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ABSTRACT:

In this paper, a novel method for the fish-eye lens calibration is presented. The method required only a 2D calibration plane containing
straight lines i.e., checker board pattern without a priori knowing the poses of camera with respect to the calibration plane. The image of
a line obtained from fish-eye lenses is a conic section. The proposed calibration method uses raw edges, which are pixels of the image
line segments, in stead of using curves obtained from fitting conic to image edges. Using raw edges is more flexible and reliable than
using conic section because the result from conic fitting can be unstable. The camera model used in this work is radially symmetric
model i.e., bivariate non-linear function. However, this approach can use other single view point camera models. The geometric
constraint used for calibrating the camera is based on the coincidence between point and line on calibration plane. The performance of
the proposed calibration algorithm was assessed using simulated and real data.

1. INTRODUCTION

Camera calibration is a fundamental procedure in photogramme-
try and computer vision for image interpretation and quantitative
image analysis. Particularly, the goal of geometric camera cali-
bration is to estimate the geometric characteristic of a camera i.e.,
the interior orientation of the camera including the coordinates of
the principal point and geometric distortion parameters. Know-
ing the distortion characteristic of a camera, the distortion on the
image can be removed, which can make the quantitative image
analysis more accurate.

Fisheye lenses have been widely used for measurement applica-
tions because of the high information content contained in the
images. An advantage of using fisheye lenses is the large Field
Of View (FOV) compared to the conventional camera because
they are designed to cover the hemisphere field in front of the
camera. Unfortunately, their drawback is the severe distortion on
the image compared to the conventional cameras. Therefore, the
accurate calibration of the camera is highly required if one have
to use the fisheye lenses for recover metric information from the
environment.

An approach for calibrating fisheye lenes is to model them as the
conventional pinhole camera accompanied with the lens distor-
tion model. However, this approach is just an approximation of
the fisheye lens model because fishere lenses are designed to obey
other projection models (Sturm et al., 2011).

In literature, there exists many works on modelling and calibrat-
ing fisheye lenses. Mic̆us̆ı́k and Padjla (Mic̆us̆ı́k and Pajdla, 2003)
proposed an omnidirectional camera model and calibration algo-
rithm. The projection model was a bivariate non-linear func-
tion. By linearizing the projection model, the calibration algo-
rithm was developed based on the epipolar constraint between
two views. Estimating the camera parameters was treated as a
quadratic eigenvalue problem. An advantage of this work is that
only point correspondences between images are required and no
calibration structure is needed.
∗Corresponding author.

In (Scaramuzza et al., 2006), Scaramuzza et al. proposed a flex-
ible technique for calibrating omnidirectional camera using cali-
bration plane. They replaced the projection model used in (Mic̆us̆ı́k
and Pajdla, 2003) with a polynomial function of the angle be-
tween the optical axis and incoming ray. Moreover, the number
of images used in the calibration process is not limited to two im-
ages. A drawback of this method is the determination of the order
of polynomial function which can cause the over-fitting problem.

Kannala and Brant (Kannala and Brandt, 2006) also modelled the
projection as a polynomial function. An advantage of this work
is that radial and tangential distortions are included in the model.
In stead of using checker board as the calibration pattern, they
utilized the calibration plane with white circles on black back-
ground. The centroid of the circles were used as primary data for
calibration process.

In (Ying et al., 2006), Ying et al. introduced a novel camera cal-
ibration method for fisheye lenses using straight lines. The con-
cept of this work is based on back-projecting the image point into
3D camera coordinate system. The proposed objective function is
the orthogonal distance between the back-projected image points
and the projection of lines in object space.

Similar to (Ying et al., 2006), Hino et al. (Hino et al., 2009) also
used straight lines for calibrating fisheye lenses. The concept of
this work is that the images of 3D straight lines on the calibrated
image must be straight lines not curves. The calibration process
was then treated as a tting problem of the principal component on
uncalibrated images.

