 

two-step approach. In the first step, we optimally fit rectangles 

to the data using marked point processes (Section 3.1). Within 

the network each channel is represented by one or more 

rectangles with varying orientation, depending on the local 

direction of the channel. The optimization process minimizes a 

global energy function in the way described in Section 2.  

 

If the model for the energy function describes the object 

configuration well, the tidal network will be almost completely 

covered by rectangles after step 1. However, the rectangles are 

not linked to each other, and there might be gaps between them. 

Thus, a result with a correct network structure is not guaranteed. 

That is why we apply a method for the derivation of a network 

representation in a second step (Section 3.2). For this purpose 

we consider the alignment of the rectangles and determine 

intersection points of the principal axes. The result is a graph 

where the nodes are points derived from the geometry of the 

rectangle configuration and the edges are straight line segments 

connecting these nodes.    

 

3.1 Extraction of the network by sampling rectangles 

We sample rectangles to the data using a RJMCMC sampler and 

simulated annealing as described in Section 2. Our model is 

based on (Tournaire et al., 2010), but it uses a different 

definition of the data energy, as will be pointed out in Section 

3.1.1. In our method, a rectangular object ri is described by ri = 

(xi, mi), where the 2d vector xi describes the position of the 

centre of the rectangle in the image and the mark mi = (vxi, vyi, li) 

describes the shape and orientation of the rectangle by its semi-

major axis (vxi, vyi) and its length ratio , li =  l1i / l2i, where l1i and 

l2i correspond to the short and long side length of the rectangle, 

respectively. In the sampling process rectangles are randomly 

added, removed or perturbed based on the criteria described in 

Section 2.2. Following Tournaire et al. (2010), there are only 

two possible types of perturbations: the first one carries out a 

shift and a change of the aspect ratio by a parallel shift of two 

corners connected by an edge, whereas the second one 

combines a rotation about one corner of the rectangle and a 

scaling. These moves are restricted by minimum and maximum 

values for the parameter of     The birth kernel adds a new 

rectangle to the current configuration, whose parameters are 

sampled from prior distributions for the individual components 

of the mark. The parameter settings in our experiments are 

given in Section 4.3. 

 

3.1.1 Data Energy: The data energy Ud(Xt) (equation 1) checks 

the consistency of the object configuration with the input data. 

Tidal channels are characterized by locally smaller heights and 

have high  gradients  on  each  bank  and  flat gradients between  

 
 

Figure 2. Typical profiles of tidal channels with different size in 

our test site. The digital numbers (DN) of the gray values of the 

DTM correspond to the heights z in the test site (here: DN = 0 

and DN = 255 are equivalent to z = -0.02 m and z = 1.72 m, so 1 

DN corresponds to about 0.007 m).   

 

 

these banks in the areas that may or may not be covered by 

water (depending on the tides). Typical profiles of tidal 

channels in our data are shown in Figure 2. 

 

For the extraction of buildings, Tournaire et al. (2010) proposed 

a data term that enforced building outlines to correspond to 

large height gradients. A similar model can be applied here if 

the DTM (or the sign of the gradient) is inverted, with the 

difference that the absolute height differences are considerably 

lower in our case and that only the edges of the rectangles 

corresponding to the river banks will be determined by that 

model. Nevertheless, we model the data term for each edge of a 

rectangle in a similar way as Tournaire et al. (2010), just 

inverting the signs: 

 

     
    

                

  

 

   

                           

    

In (4), pi
m and pi

m+1 are two consecutive corners of the rectangle 

ri and      

        
   is the component of the gradient of 

the DTM (     
) at pixel k in direction of the normal vector n 

of the edge   
   

              . The normal vector is defined to point 

from the interior of the rectangle to the outside. The gradients 

are weighted by    
  

  
   

                which corresponds to the rate of 

the edge length crossing the pixel k (              ) 

(Fig.3). The data term for one edge of the rectangle is the 

negative weighted sum of the gradient components      

  for 

all pixels k along that edge. Our formulation differs from the 

70 cm 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-297-2014 299



 

one in (Tournaire et al., 2010) by the negative sign in (4). As 

stated above, this is necessary due to the fact that our objects, 

tidal channels, are deeper than the adjacent points in the DTM 

whereas buildings have a higher value in the DSM. The 

complete data energy for a rectangle is determined from 

 

                          
  

 

   

  
      

     

               

 

In equation 5 the constant weight ci is introduced. In (Tournaire 

et al., 2014), it corresponds to a minimum size of the overall 

façade surface for the buildings. In our application it is related 

to the minimum circumference of the rectangle multiplied by a 

small height change along the banks. In our experiments it was 

found out to be useful, though it has a different physical 

interpretation and, consequently, has to be set to a different 

value as in the original application.   

