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ABSTRACT:

In this paper, we propose a new scan line optimization method for matching the triplet of images. In the present paper, the triplets
are initially matched using an area based local method. The cost is stored in a structure called as the Disparity Space Image (DSI).
Using the global minimum of this cost the initial disparity is generated. Next the local minima are considered as potential matches
where global minimum gives erroneous results. These local minima are used for optimization of disparity. As the method is a scanned
line optimization, it use popularly resampled images. The experiment is performed using Terrain Mapping Camera images from the
Chandrayaan-1 mission. In order to validate the result for accuracy, Lunar Orbiter Laser Altimeter dataset from Lunar Reconnaissance
Orbiter mission is used. The method is again verified using standard Middlebury stereo dataset with ground truth. From experiments,
it has been observed that using optimization technique for triplets, the total number of correct matches has increased by 5-10% in
comparison to direct methods. The method particularly gives good results at smooth regions, where dynamic programming and block-
matching gives limited accuracy.

1. INTRODUCTION

Stereo image matching is a classical research problem for the
computer vision and the phtogrammetry community. These stereo
matching methods are broadly classified as spare and dense stereo
matching. Sparse matching methods use distinctive features in
the image and match them, whereas as in dense matching algo-
rithms the disparity is determined at each of the pixel location.
Dense matching are again classified as Global and Local meth-
ods. Local methods take into consideration of neighboring pixels,
and defines a window or pixel based matching approach, whereas
global methods minimize a global energy using an initial dispar-
ity obtained from Local methods. DEM generation is an impor-
tant process from satellite/aerial photogrammetry point of view.
To generate DEM one of the steps is stereo matching. Commer-
cially available softwares use least square matching. In addition
to that, a lot of human effort and RPC parameters are required
to correct the generated model. Initially, the software’s were ca-
pable to generate DEM from pair of stereo images, but recently
some of the software have the capability to handle triplets (SAT-
PP, LPS). The exact workflow for DEM generation, which these
software uses are are not publicly available for complete under-
standing. Neither a brief description is given about removing in-
correct matches nor the exact rules to fill the holes is provided.
Therefore, at various places, generated DEM from these software
requires a lot of human effort for correction and hence these soft-
ware are semi automatic. In the case of planetary images, we do
not have very good ground control, due to which DEM generation
using conventional software is more challenging for planetary im-
ages. Therefore in the present work an automatic stereo match-
ing approach is used for disparity map generation, using triplets
and then automatically reject incorrect matches rigidly and finally
mapping it to the ground using control parameters.
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2. RELATED WORK

Scanline Optimization (SO) is one of the global matching ap-
proaches. The data structure that is used to store cost for scanline
optimization is called as Disparity Space Image (DSI). This rep-
resentation of the cost as of DSI finds its roots in the work by
Marr and Poggio (Marr and Poggio, 1976), where they used co-
operative algorithm to find the disparity. Later Cochran and G.
Medioni (Cochran and Medioni, 1992) used same structure and
called it as correlation array and used feature and area based
approach to find the disparity. Intille and Bobick (Intille and
Bobick, 1994b) (Intille and Bobick, 1994a) used dynamic pro-
gramming to find the disparity using DSI. They also gave math-
ematical representation to DSI. After that many SO algorithms
are proposed based on DP. Heiko Hirschmüller (Hirschmüller,
2008) (Hirschmüller, 2005) introduced a new method as Semi
Global Matching which has been used widely for satellite and
aerial images that isalso a SO method. SGM uses the DSI for
the entire image to aggregate the cost for a pixel. All the above
mentioned methods use the stereo pair for experiment. Recently
triplets are used using these methods. Heinrichs (Heinrichs et
al., 2007) et al. used SGM method for triplets to determine the
disparity. Mozerov (Mozerov et al., 2009), introduced a global
optimization based method using DSI for triplets to find the dis-
parity. Based on above proposed method we use DSI, based ap-
proach for tri-stereo matching. To constrain the search we are
defining some control points as initial matches as in (Intille and
Bobick, 1994b) (Intille and Bobick, 1994a) (Torr and Criminisi,
2002) (Kim et al., 2005), which guide the disparity curve ob-
tained by DP. Intille and Bobick used control points based on
some heuristics; Torr and Criminisi used edge and corner points
and Kim et al. proposed a method of oriented spatial filters for
determining control points. It has been observed that as global
minimum has the significant role in WTA strategy, but local min-
ima also finds its importance to give correct disparity (Dima and
Lacroix, May 2002). Therefore, the proposed approach use initial
points from global minimum and use weighted technique to fur-
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ther use local minima to increase the number of correct disparity
points to be used as control points.

