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ABSTRACT:

MAV systems have found increased attention in the photogrammetric community as an (autonomous) image acquisition platform for
accurate 3D reconstruction. For an accurate reconstruction in feasible time, the acquired imagery requires specialized SfM software.
Current systems typically use high-resolution sensors in pre-planned flight missions from far distance. We describe and evaluate a
new SfM pipeline specifically designed for sequential, close-distance, and low-resolution imagery from mobile cameras with relatively
high frame-rate and high overlap. Experiments demonstrate reduced computational complexity by leveraging the temporal consistency,
comparable accuracy and point density with respect to state-of-the-art systems.

1. INTRODUCTION

Micro-aerial-vehicles (MAV) provide an autonomous and cost-
efficient platform for mapping inaccessible or dangerous areas.
Their ability to acquire data from close-distance enables high-
resolution mapping with low-resolution sensors. However, the
physical constraints of MAV systems present a set of challenges;
size, weight, and power represent the most important design fac-
tors. Typical unmanned systems are equipped with propellers,
a processing unit, a battery, communication units, an inertial-
measurement-unit (IMU), and a set of sensors. MAV image se-
quences present SfM systems with several challenges. Due to
their limited form-factor, MAVs typically have unstable trajec-
tories, their SLAM cameras produce low-resolution imagery, and
have unstable aberration parameters. Reconstructions suffer from
accumulated drift effects, difficult geometry due to small base-
lines, and data gaps in image sequences, e.g., caused by loss of
connection to ground control stations or spontaneous adaption
of exposure settings. Hence, accurate and robust 3D mapping
typically relies on additional higher-resolution cameras as addi-
tional payload to the platform, and specialized 3D reconstruction
software is necessary for the processing. Over the last couple
of years, incremental SfM systems have emerged as a compara-
tively robust technology. Yet, they typically produce poor results
in very challenging environments, and it is still a rather computa-
tionally expensive procedure if the goal is to yield highly accurate
results for large scenes.

This paper describes and evaluates an offline SfM system specifi-
cally designed for sequential, low-resolution imagery from mo-
bile cameras with relatively high frame-rate and high overlap
(w.r.t. traditional photogrammetric systems). Our proposed SfM
pipeline fills a gap in current 3D reconstruction software, which
is primarily targeted at high-resolution imagery from flight mis-
sions planned in advance. However, lower resolution sensors en-
able MAV missions, where additional payload of high-resolution
cameras is not feasible, extended flight duration and high maneu-
verability is a must, and prior path planning is not possible due to
lack of localization sensors (e.g., GPS). By leveraging the tempo-
ral consistency of the imagery, the system achieves significantly
∗Corresponding author.

reduced computational complexity while producing accurate re-
sults comparable to current state-of-the-art aerial platforms. It
performs well in challenging environments, where other systems
fail to produce reasonable reconstructions. The key features of
the proposed system are: (1) Usage of an image retrieval sys-
tem to reduce matching complexity, for automatic loop-closure,
and for automatic merging of separate sub-sequences with over-
lapping trajectories. (2) Reduced computational complexity by
leveraging the sequence’s temporal consistency, redundant view-
point detection, and adequate algorithms. (3) Reconstruction ini-
tialization without prior information (e.g., GPS and IMU mea-
surements). (4) Flexible models for different cameras, includ-
ing wide-angle cameras, with self-calibration capability of cam-
era model parameters. (5) Definition of control-points for geo-
registration and measurement of unknown points. (6) Inclusion
of prior rotation constraints from IMUs.

Optionally, the reconstruction results of the pipeline can be used
as input for commercial photogrammetry software, e.g., for re-
fined bundle adjustment (BA), to derive surface models and ortho-
photos, or for distance and volume measurements. The results of
this work and a sample data-set are available as part of the open-
source software MAVMAP at https://github.com/mavmap.