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3. The data term is calculated based on the gradient 

     
 of each pixel k and the normal vector of the rectangle 

edge (the gray rectangle indicates a channel in the DTM).   

 

3.1.2 Prior energy: Prior knowledge is integrated in the model 

by favouring an object configuration in which the objects do not 

overlap. For buildings this assumption is true because they can 

usually be represented by a single rectangle or can be made up 

of continuous or slightly overlapping objects. For the extraction 

of fluvial networks favouring non-overlapping objects makes 

sense, too, in order to avoid the accumulation of objects in 

regions with high data energy. Thus, as in (Tournaire et al., 

2010), we model the prior energy of the configuration Xt by the 

sum of the overlap area a of neighbouring rectangles ri and rj 

 

                                                     

   

                                  

 

Here, the neighbourhood of a rectangle ri is defined by the set of 

rectangles intersecting ri. 

 

3.2 Construction of a network graph 

In a second step, we derive a network graph from the rectangles 

obtained in step 1. For this purpose we consider the alignment 

and the neighbourhood of each rectangle. The graph is 

constructed by introducing different criteria for the linking of 

points derived from the geometry of the rectangles. For each 

rectangle i we consider its centroid xi, its principal axis and the 

intersection points bi
1 and bi

2 of the principal axis with the 

border of the rectangle. Then, the principal axis is extended to 

the image boundaries. In each direction intersection points with 

other rectangles are calculated and the rectangle j with the 

closest intersection point is set as left or right neighbour of the 

current rectangle. In this way, each rectangle obtains one 

neighbour in each direction of the principal axis in case of an 

existing rectangle in this direction. We represent the nodes of 

the final graph by three kinds of points: the intersection points si 

of principal axes of adjacent rectangles, the centroids xi and the 

intersection points of the principal axes with the rectangle 

border bi (Fig. 4). We do not consider all of these points for the 

graph construction, but rather choose points from each rectangle 

in the following way: 

 

 Choose the intersection point with the border bi only if there 

is no adjacent rectangle (Fig 5a).  

 If there are intersections points sij located inside the 

rectangle i and if these intersection points belong to a 

rectangle which is not the left or right neighbour of 

rectangle i, choose them (Fig 5b). 

 Choose all intersection points sij for which rectangle j is the 

right neighbour of rectangle i and i is the left neighbour of j. 

The only constraint is that sij has to be located between both 

rectangles' centroids (Fig. 5c). 

 Choose the centroids xi and xj in case of an existing adjacent 

rectangle and an intersection point sij which is not located 

between both centroids (Fig. 5d).  

 

We also introduce a threshold td for the maximal distance d of 

two rectangles in case of an existing intersection point. If the 

distance between the closest points of the rectangle's border of 

two adjacent rectangles exceeds the threshold, the intersection 

point is not considered in the graph construction. In our 

experiments we set td = 50 m. In the next step the selected 

points are linked by edges based on different criteria: 

 

 Link all points within a rectangle.  

 Link the point which is furthest from the centroid with the 

closest point from the adjacent rectangle.  

 If the intersection point of two adjacent rectangles is outside 

one of the polygons, link the point which is furthest from 

the centroid with the closest point from the adjacent 

rectangle via the intersection point.  

 

 

 
Figure 4. From the geometry of the rectangles different points 

are derived (top) and a final graph is constructed (bottom). 

xi 

sij bi
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2 
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d > td 
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(a) 

 

                                                          (b) 

 

 

 

 

 

 

  (c) 

 

 

 

  

                                                     (d) 

 

 

Figure 5. Different criteria define the choice of the nodes for the 

network graph (points filled in yellow are chosen). 

 

 

4. EXPERIMENTS 

4.1 Test data 

We evaluate our method on lidar data from the German Wadden 

Sea (Fig. 6). The test site is located in the south of the East 

Frisian island Norderney and covers an area of 1.0 km x 1.0 km. 

Many tidal channels of varying size are located in this area. 