In this paper, we deal with the fisheye lenses calibration. The
primary features used in the calibration process are straight lines.
Therefore, the checker board pattern can be used as the calibra-
tion structure. The proposed camera calibration method utilizes
the model model proposed in (Mic̆us̆ı́k and Pajdla, 2003) because
of minimal number of projection parameters. However, other
camera models can be employed in this proposed camera calibra-
tion algorithm. The structure of the paper is the following. The
camera model and calibration algorithm are described in Sections
2. and 3., respectively. The experimental results is shown in the
Section 4. The conclusion of this work is presented in Section 5.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-327-2014 327



2. CAMERA MODEL

The concept of the proposed camera calibration method is based
on minimizing error in object space in stead of image plane. There-
fore, the suitable camera model is the back-projection model. In
this work, we use the backward model of omnidirectional camera
presented in (Mic̆us̆ı́k and Pajdla, 2003). This model is utilized
because it required only 2 parameters to model the projection of
the lenses.

In order to present the model used in the calibration algorithm,
lets first discuss about the mapping from the image plane coor-
dinate system to sensor plane coordinate system i.e., on CCD. A
point on the image plane is represented by u′ = (u′, v′) and on
the sensor plane u′′ = (u′′, v′′). By assuming that the optical
axis is perpendicular to the CCD, these two coordinate systems
are related by affine transformation:

u′′ = Au′ + t, (1)

where A ∈ R2×2 is a 2 by 2 matrix embedding rotation, scale and
skew and t ∈ R2×1 a 2-vector representing the translation. The
affine transformation is used to handle the digitization process
and small axes misalignments.

Let a scene point X ∈ R4 in homogeneous coordinate be pro-
jected onto the sensor plane at a point u′′. In (Mic̆us̆ı́k and Pa-
jdla, 2003), the generic model of an omnidirectional camera is
formulated as:

g(u′′) = p ∼ PX, (2)

where ∼ means equal up to scale and p is the direction vector
of the back-projection ray emanating from the viewpoint (origin
of the camera coordinate system). Function g : R2 → R3 is a
non-linear function mapping the point u′′ into the 3D camera co-
ordinate system and P ∈ R3×4 is a perspective projection matrix:

P ∼ [R T]. (3)

The perspective projection matrix P contains the rotation R ∈
R3×3 and translation T ∈ R3×1 between camera and object
space coordinate systems, which is, in this case, the coordinate
system of the calibration plane. The concept of the generic cam-
era model in (2) is illustrated in Figure 1. Particularly, it shows
that the back-projection ray obtained from the non-linear func-
tion g is coincidence with the scene point X that is transformed
into the camera coordinate system via the perspective projection
matrix P.

Given the calibration parameter of a camera, the point u′′ on the
sensor plane can be back-projected into the 3D camera coordinate
system:

g(u′′) = g(u′′, v′′) = [u′′ v′′ f(u′′, v′′)]>, (4)

where f is rotationally symmetric with respect to the sensor axis
(optical axis). This model is reasonable when the optical axis
is perpendicular to the sensor plane. The choice of the function
f in (4) depends on the lens construction (Kumler and Bauer,
2000, Bakstein and Pajdla, 2002). Let θ be the angle between the
projection ray and the optical axis, see Figure 1. The function f
is formulated as a function of θ and ρ such that f(u′′) = ρ

tan(θ)
,

see Figure 2. In (Mic̆us̆ı́k and Pajdla, 2003), the relation between
θ and ρ was formulated as a function of two parameters:

θ =
aρ

1 + bρ2
ρ =

a−√a2 − 4bθ2

2bθ
, (5)

Figure 1: The back-projection of the point u′′ via the non-linear
function g is coincident with the scene point X in the camera
coordinate system.

Figure 2: The diagram showing the relation between the back-
projected image point and the function f .

where ρ =
√
u′′2 + v′′2. Namely, ρ is the metric distance from

the origin of the sensor plane coordinate system to the point u′′.
By substituting (1) and (5) into (4), the function g in (4) can be
rewritten as:

g(u′; A, t, a, b) =


Au′ + t

ρ

tan

(
aρ

1 + bρ2

)
 = p. (6)

This means that, given pre-calibrated image, an image point can
be back-projected into 3D space. The whole process of back-
projecting a point u′ on the image plane is illustrated in Figure
3.