3. CONTRIBUTION OF PRESENT WORK

The proposed work is inspired by the advantages of scan line
stereo matching methods. The basic methods that fall in this
category are scan line optimization (SO), dynamic programming
(DP) and semi-global-matching (SGM). SO and DP methods are
very similar. The basic problem is these methods is that these
methods assumes monotonicity or ordering of disparity, based
on this, in decision making process there are only three possi-
ble moves. If there is a large change in disparity, these methods
fails as the best path search chooses an incorrect move. Once an
incorrect path is selected it takes several moves to come back to
thecorrectpath. And all the disparities generated in between these
two moves are incorrect and gives the wrong result. In proposed
work based we are also searching for the best path, but this is
constrained by some control points. There are hard constraints
and soft constraints. The best path has to follow these control
points as used in (Torr and Criminisi, 2002) and constraints. But
these control points are not corner points. The results are much
similar to SGM method but in proposed method the 8 or 16 direc-
tion aggregation is not required as in SGM. If the slope is varying
very rapidly or, there are uniform regions in the image the method
gives good results as generally at these locations global minima
fails, and we have to consider the local minima.

4. RELATED THEORY

4.1 Cost Function

Cost function is measure of similarity between two images. Here
Zero Mean Sum of Squared Difference (ZSSD) is chosen as cost
function C, so as to compensate for changes in illumination (ra-
diometric changes). Mathematically the relation is given as-

Clr(x, y) =
∑
j∈w

{(I1(x, y)− I1)− (I2(x, y + j)− I2)}2 (1)

As we have triplet of images we have 3 cost functions for three set
of images Left-Center CLC , Center-Right CCR and Left-Right
CLR. In present study we used CCR and CCL because center
view is common in this case. To consider the third cost function
CLR, we need to transform it with respect to central view in order
to compare. This transformation requires accurate estimate of
depth (see equation 10), which itself is in error. Therefore this is
considered for future work. Now using these cost function DSI is
generated.

4.2 Disparity Space Image

DSI is a data structure. It is used to store various values of the
cost function, for various pixels of a scan line, in a grid format.
Figure 2 shows the DSI representation of the cost function the
plot is Left scan line Vs right scan line and the disparity in diag-
onally. As the disparity is limited to 0 to dmax, not all the pixels
are required to be mapped in this representation. The compressed
version of DSI is shown in figure 2, which is plotted as left scan-
line Vs disparity. Disparity Space Image (DSI) representation of
the cost function is one of the oldest ways to represent the cost
function as the data structure. It finds its roots in the work by
Marr and Poggio long back in 1976. It is used to store various val-
ues of the cost function for a particular scan-line in a grid format
and used to determine the disparity, using different approaches.

Figure 1: (A) Cost Function, (B) Color coded cost funciton rep-
resentation of (A), (C) Disparity Space Image , (D) Compresed
Disparity Space Image (arrow shows location of cost function
represented by (B))
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Figure 2: (a) Two scan lines Il{1, 4, 6, 8, 9, 3} and
Ir{1, 6, 8, 10, 5, 4} of image pair Il and Ir (b) DSIlr for
Il −→ Ir matching (c) compressed DSIc

lr

(Heinrichs et al., 2007) used similar representation and solved
the stereo matching using the Cooperative Algorithm for random
dot stereogram. The same structure has been termed as the Un-
compressed Correlation Array in approach as in by (Cochran and
Medioni, 1992). They used a composite approach of the feature
and area based matching using DSI. (Intille and Bobick, 1994a,
Intille and Bobick, 1994b) used the Dynamic Programming(DP)
to determine disparity using DSI. They also explained the forma-
tion and mathematical representation of DSI in a very lucid man-
ner. Later on DSI has been extensively used involving Dynamic
Programming approach for the stereo matching. For a stereo pair
(Il− Ir) images ; in ideal case the size of DSI is (n×n), where
the cost function C(i0, j, d) is given as |Il(i0, j)−Ir(i0, j +d)|.
Mathematically DSI(i, j, d) is given as −

DSI(i0, j, d) =
C(i0, j1, d1) C(i0, j2, d1) . . . C(i0, jn, d1)
C(i0, j1, d2) C(i0, j2, d2) . . . C(i0, jn, d2)

: :
. . . :

C(i0, j1, dn) C(i0, j2, dn) . . . C(i0, jn, dn)

 (2)

In case of DSI the search range is for entire scan line, hence d
ranges from 1 to dn, but not all the values in DSI are used to de-
termine the depth, as the search is limited by maximum disparity
dm. Therefore it is expensive to store all of the cost values, from
computation as well as memory usage point of view. Therefore
a compressed representation of DSI is used as cDSI . Thus the
size of cDSI is (dm × n). Mathematically cDSI is given as −

cDSI(i0, j, d) =
C(i0, j1, d1) . . . C(i0, jn−1, dn−1) C(i0, jn, dn)
C(i0, j1, d2) . . . C(i0, jn−1, dn) ×

: . . . × ×
C(i0, j1, dm) . . . × ×


(3)
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Figure 2 shows formation of DSI and cDSI from a scan lines
of the stereo image pair (Il − Ir).