Some of them extend over the entire test site with a width up to 

more than 100 m, whereas others exhibit a length of some tens 

of meters and a width in the range of only a few meters. The 

flight campaign took place in spring 2012 using a Riegl LMS-Q 

560 sensor. The heights of the raw lidar point cloud (average 

point density 5.9 points / m²) are interpolated to generate a 

DTM of 1 m grid size. Within the DTM the height difference 

between the lowest and highest points is 1.74 m.  

 

 
 

Figure 6: DTM of the test site in which the tidal channels have a 

low height. Some analyses are performed only for the outlined 

section area 1.   

4.2 Evaluation 

We analyse the applicability of the model of the sampling 

process for our test data and investigate different parameter 

settings. The result is evaluated based on the area of the tidal 

channel network which is covered by rectangles. For that 

purpose, we manually labelled the tidal channel network in the 

DTM in order to obtain reference data. The result of the 

sampling process is evaluated in a pixel-wise comparison with 

the ground truth data. All pixels inside the rectangles are 

considered as network pixels. For the determination of network 

pixels at the rectangle borders we use Bresenham's line 

algorithm (Bresenham, 1965). We calculate the number of 

correctly extracted network pixels (True Positive, TP) and non-

network pixels (True Negative, TN) as well as the number of 

pixels incorrectly labelled as network pixels (False Positve, FP) 

and non-network pixels (False Negatives, FN). We also 

determine the correctness and completeness rate (Heipke et al., 

1997) as well as the quality (Rutzinger et al., 2009) of the 

results. The generated network graph is not evaluated 

quantitatively, at this stage. In the future, it could be evaluated 

by constructing a buffer around the extracted edges and 

determining the length of all reference line segments inside the 

buffer (Grote et al., 2012). 

 

 

4.3 Parameter settings 

In our experiments, we set the parameter β in equation 1 to         

β = 0.1 following Tournaire et al. (2010). The proposal 

probabilities of the kernels are set to    =    = 0.05 and    = 

0.9. Within the perturbation kernel all possible perturbations (cf. 

Section 3.1) are equally likely. The size of a rectangle is 

restricted by the maximum length of the short edge l1i. We set 

this value to 22 m which corresponds to the maximal channel 

width plus a puffer of 5 m in area 1. The initial weight ci in the 

data term (equation 5) and the maximal length ratio li max are 

varied in order to investigate their influence on the results.  

 

 

4.4 Results 

4.4.1 Extraction of the network by sampling rectangles 

 

In the first investigation, we set the maximal length ratio li max = 

1/5 and vary the initial weight ci  in steps of 50 m. The results 

for area 1 after 3.5 million of iterations are shown in table 1. A 

low value of ci means that even structures with low height 

differences and, thus, a low façade surface can be extracted. 

That is why some rectangles are sampled in non-network areas 

and the correctness rate is low. This can be observed e.g. if the 

land surface is very rough and shows high height variations. 

With increasing correctness rate for higher values of ci, the 

completeness rate decreases. For high values of ci only the 

larger channels are extracted. The highest quality rate can be 

obtained for ci = 200 m², the result is shown in Figure 7. In the 

second investigation, we set ci  = 200 m² and vary the maximal 

length ratio li max  by increasing the denominator of the ratio in 

steps of 1 (Table 2). The completeness rate is increasing with 

increasing li max, too. The correctness rate decreases in general. 

The quality achieves is maximum for li max = 1/2. Here, the main 

tidal channel is approximate by short rectangles with are often 

too broad in the right part of the channel (Figure 7). Small, thin 

channels are not extracted with this value.  

We also evaluate our method for the whole test site. Here, the 

parameter discussed above are set to li max = 5 and ci = 250 m², 

the number of iteration is set to 75 million. The computation 

area 1 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-297-2014 301



 

time was 190.1 seconds using the library LIBRJMCM (Brédif et 

al., 2012). Figure 8 (top) shows that the energy decreases and 

converges to a minimum after about 58 million iterations. 

Conversely, the completeness and quality rate increase (Figure 

8, bottom). However, the correctness rate decreases after about 

10 million iterations. We repeat the sampling process various 

times and obtain similar results. This indicates that the sampling 

process achieves the global minimum. However, the decreasing 

rate of correctness indicates that the energy model does not 

perfectly describe our problem and that an extension of the data 

and / or prior term is required. The best quality for the whole 

test site is achieved after 17.4 million iterations (Figure 9). 