2. RELATED WORK

Recently, MAV systems have found increased attention in the
photogrammetric community as an image-acquisition platform
for accurate 3D reconstruction, e.g., mapping of inaccessible or
dangerous areas (Eisenbeiss, 2009), for DEM generation (Greiwe
et al., 2013), surveying of archeological sites (Fallavollita et al.,
2013), or glacier mapping (Solbø and Storvold, 2013). MAV
mapping has been shown to yield comparable results to tradi-
tional aerial systems (Barry and Coakley, 2013, Küng et al., 2011).
However, current MAV systems rely on carrying higher-resolution
cameras with low frame-rate as additional payload, or need GPS
and IMU measurements for the initialization of the reconstruction
process. Moreover, these systems require prior path and image
acquisition planning. Due to the camera’s high-resolution and
its additional payload, these systems typically fly at far-distance

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-305-2014 305



from the object of interest, they capture images at a low frame-
rate, and the MAV platform should stand still during image ac-
quisition. Mobile cameras with low-resolution sensors and high
frame-rate do not impose those constraints, i.e. MAV systems can
(autonomously) explore and map a region in a continuous manner
from close-distance, without careful prior planning or intermedi-
ate stops for image acquisition. These properties enable us to use
MAVs for new mapping scenarios, e.g., for indoor environments
(no GPS), time-critical missions (no prior planning and continu-
ous, fast overfly), or environments divided into small, occluded
objects (requires close-distance acquisition).

Nowadays, numerous MAV systems use cameras as primary sen-
sors for real-time navigation and exploration. However, accurate,
image-based 3D SLAM as an online application is still impracti-
cal and does not scale to large environments due to high compu-
tational complexity of SfM. To reduce payload, power consump-
tion, and computational complexity, most online SLAM systems
use low-resolution cameras and simplified, approximate mapping
solutions (Davison, 2003, Choi and Lee, 2011, Dryanovski et al.,
2013, Meier et al., 2012), or, keyframe-based incremental BA
(Weiss et al., 2013). Many systems leverage multiple cameras
with fixed baselines for direct stereo reconstruction (Meier et al.,
2012), some use wide-angle cameras to cover a larger field-of-
view (Shen et al., 2013, Weiss et al., 2013). Yet, mapping systems
for this kind of low-resolution imagery are primarily designed for
real-time navigation and exploration as an on-board (Dryanovski
et al., 2013, Shen et al., 2013, Weiss et al., 2013) or (partially)
off-board (Meier et al., 2012) solution. However, it seems natural
to use this data for accurate 3D reconstruction.

Traditional photogrammetric software entails a relatively high
level of human interaction, and is not suitable for processing
large MAV image data-sets (Greiwe et al., 2013). Barazzetti et al.
(Barazzetti et al., 2010) propose an automated tie-point extraction
scheme, and also commercial solutions with a (semi-)automatic
work-flow have appeared, e.g., Erdas Imagine Photogrammetry
(Hexagon Geospatial, 2014), PhotoScan (Agisoft LLC, 2014), or
Pix4Dmapper (Pix4D SA, 2014). These systems typically use
GPS and IMU information for reconstruction initialization and
apply an exhaustive matching approach for tie-point extraction,
which is needless for sequential imagery and computationally
prohibitive for large image sequences due to its quadratic com-
putational complexity. Abdel-Wahab et al. (Abdel-Wahab et al.,
2012) propose a system with lower computational complexity for
unordered collections of high-resolution imagery.

In parallel to the aforementioned efforts, the computer vision
community has developed SfM systems to reconstruct large-scale
environments from a huge number of unordered photos in feasi-
ble times with no human interaction (Snavely et al., 2006, Frahm
et al., 2010). Frahm et al. (Frahm et al., 2010) leverage iconic
image selection through clustering and Agarwal et al. (Agarwal
et al., 2010) image retrieval systems to reduce the computational
burden of exhaustive matching. VisualSFM (Wu, 2013) emerged
as the probably most advanced, publicly accessible system for
automated and efficient 3D reconstruction from unordered photo
collections. However, it provides limited flexibility for photogram-
metric applications (limited camera models and self-calibration
capability, no estimation of unknown points, no integration of
IMU priors, etc.), and is also based on an exhaustive matching
approach (no exploitation of temporal consistency of data).

3. PIPELINE

In this section we describe our SfM pipeline for sequential image
data. Figure 1 shows a flowchart of the reconstruction process.

Essential matrix estimation 2D-3D pose estimation

Windowed bundle adjustment

Triangulation

Iterative disparity test

Global bundle adjustment

Start new model

End of sequence?

Merge models

Loop detection
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No

Yes
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Success?

Figure 1: SfM pipeline overview.

We use m, n, and o to denote the number of 3D points, images,
and image measurements during the reconstruction, respectively.
Additionally, we assume that the monocular imagery is sequen-
tially ordered according to its acquisition time.