3. CALIBRATION ALGORITHM

The proposed camera calibration method consists of four steps.
The process begins with the initialization of the interior orienta-
tion parameters which are the used for initialize the exterior ori-
entation parameters in the next step. Once both initial parameters
are obtained, they will be refined by minimizing the geometric
constraint. In this Section, we start with the geometric constraint
used in the proposed camera calibration algorithm. The initial-
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Figure 3: The back-projection of a point on image plane into 3D camera coordinate system. An image point is mapped onto the sensor
plane via affine transformation. Given pre-calibrated image, the point on the sensor plane can be back-projected into the 3D camera
coordinate system using the non-linear function g.

ization of the interior and exterior orientation parameters are then
discussed. The non-linear optimization will be presented at the
end of this section.

3.1 Geometric constraint

The formulation of the geometric constraint used in this work is
based on the preservation of coincidence between point and line.
Particularly, the coincidence on the plane i.e., calibration plane
is used. According the coincidence preservation property of the
central projection, if the point and line are coincident on the cal-
ibration plane, there images are still coincident. Conversely, the
back-projection of the point on the image line onto the calibration
plane is still coincident with the line on the calibration plane.

To illustrate this concept, let see Figure 4. An image point is
back-projected via the backward projection model of the camera.
The projection ray with direction p is intersect with the calibra-
tion plane at the point H−1p on the calibration plane. If the im-
age point is on the image of the line on the calibration plane, the
intersection point must be coincident with the line on the calibra-
tion plane. This concept will be used in the initialization of the
exterior orientation parameter and the non-linear optimization for
estimating both interior and exterior orientation parameters of the
camera.

Figure 4: The geometric constraint used in this proposed calibra-
tion algorithm. The constraint is based on the coincident relation
between the back-projected image point and line in object space
i.e., line on calibration plane.

3.2 Interior orientation parameter initialization

3.2.1 Affine transformation parameters The initial guess for
affine transformation parameters can be obtained using the nom-
inal parameters from camera manufacturers i.e., the size of the

CCD grid. The matrix A of the affine transformation (1) can be
represented as:

A =

[
mx 0
0 my

]
. (7)

The skew parameter is skipped in this affine transformation. The
initial estimate of the parameters mx and my can be the size of
the CCD grid e.g., 5 µm. The initial solution for the translation
part t can be obtained using the center of the image:

t =

[
tx
ty

]
≈ −

[
mxu0

myv0

]
, (8)

where (u0, v0) is the center of the image.

3.2.2 Camera distortion parameters In (Mic̆us̆ı́k and Pajdla,
2003), the initial guess for the parameter b is 0. Hence, the initial
solution for the parameter a can then be obtained using (5). Given
b = 0, the equation (5) becomes a = θ

ρ
. The initial solution for

both a and b can then be computed:

a ≈ θm
R

b ≈ 0, (9)

where θm is the maximum view angle which can be computed
from the field of view of the lenses and R the radius of the view
field circle. The radius R can be obtained by fitting a circle to
the boundary of the fisheye image. The radius of the fitted circle
R′ on the image plane is then scaled to be physical quantity i.e.,
R = mxR

′.

For lenses with small field of view i.e., conventional pinhole cam-
era, fitting a circle to the boundary of the image can be impos-
sible. To obtain the initial guess for the parameter a, we use
the equidistance projection model (Kannala and Brandt, 2006)
ρ = fcθ, where fc is the nominal focal length. Therefore, the
initial guesses for the parameters a and b of conventional camera
are then:

a =
1

fc
b = 0. (10)

3.3 Exterior orientation parameter initialization

Given the initial interior orientation parameters, a point on the
image plane can be back-projected into the 3D camera coordi-
nate system. Namely, the image point is transformed to be the
back-projection ray by the backward camera model (6). Since the
camera model is central projection, there exists a planar homog-
raphy between the back-projected image point and the calibration
plane such that:

ũ ∼ H
−1p, (11)

where ũ is the point on the calibration plane, p the back-projection
of the corresponding image point and H the homography mapping
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from the calibration plane to camera coordinate system.

To estimate the homographhy, in this paper, the coincidence be-
tween a 2D line on calibration plane and an image point trans-
formed onto the calibration plane via homography is utilized. Let
l be the 2D line on the image plane. The coincidence between
the line l and the image point that is mapped onto the calibration
plane can then be formulated as:

l>ũ = l>H−1p = (p> ⊗ l>)vec(H−1) = 0, (12)

where ⊗ is Kronecker product and vec() the vec operator. The
non-trivial solution of the above homogeneous system of linear
equation can be linearly solved by the Singular Value Decompo-
sition(SVD) technique. Note that the estimated one is the inverse
of the homography.