Here, the quality is 49.7 % whereas the completeness and 

correctness rates are 60.6 % and 73.4 %, respectively. These 

relatively low accuracies can be mostly explained by the very 

broad channel at the top of the test site. Although we increased 

the parameter for the maximum length of the short edge l1i of a 

rectangle to 34 m, such a broad channel cannot be extracted. 

However, increasing this parameter too large would lead to a 

coarser result where predominantly large channels are detected. 

It can be seen that the strong hierarchy of our network is not 

described with our model yet. Moreover, our evaluation method 

should be refined, too. The tidal channels do not exhibit a 

completely rectangular footprint. Thus, the extracted rectangles 

give only an approximation of them and the evaluation of their 

areas results in False Positives at the rectangles borders 

inevitably. This limitation could be avoided by fitting other 

geometrical objects such as trapezoidal footprints to the data.  

 

 
ci [m²] correctness 

[%] 

completeness 

[%] 

quality 

[%] 

   0 18.7 94.5 18.5 

 50 34.6 85.3 32.6 

100 54.7 80.5 48.3 

150 69.1 79.2 58.5 

200 78.2 77.9 64.0 

250 81.4 69.9 60.2 

300 82.5 65.4 57.4 

350 81.3 66.2 57.5 

400 82.2 63.3 55.7 

450 81.2 63.9 55.7 

500 80.4 58.8 51.5 

 

Table 1. Results for area 1 varying the weight ci  in the data 

term.  

 

 
 

 
 

Figure 7. Results for area 1 with the parameter ci  = 200 m² and 

li max = 1/5 (top) and for ci  = 200 m² and li max = 1/2 (bottom) 

(black = TP, yellow = FP, red = FN, gray = TN). 

li max correctness 

[%] 

completeness 

[%] 

quality 

[%] 

1/2 70.1 62.6 49.4 

1/3 69.8 71.8 54.8 

1/4 77.6 73.0 60.3 

1/5 78.2 77.9 64.0 

1/6 59.7 76.4 50.4 

1/7 82.7 75.8 65.5 

1/8 67.9 76.9 56.5 

1/9 49.5 82.4 44.8 

1/10 50.2 83.4 45.7 

 

Table 2. Results for area 1 varying the maximal length ratio      

li max of the rectangle's edges in the sampling process. 

 

 

 
 

Figure 8. The modelled energy converges for increasing 

iterations (top). The completeness and quality rate increase 

while the correctness rate is decreasing (bottom).  

 

 
 

Figure 9. Result for the whole test site (black = TP, yellow = 

FP, red = FN, gray = TN). 
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4.4.2 Construction of a network graph 

 

From the extracted rectangles a network graph is constructed 

based on criteria offered in Section 3.2. The results are shown in 

Figure 10. For area 1 and the whole test site the edges mostly 

correspond to the skeleton of the tidal channels. All line 

segments are connected or can be connected outside the DTM. 

In the whole test site, an isolated line segments occur on the 

right site due to the parallel major axes to the adjacent 

rectangles and, thus, no intersection point.  

 

 
 

 
 

Figure 10. Constructed network graph for area 1 (ci = 200,        

li max = 7, iterations = 35 million) and the whole test site            

(ci = 250, li max = 5, iterations = 17.4 million) 

 

 

5. CONCLUSION AND OUTLOOK 

In this paper, we presented a method for the automatic 

extraction of tidal channels in a DTM. In a first step, we fit 

rectangles to the data using a sampling method based on marked 

point processes. A network graph is derived afterwards. Our 

results show a proof of concept of our stochastic approach. We 

intend to improve our model in a number of ways. The data 

term has to be extended by a homogeneity criterion of the pixels 

inside the rectangles. In addition, we plan to take into account 

the hierarchical structure of the network, as channels with 

strongly varying width cannot be extracted with the same 

parameter settings yet. The results of the derived network graph 

have shown that the topology of the tidal channel network is not 

always correctly described by our defined criteria. Furthermore, 

the connectivity of all channels is not guaranteed. That is why 

we intend to integrate this characteristic directly in the sampling 

process. In this context, graph based approaches which model 

the network structure in the prior term look promising (e.g. Chai 

et al., 2013). Our data offers additional constraints like a tree 

structure of the network which we want to integrate in our 

model. We also plan to consider the flow direction of the water 

between adjacent objects.  
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