3.1 Image description and matching

Feature type SIFT has been proven to be a very robust feature
w.r.t. rotation and scale change. However, SIFT extraction is
comparatively expensive; consequently, we employ the slightly
less discriminative SURF features as a compromise between ro-
bustness and speed (Heinly et al., 2012). Both feature types can
be used for building efficient image retrieval systems. For loop
closure (see Section 3.5), we use such a system to index images
on-the-fly during the incremental reconstruction.

Feature detection Image streams from mobile cameras tend to
change contrast and brightness abruptly over time due to adap-
tive exposure settings of the sensor. Conventional corner detec-
tion, such as peak finding in Harris or Hessian corner measure
responses (Mikolajczyk et al., 2005), naturally detects more fea-
tures in high contrast regions of an image. Hence, if an image
region is captured once in low and once in high contrast between
two consecutive images, a typical feature detector will not de-
tect features at the same locations. As a consequence, a system
would fail to continue tracks of those features; resulting in weak
or, in the worst case, to a total loss of connectivity between two
images. The KLT tracker (Tomasi and Kanade, 1991) is able to
overcome this problem, but generally only works for very high-
frequency image sequences with very small feature displacement.
Alternatively, we propose to partition an image into fixed-size re-
gions and enforce a minimum and maximum amount of features
in each region by adaptive adjustment of the SURF corner thresh-
olds for each region. Depending on the image capture frequency,
we mostly face small changes in content between consecutive im-
ages. Accordingly, there is seldom need to adjust the thresholds
and the adaptive detection has only minimal impact on the overall
detection performance. However, the adaptive detection signifi-
cantly increases connectivity between images.

Feature matching Feature extraction and exhaustive matching
is typically still the most computationally expensive part in SfM
systems for arbitrary photo collections (Wu, 2013). Image match-
ing includes the brute-force distance computation between all
possible feature pair combinations O(o2) for all possible image
pair combinations O(n2). The conventional exhaustive approach
is necessary in order to establish connections between all parts
of a scene; this is especially important for sequential image data,
which typically has very loose connectivity. However, the time
consistent structure of sequential image data gives us prior infor-
mation about which images are likely to match; namely those im-
ages with small time offsets between their acquisitions. By lever-
aging this fact, we can reduce the computational complexity of
matching fromO(n2) toO(n). In addition, feature displacement
is small between consecutive images, which enables us to signif-
icantly reduce the number of feature pairs for which to compute
the descriptor similarity measure by restricting the search space
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to feature pairs with small displacement. To obtain robust puta-
tive matches we employ the ratio test (Lowe, 2004), and perform
a cross-check, i.e. we only accept correspondences that match to
each other from one image to another and vice-versa.

3.2 Initial reconstruction

Essential matrix estimation Assuming that we are given a suf-
ficient guess for the intrinsic camera parameters, we can recon-
struct the initial camera poses up to an unknown scale by esti-
mating the essential matrix E (Longuet Higgins, 1981) from 5
normalized corresponding observations. We robustly estimate E
using the five-point algorithm by Nister (Nister, 2003); this al-
gorithm yields very good performance and stability for general-
purpose application. To obtain relative rotation R and translation
t, we decompose E and use the cheirality constraint (Hartley,
1993) to recover the correct solution, i.e. 3D points must have
positive depth. The RANdom SAmple Consensus (RANSAC) al-
gorithm (Fischler and Bolles, 1981) serves as a framework for ro-
bust estimation. While more sophisticated RANSAC techniques
(Raguram et al., 2013) have been developed over the last years,
conventional RANSAC still performs best for data with high in-
lier ratio, as we mostly face for sequential imagery.

Initial image pair Choosing a good initial image pair, by mak-
ing a trade-off between geometric quality (camera registration
and structure uncertainty) and model size o (number of 3D points),
is a critical step in incremental SfM systems and different strate-
gies exist (Beder and Steffen, 2006, Snavely et al., 2006). We try
to find such a pair at the beginning of the sequence.