Given the inverse of the homography, initial guest for the exte-
rior orientation parameters can be obtained. Let the homography
between the camera coordinate system and calibration plane be:

H = λ[r1 r2 T], (13)

where ri is the ith column of the rotation matrix R. The rotation
matrix and translation vector can be estimated:

r1 = λh1, r2 = λh2, r3 = r1 × r2, T = λh3, (14)

where λ = sign(H3,3)/‖h1‖, hi is the ith column of the ho-
mography H and H3,3 the element at the third row and third col-
umn of the homography. Unfortunately, the obtained rotation ma-
trix is not orthogonal because of estimation error. That is, it does
not satisfy the rotation matrix properties which are R> = R−1

and det(R) = 1. To fix this problem, SVD of the rotation ma-
trix is used. Let the SVD of the rotation matrix R be R = USV>.
The condition of rotation matrix can be resolved by modifying
the singular values (Gramkow, 2001):

R = U

 1 0 0
0 1 0
0 0 det(U)det(V)

 V>. (15)

3.4 non-linear refinement

Once both interior and exterior parameters are initialized. They
are then refined simultaneously via the bundle adjustment pro-
cess. With the image noise and quantization error, the coinci-
dence cannot be obtained. In the non-liner optimization process,
we hypothesize that the orthogonal distance between the line on
the calibration plane and the image point that is transformed onto
the calibration plane is minimized with optimal interior and ex-
terior orientation parameters. The orthogonal distance is formu-
lated as:

estimation error =
l>H−1p

(D1H−1p)‖D2l‖2 , (16)

where ‖ · ‖2 is the 2-norm of a vector and the selection matrices
D1 and D2 are:

D1 = [0 0 1], D2 =

[
1 0 0
0 1 0

]
. (17)

Note that the objective function or estimation model is the total
estimation error. Both interior and exterior orientation parame-
ters can then be obtained by minimizing the objective function in
least-square sense. In other words, the sum of squared orthogo-
nal distance between the lines on calibration plane and the image
points that are mapped onto the calibration plane is minimized.

The algorithm used for solving the minimization problem is the
Levenberg-Marquardt algorithm. The interior orientation param-
eters are parameterized as scalars and the translations of camera
are represented as vectors. For the rotation matrix representation,
it is more complicated because there exists various representation
in literature. Moreover, some representations require to impose
constrains in the estimation model in order to maintain the prop-
erties of the rotation matrix. To waive the constraint in the op-
timization process, the local perturbation model of the rotation
matrix is used as mentioned by Triggs et al. (Triggs et al., 2000).

4. EXPERIMENTS

To test the performance of the proposed camera calibration method,
both simulated and real data were used. To evaluate the perfor-
mance of the proposed camera calibration method, both the re-
projection and back-projection errors are reported.

4.1 Simulated data

The first experiment for assessing the performance of the pro-
posed calibration algorithm is the experiment with simulated data.
The CCD size of the simulated fisheye lenses was 1 µm. The im-
age resolution [pixel] is 640 × 720. The parameter a and b was
setted to be 3.5 and−0.2, respectively. The calibration plane had
14 lines. The camera poses were randomly generated such that
the calibration plane was always at the front of camera. Once the
lines on the calibration plane were projected onto the images us-
ing the predefined parameters, 10 points on each projected line
were used for calibration.

To evaluate the performance of the proposed method with respect
to noise, Gaussian noise with zero-mean and standard deviation
σ is added to to image points. The standard deviation varies from
0.5 to 2 pixels. For each noise level, 200 independent trials were
performed and averaged error was computed.

In order to quantitatively test the performance of the proposed
methods, the estimated parameters were compared with the ground
truth using the averaged re-projection error:

error =
1∑L

j=1Nj

L∑
j=1

 Nj∑
i=1

‖u′ − g−1(ĝ(u′))‖
 , (18)

where ĝ is the estimated camera parameters i.e., interior orienta-
tion parameters and g is the ground truth. The plot of reprojection
error as a function of noise level (standard deviation) is shown in
Figure 5. It can be observed that the reprojection error increases
linearly.