Geometric quality (uncertainty of reconstruction) is mainly deter-
mined by triangulation angles between intersecting viewing rays
(Hartley and Zisserman, 2004, ch. 12.6); a larger baseline be-
tween two images increases triangulation angles. The amount
of spatial displacement of corresponding image measurements
and the number of inliers in estimating a homography between
two images are indicators for the amount of viewpoint change in
terms of parallax and disparity (Nister, 2000). While feature dis-
placement correlates with viewpoint change, it typically yields
less meaningful results for scenes with large depth-variation. In
the case where the transformation between two images can be
described by a homography H, all 3D points lie in a plane (Hart-
ley and Zisserman, 2004, ch. 18.5). The homography between
calibrated cameras a and b is defined as

Hab = R− tnT /d (1)

where {R, t} describe the relative motion from a to b, and {n, d}
denote the normal vector and distance from camera a to the 3D
plane nT x + d = 0, respectively. Knowing the homography
between images is equivalent to knowing the 3× 3 part M of the
3D transformation from camera system a to b

Pab = [M|t] (2)

So, a homography fully describes the transformation Pab, if the
camera motion t is infinitesimal. Though, the homography crite-
ria (upper bound for number of inliers) fails to produce meaning-
ful results, if the scene is planar; in this case it will always have a
high inlier ratio. We therefore enforce a combination of sufficient
feature displacement ∆X and a small number of homography in-
liersNH (Snavely et al., 2006) for the selection of the initial pair,
i.e. we reject image pairs that satisfy the following condition

NH < N̂H ∨∆X < ∆X̂ (3)

where N̂H is set to a high fraction (e.g., 0.9) of the number of
feature matches, and ∆X̂ to a pixel distance. Additionally, we

avoid strong forward motion (by evaluating the z-component of
t), since it degrades stability of 3D points observed in the image
center due to small triangulation angles. Another factor for the
stability of the initial model is the uncertainty of the image mea-
surements, which propagates to the accuracy of their correspond-
ing 3D points. A smaller reprojection threshold in RANSAC im-
proves uncertainty of the measurements.

Improving geometric quality inevitably reduces the size of the
initial model due to a typically reduced number of correspon-
dences. Larger model size is desirable, since, on the one hand,
it leads to higher redundancy in the estimation of the geometric
configuration; on the other hand, a sufficient model size is neces-
sary as a starting point for the following sequential reconstruction
described in Section 3.3.

3.3 Sequential reconstruction

Based on the existing 3D model, sequential reconstruction in-
crementally registers new cameras from 2D-3D correspondences.
This is commonly known as the Perspective-n-Point (PnP) prob-
lem or 2D-3D pose estimation (Fischler and Bolles, 1981). Typi-
cal SfM systems with an exhaustive matching approach combine
image matching with a geometric verification using robust fun-
damental or essential matrix estimation. The procedure then in-
crementally extends the model by registering new camera poses
from geometrically verified image pairs by solving the PnP prob-
lem (Agarwal et al., 2010, Frahm et al., 2010). Robustness is en-
forced by RANSAC, which has exponential computational com-
plexity in the number of model parameters. So, in order to sam-
ple at least one outlier-free set of corresponding image measure-
ments, one must run a minimum of iterations

d = log (1− p) / log (1− es) (4)

where p denotes the confidence of sampling at least one outlier-
free set of measurements, s the number of model parameters and
e the inlier ratio of our measurements.

2D-3D pose estimation We reduce computational complexity
by including the geometric verification (typically through essen-
tial matrix estimation) in the sequential 2D-3D pose estimation.
The well-determined 2D-3D camera pose estimation (P3P) only
requires four correspondences between image observations and
known 3D points (Gao et al., 2003), which reduces the neces-
sary number of RANSAC iterations d. We eliminate the com-
putational burden of essential matrix estimation once we recon-
structed the initial pair. Suppose the measurements in our esti-
mation are corrupted with 30% outliers and we want to sample
at least one outlier-free set of samples with 99% confidence; re-
ducing the model parameters from 5 (essential matrix) to 4 (P3P)
leads to a decrease in minimum RANSAC iterations from 26 to
17, which is equivalent to a speedup of more than 30%. Further-
more, we use the very efficient and stable closed-form solution to
the P3P problem by Gao et al. (Gao et al., 2003), which is much
less computationally expensive than the most-efficient solvers for
essential matrix estimation.

Pose refinement and triangulation After we estimated a rough
camera pose in the previous step, next we employ a non-linear
pose refinement by using all inliers from the 2D-3D RANSAC
procedure. The pose refinement is critical for the accurate and
reliable triangulation of new 3D points from image measurement
correspondences, which do not have a corresponding 3D point in
the existing model. We use a linear approximation for the trian-
gulation (Hartley and Zisserman, 2004) and refine the 3D points
by using BA (see Section 3.4). To accept new 3D points as be-
ing valid, they must satisfy the following conditions: sufficiently
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large triangulation angle, small reprojection error, and they must
pass the cheirality constraint w.r.t. to the refined camera pose. We
also continue existing 3D point tracks to increase redundancy, but
we only enforce the latter two constraints.

Redundant viewpoints To ensure stable registration, we skip
images with small baselines using the same constraints as de-
scribed in Section 3.2. Note, that skipped frames are registered
before final BA. In addition, by skipping redundant viewpoints
(with a high degree of overlap), we gain in terms of speed, since
rejecting similar images is computationally cheap in comparison
to the 2D-3D RANSAC procedure, with the non-linear pose re-
finement, the triangulation of new 3D points and the windowed
BA (see Section 3.4). Given the smooth temporal viewpoint change,
we follow its temporal order; another reason for this is to ensure
smooth trajectories during BA (see Section 3.4).

3.4 Bundle adjustment

The previous sections described the process of camera registra-
tion and structure computation, which are subsequently refined
in a non-linear optimization, known as bundle adjustment (BA)
(Luhmann et al., 2013, Hartley and Zisserman, 2004, Triggs et al.,
2000). As described in the following, our system integrates op-
tional methods as a complement to traditional BA to improve re-
construction results: definition of flexible camera models, camera
parameter self-calibration, inclusion of rotation constraints from
IMU sensors, and automatic geo-registration and measurement of
unknown 3D points through control-point definition.

Estimation framework BA is a sparse geometric estimation
problem with 3D features Pi = {P1, ...,Pm} and camera pa-
rameters Cj = {C1, ...,Cn} as unknowns, and 2D image fea-
tures Xk = {X1, ...,Xo} as uncertain measurements, where k
denotes the index of the true measurement of 3D feature i in im-
age j. A projection function Q(Pi,Cj) maps 3D features to
their corresponding 2D image features and serves as a mathemat-
ical model. BA minimizes the cost function S in terms of the
overall reprojection error

S =
1

2

o∑
k=1

ρk

(
‖Xk −Q(Pi,Cj)‖22

)
(5)

by simultaneously refining 3D features and camera parameters
according to the loss function ρk(·). BA is a high-dimensional,
non-linear problem, where the state vector U = {Pi,Cj} lies
on a manifold and is iteratively reparameterized using local, lin-
ear approximations. On the one hand, it is essential to use pa-
rameterizations that can be locally approximated by linear and
quadratic functions (e.g., we use the axis-angle representation as
a parameterization for rotations). On the other hand, the parame-
ter space has multiple local minima and hence one needs a good
initial guess for the parameter vector (camera parameters and 3D
features) in order to converge to the global minimum. Attainment
of these initial estimates is covered in Sections 3.1, 3.2 and 3.3.

We use the Ceres-Solver library (Agarwal et al., 2014) as a
framework for non-linear least-squares estimation. Despite care-
ful filtering of image feature matches, there is a considerable
amount of outlier observations in BA. Consequently, we assume
that the observations follow a heavy-tailed Cauchy distribution,
modeled as

ρk(x) = log (1 + x) (6)

Note, that maximum likelihood (ML) estimation is naturally ro-
bust as long as the correct error model is employed. For numer-
ically stable and efficient optimization it is essential to make use

of the special sparsity of BA, since cameras in image sequences
typically only see a small excerpt of the complete scene. We use
the Schur complement trick (Brown, 1958), maximize sparsity
structure by column and row re-ordering (Li and Saad, 2006),
use sparse Cholesky factorization (Chen et al., 2008), and use the
Levenberg-Marquardt algorithm for trust region step computation
(Levenberg, 1944, Marquardt, 1963).

Without constraining the geometry of the reconstruction, BA can
perturb the geometric structure arbitrarily. In general, the struc-
ture can be perturbed by an arbitrary 3D similarity transformation
(7 degrees of freedom: scale, rotation and translation) without
changing the scene’s image projections, which results in a rank-
deficient Jacobian and is known as a datum defect. There are two
methods to overcome this defect: fixed- and free-network adjust-
ments (Triggs et al., 2000). We use the former by fixing at least
7 DoF during the optimization; we set the parameters of certain
camera poses (rotation and translation) as fixed. In addition, we
must avoid configuration defects, which occur in case a parameter
is not well-determined by its measurements. Examples include
3D points observed only from one camera, which can be moved
arbitrarily along the viewing ray, or cameras with an insufficient
number of image projections (e.g., in case of windowed BA).