The performance of the proposed camera calibration can also be
reported using object space error. There are two types of object
space error. The first one is the line based object space error
which is the error used as the objective function (16). The second
one is the point based object space error

point based object space error = dEuclidean(ũ, H
−1p), (19)

where ũ is the point on calibration plane. dEuclidean is the Eu-
clidean distance i.e., the distance between the point ũ and the
non-homogeneous coordinate of the back-projected image point
H−1p. The back-projection errors (16) and (19) from the exper-
iment are reported in Figures 6 and 7, respectively. It can be
observed that both back-projection errors increase linearly as a
function of noise level σ.
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Figure 5: The reprojection error versus the random noised added
to the image points. The reprojection error was computed using
(18). The red shaded area shows the standard deviation of repro-
jection error.

Figure 6: The line-based back-projection error versus the random
noised added to the image points. The line-based back-projection
error was computed using (16). The shaded area shows the stan-
dard deviation of the line-based back-projection error.

Figure 7: The point-based back-projection error versus the ran-
dom noised added to the image points. The point-based back-
projection error was computed using (19). The shaded area shows
the standard deviation of the point-based back-projection error.

4.2 Real dataset

The proposed camera calibration method was also tested with real
dataset. The cameras used in the experiment were Ladybug 3 and
Point Grey’s Firefly camera equipped with Fujinon YV fisheye
lens. For the Ladybug 3, its pixel size is 4.4 µm and focal length
is 3.3 mm. The Field Of View (FOV) of the Fujinon UV is
about 180◦ and the pixel size of the Point Grey’s Firefly camera
is 6 µm.

The initial solution for the interior orientation parameters were

initialized by using information from manufacturer including CCD
size and nominal focal length. 11 images were taken from Lady-
bug 3 camera and 28 images from Point Grey’s Firefly camera.
Points on image line were sampled and used for calibration. The
homographies between the images and calibration plane were
then initialized using the back-projected points on image lines.

To evaluate the performance of the proposed camera calibration
method using real data, the point-based back-projection error in
(19) was used. Since equation (19) requires the correspondence
between the points on the calibration plane and their image points,
the corners of squares on the calibration plane were then used
for error computation. In Tables 1 and 2, the point-based back-
projection errors are reported. The errors reported in those Tables
are both the error before and after non-liner optimization. It can
be observed that the errors were significantly reduced after non-
linear optimization.

Table 1: The point-based back-projection error (19) from the ex-
periment with Point Grey’s Firefly camera equipped with Fujinon
YV fisheye lenses.

Initial solution Nonlinear
optimization

RMS [millimter] 1.68 0.08
Maximum error [milimter] 6.4 0.2

std [millimeter] 1.04 0.04

Table 2: The point-based back-projection error (19) from the ex-
periment with Ladybug 3 camera.

Initial solution Nonlinear
optimization

RMS [millimter] 3.01 0.4
Maximum error [milimter] 12.1 2.8

std [millimeter] 2.14 0.25

In order to show the qualitative performance of the proposed
camera calibration method, the corner points on the calibration
pattern were re-projected onto the image planes. In Figures 8
and 9, the re-projection of the corner points onto Point Grey’s
Firefly and Ladybug 3 cameras are illustrated. Moreover, the re-
projections of the lines on calibration plane onto the image from
Ladybug 3 camera is illustrated in Figure 10.

Figure 8: The re-projection of the corner points on calibration
pattern on Point Grey’s Firefly camera equipped with Fujinon YV
fisheye lenses. The yellow circles are the detected corner points
while the red plus sign the re-projected corner points.
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Figure 9: The re-projection of the corner points on calibration
pattern on Ladybug 3 camera. The yellow circles are the de-
tected corner points while the red plus sign the re-projected cor-
ner points.

Figure 10: The re-projections of the lines on calibration plane
onto the image from Ladybug 3 camera. The re-projected lines
are drawn with red color.

5. CONCLUSIONS

In this paper, we present a novel model for calibrating fisheye or
wide angle lenses. The feature used in this method is straight
line. The geometric constraint used in this paper is based on
the coincidence between point and line on calibration plane. In
stead of using polynomial function for modelling the lens dis-
tortion, the proposed calibration method used bivariate function
model. Therefore, the proposed calibration model does not have
the problem of selecting the suitable order of polynomial func-
tion. The performance of the proposed method was evaluated on
both synthetic and real data.
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