Camera models Highly accurate results in BA rely on a precise
mathematical modeling of the underlying geometry of the image
formation process, modeled as Q(Pi,Cj). The standard pinhole
camera model is often a too limited description of these processes
and more sophisticated models that take internal camera aber-
rations into account typically provide better abstraction thereof;
however, over-parameterized models tend to yield biased results.
The intrinsic parameters of a camera model can be estimated in
photogrammetric calibrations. Low-cost cameras, as often used
on mobile platforms, are especially subject to temporal change in
their calibration parameters, and need complex models for accu-
rate reconstruction. The rigidity of the scene provides constraints
which one can exploit for self-calibration of camera parameters
during the BA. Since we employ automatic feature detection (see
Section 3.1) and thus have a comparatively large number of im-
age observations distributed over the entire image plane, we can
achieve very good calibration estimates. Our library provides an
easy means to define arbitrary mathematical camera models and
to specify prior calibration parameters as fixed, or variable for
self-calibration. Separate camera models and parameters can be
specified for each image separately, or one can use the same pa-
rameters for specific sets of images. For an evaluation of the
benefits of using different camera models, see Section 4.

Rotation constraints Nowadays, a large number of camera plat-
forms are equipped with inertial measurement units (IMU), which
yield orientation information through gyroscopes, accelerome-
ters, and magnetometers. Depending on the accuracy of the IMU,
this information can help to reduce accumulated drift effects by
constraining the camera rotation during BA (see Section 4.). The
rotation constraint is modeled for each camera in the sequence as

∆rj =
∥∥R̂j −Rj

∥∥
F

(7)

where ‖·‖F denotes the Frobenius norm. Rk and R̂k respectively
denote the extrinsic 3× 3 rotation matrix of the estimate and the
IMU measurement of camera k. The constraint is added to the
overall cost function of the BA by weighting it with the regular-
ization parameter λr and transitioning from a ML to a maximum
a posteriori (MAP) estimate:

Sr = S +
λr

2

n∑
j=1

ρk (∆rj) (8)
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Control points and geo-registration The incremental SfM pro-
cedure is based upon automatic detection and matching of im-
age observations. Our method provides an optional and easy way
to manually define additional image observations of specific 3D
points, denoted as control points. Control points with unknown
3D coordinates are estimated during BA (e.g., for measurement
of specific, new points); control points with known 3D coordi-
nates are used for geo-registration and hence introduced as fixed
parameters during BA. At least three fixed control points are nec-
essary for geo-registration to set the datum; in this case all camera
poses are introduced as free parameters during BA.

Initial bundle adjustment Following the approximate recon-
struction of the initial camera pair using essential matrix estima-
tion (see Section 3.2), we perform BA to refine the 3D points and
the camera pose configuration. We set the datum by fixing six
parameters (rotation and translation) of the first and one parame-
ter of the second camera translation. These seven DoF equal the
required minimum number of fixed parameters to set the datum
and to allow a maximum refinement of the camera configuration.

Windowed bundle adjustment After each sequentially regis-
tered image (see Section 3.3) we perform windowed BA, i.e. the
optimization w.r.t. the most recently registered images. For tem-
porally windowed BA, it is crucial that the pipeline reconstructs
images in sequential order and that we fix at least two poses (12
degrees of freedom) at the beginning of the window, i.e. the poses
of the oldest images. Suppose we allowed to optimize the poses
of the oldest image. Then the camera pose and the 3D points
could be changed arbitrarily without any relation to the remain-
ing part of the known reconstruction; resulting in non-continuous
transitions in trajectory and scene solely caused by windowed
BA. For windowed BA, we employ a comparatively relaxed con-
vergence criteria accounting for a strictly limited number of it-
erations and reduced computational complexity. This does not
degrade the final reconstruction quality, since cameras and 3D
points normally stabilize quickly and BA naturally optimizes un-
stable parts of the problem the most.

Global bundle adjustment Before applying a final, global BA
over the complete reconstruction, we reconstruct the remaining
poses of skipped images, as described in sections 3.2 and 3.3,
but without intermediate windowed BA. In contrast to windowed
BA, we enforce a stricter convergence criteria for the final BA in
order to achieve higher accuracy.

3.5 Loop closure

Even when leveraging BA, SfM inevitably suffers from accumu-
lated drift. Hence, loop closure is essential to compensate for this
effect by strengthening weakly connected geometry of the struc-
ture. Our loop closure method is based on an incrementally built-
up image retrieval system, which is used for detection of similar
images. Similar image pairs are geometrically verified and BA
minimizes the drift w.r.t. to the new geometric constraints.

Image retrieval The image retrieval system is built upon a vi-
sual word based vocabulary tree (Nister and Stewenius, 2006).
We incrementally index newly registered images in the retrieval
system using the same local SURF features as for image matching
to avoid duplicate computational burden. The local features (vi-
sual words) of an image are quantized using the vocabulary tree
and represent a sparse document vector in the image database,
which is implemented as an inverse file. The sparseness of the
vectors results in a low memory footprint and allows for efficient
search in the database. For image retrieval, a query document is
compared against all documents in the database according to an

L2 based similarity measure. The weight of the different visual
words is based on the length of the inverted file (inverse docu-
ment frequency). Ordering the images by the score value yields
a ranking of the images in terms of visual similarity. The most
similar images can then be used as hypotheses for loop closure.

Geometric verification and optimization We invoke image re-
trieval every l frames during the reconstruction. Naturally, image
retrieval detects images with small time offset in the image se-
quence, as those images are likely to have large overlap. While
this stabilizes local connectivity of the trajectory, it is especially
important to also close loops between images with large temporal
offsets (i.e. when the camera revisits the same location multiple
times). Consequently, we retrieve a large number of similar im-
ages from the database, restrict geometric verification to a max-
imum number of temporally local images and allow an unlim-
ited amount of loop closure attempts to images with large tem-
poral offsets. The newly established geometric constraints are
only considered in the final, global BA (see Section 3.4). Note,
that the chosen cost-function in BA only down-weights and not
neglects large errors. Hence, BA optimizes accumulated drift ef-
fects, when loops are closed successfully.

3.6 Merging of separated, overlapping sequences

Sequential reconstruction occasionally fails to connect consecu-
tive images, e.g., due to errors in the image capture, texture-less
regions, or over-exposed images. In this case, the pipeline starts
a new, separate model by invoking the initial reconstruction on
the remaining set of images. However, camera trajectories often
overlap when the platform revisits the same spatial location mul-
tiple times. Detection of these overlaps enables us to connect and
merge the separated reconstructions into one combined model.
We leverage loop detection as described in Section 3.5 to find
the connections between the different models. If we successfully
verify a connection of at least three common images between two
models, we can use their common images to estimate a similarity
transformation from one model into the other. We find such con-
nections over the entire sequence in order to estimate a reliable
transformation and to establish strong connections for BA.

4. EXPERIMENTS

To evaluate our method we use experiments both on low- and
high-resolution imagery. These show that our system robustly
produces reconstructions for challenging data-sets, captured by
low-resolution, wide-angle, and high frame-rate cameras. An
experiment on a data-set consisting of multiple, separated sub-
sequences illustrates the utility of automatic reconstruction merg-
ing. In another experiment we demonstrate the theoretical bene-
fits of using prior IMU measurements as orientation constraints.
Additionally, our system is able to estimate the camera pose with
cm-accuracy w.r.t. a geodetically measured ground-truth trajec-
tory. Finally, we assess the accuracy of unknown point estima-
tion based on a manually evaluated high-resolution data-set with
a net of geodetically measured ground-truth control-points, which
were not used in the registration. All experiments were performed
on a computer system with an Intel Xeon E5645 6-Core proces-
sor, 24GB RAM, and a nVidia GTX 560 graphics card.

4.1 Low-resolution imagery

In this experiment we apply our SfM pipeline on an image se-
quence acquired by the PIXHAWK system (Meier et al., 2012).
The system has a downward-looking camera, captures images
with a resolution of 0.3MP (752 × 480) at a frame rate of 15Hz
from an average distance of ≈ 10m above ground, and yields
orientation through an IMU.
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# residuals # cameras # points Total time
VisualSFM 10,756,887 2,395 (67%) 488,350 30.2h
(preemptive)
VisualSFM – – – ≈ 19d
(exhaustive)
MAVMAP 7,039,224 3,574 (100%) 348,482 1.5h

Table 1: Reconstruction results for Rubble 1 data-set.

Non-contiguous sequence (Rubble 1) This data-set comprises
3574 images (undistorted with parameters from a lab-calibration)
of a rubble field, has multiple loops and was acquired in three
independent flight missions The data-set cannot be reconstructed
with simple, sequential reconstruction techniques (see figure 2).
Reconstruction results can be found in Table 1 and Figure 2. Our
pipeline merges the three sub-models into a single model, closes
loops between multiple flyovers (l = 30) and reconstructs all
camera poses in a reasonable amount of time. We attain high
redundancy through automatic feature detection and matching in
terms of a mean track-length of 12 observations per 3D point.
More than 10% of the 348,482 3D points have a track-length of
> 20, and the mean reprojection error is 0.36px. We can see
that the estimated camera orientation suffers from comparatively
little accumulated drift. Additionally, depending on the accuracy
of the IMU, constraining the camera rotation with the IMU orien-
tation measurements can reduce noise. Using preemptive match-
ing, VisualSFM can only connect two of the three sub-sequences,
and it only registers a fraction of 67% of all cameras. Exhaustive
matching is not practicable due to excessive computational com-
plexity. We were not able to produce a reasonable reconstruction
with traditional photogrammetric software for this data-set; de-
spite the significant amount of human interaction required, which
is impractical for sequences of this size.

Contiguous sequence with ground-truth camera trajectory
(Rubble 2) The reconstruction results for another sequence con-
sisting of 4234 images can be found in Figure 3. We use the orig-
inal, distorted images and totally rely on self-calibration (with
initial guesses for focal length and principal point from the cam-
era specifications) using a 9 DoF model suitable for wide-angle
cameras. For the first 1100 frames, we synchronously tracked the
camera position using a tachymeter (Leica TotalStation 15i) with
sub-cm accuracy. As a post-processing step we aligned the recon-
structed and ground-truth trajectories using an over-determined
similarity transformation estimation. Again, our system registers
all cameras and we achieve a mean residual of ∆P = 11.8cm
for the reconstructed w.r.t. the ground-truth trajectory. Addition-
ally, in comparison to a model suitable for wide-angle cameras (9
DoF) (Mei and Rives, 2007), a standard camera model with ra-
dial and tangential distortion parameters (8 DoF OpenCV model)
yields significantly inferior results with ∆P = 17.8cm. We can
see that the reconstructed trajectory follows a curvature in the al-
titude direction due to large radial distortion at the image borders,
while the actual altitude of the MAV stays approximately at the
same level.

Ground sampling distance Since MAVs are able to acquire
images from close-range, even low-resolution imagery can be ex-
ploited for high-resolution mapping. Suppose the MAV flies by
the object of interest at a distance of 10m, and with a field-of-
view of 90◦, we achieve a ground sampling distance of GSD =
2.7cm (sensor resolution of 752 × 480). This is comparable to
current state-of-the-art aerial imaging systems (e.g., UltraCamXp
WA yields a GSD = 8.6cm at a flight altitude of 1000m) and
MAV platforms, e.g., as used by the senseFly drone system, which
achieves a GSD = 4cm while using a camera with a sensor res-
olution of 16MP (12MP), but flies at an altitude of 130m (115m).

4.2 High-resolution imagery

In addition, we carried out experiments on a set of 31 high-reso-
lution images of a concrete platform (Platform data-set) acquired
by a SONY NEX-7 camera with a resolution of 6000 × 4000
pixels mounted on a MAV. The entire scene is covered by a net-
work of 48 geodetically measured control points with sub-mm
precision. Manual evaluation of the scene using Erdas Imagine
Photogrammetry yields a mean point accuracy of σE = 0.2cm.
We ran our pipeline on the original, distorted images by using a
subset of 10 fixed control points for geo-registration, and evalu-
ated the residuals of the remaining control points w.r.t. the esti-
mated Erdas Image Photogrammetry results (see Figure 4). The
complete BA problem comprises 25,777 3D points with a total of
128,282 observations and a mean reprojection error of 0.29px.
Hence, the inclusion of 48 control points has negligible impact
on the overall estimation result. Our system achieves accurate re-
sults within σE . Moreover, we obtained results for two camera
models of differing complexity (4 DoF pinhole model without
distortion parameters, and a 8 DoF OpenCV model with two ra-
dial and tangential distortion parameters, respectively). In this
case, usage of an appropriate camera model improves accuracy
by more than 20%.

5. CONCLUSION

In this paper we present a publicly accessible SfM pipeline for the
robust 3D reconstruction from low-resolution image sequences.
It fills a gap in currently available 3D reconstruction software
packages. We show that the system scales well with large image
data-sets by leveraging its temporal consistency, while achieving
comparable accuracy to manual, photogrammetric evaluation.
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