5. CONSTRAINTS

5.1 Control Points

In proposed method the best path is constrained by control points,
these are global minimum and local minima.

5.1.1 Global minimum Let’s consider cost function C. As in
WTA strategy the global argument of minima of the cost function
is defined as the disparity, mathematically which is given as -

D(x, y) = argmin
d

C(x, y, d) (4)

5.1.2 Local Minima It has been observed that due to large
variation in disparity and noise, many a time global minimum end
with erronous match but local minima gives correct match, hence
apart from global minimum local minimum are used as control
points.
All the control points are first filterd for consistency check. IF
they are consistence in forward and reverse matching and left-
centre-right view then only considered further else rejected. These
coinsistency check is given as -

5.2 L R consistency in DSI

The argument of the global minima of columns in DSI is consid-
ered as disparity. From above relation in terms of DSI it can be
expressed as -

Dv(x, y) = argmin
d

DSI(x, y, d) (5)

Due to this representation of the cost function in DSI, we have
argument of the global minima of rows also as the disparity, (fig-
ure 2). So the next relation for disparity is give as-

Dh(x, y) = argmin
y

DSI(x, y, d) (6)

Physically the minima in vertical direction can be understood as
searching LR matching and in horizontal direction its RL match-
ing. Hence from above equations the LRC consistency chek gives
for the disparity to be accepted.

Dv(x, y) = Dv(x, y) (7)

5.3 CL CR consistency in DSI

Now as we have three views so the equation 7 can be expressed
in terms of left-centre and centre-right as-

Dcl(x, y) = argmin
d

DSIcl(x, y, d) (8)

Dcr(x, y) = argmin
d

DSIcr(x, y, d) (9)

Equation 8 and 9 gives two disparity map from two different
views. Therefore from two oservation we have two disparity map,
the erreo between these two is fiven as −

Dcl(x, y) = Dcr(x, y) (10)

Table 1: TMC Data-set details

Major Location Mode Lines Date of
Feature acquisition

Aft 188828 2008 11 16
Goldschmidt B 70.6◦N 6.7◦W Nadir 188708 2008 11 16

Fore 188608 2008 11 16
Aft 161400 2009 04 18

Gassendi G 16.75◦S 44.67◦W Nadir 161396 2009 04 18
Fore 161400 2009 04 18
Aft 136164 2009 04 18

Marius D 11.41◦N 45.07◦W Nadir 136164 2009 04 18
Fore 136164 2009 04 18

Table 2: LOLA Data set details

Crater Name of file resolution
Marius DLDEM 1024 00N 15N 300 330 (1/1024)◦/pixel

Gassendi G LDEM 1024 30S 15S 300 330 (1/1024)◦/pixel
Goldschmidt LDEM 1024 60N 75N 330 360 B (1/1024)◦/pixel

6. DATA-SET

To generate 3D model the triplet stereo pairs are used and to ver-
ify the results lidar data is used. Tri-stereo data used is from CH-
1 missions Terrain Mapping Camera (TMC), which is acquired
from ISSDC (http://www.issdc. gov.in/CHBrowse/index.jsp). The
details of data acquired are detailed in table 1. The lidar data
is acquired from Lunar Orbiter Laser Altimeter (LOLA) sensor
of LRO mission (http://ode.rsl.wustl.edu/moon/). The details of
LOLA dataset is given in table 3. To verify the results on planer-
ary images some more experiments are carried out on Middlebury
stereo dataset. te details are given in table 3. The dataset used is
shown in figure 3.

7. PROPOSED WORK-FLOW

The images from CH1 TMC data set are used for experimenta-
tion, the actual size is very large (1, 00, 000×4000 pixels) there-
fore a small portion (2000 × 2000 pixels) near known feature is
selected. Taking Nadir as reference view, corresponding images
from Fore and Aft are obtained. Fore and Aft are, then resam-
pled for quasi-epipolarity. Next, based on the outline of stereo
matching (Scharstein and Szeliski, 2002) a cost function is de-
fined. Using this cost function for a scan line, two DSI are gener-
ated, one for Aft-Nadir view and other for Nadir-Fore view. Sub-
sequently using proposed confidence measure incorrect matches
are rejected. Finally the LOLA dataset of LOC missoin is used
validation of the results thus obtained.

7.1 Quasi-Epipolar Resampling

TMC acquires the images in along track direction. In such case of
along track stereo acquisition, epiploar resampling is basically a
method to make ‘across track’ parallax to ‘zero’ so that for deter-
mining depth the corresponding pixel can be searched in ‘along
track’ direction only. Here a graphical approach is used to estab-
lish the relations between different views. In order to get the in-
sight of the geometric relations of stereo pair; first the images are
matched using Scale Invariant Feature Transform (SIFT) (Lowe,
2004). The matched SIFT features may have outliers, and for this
reason, to reject outliers Random Sample Consensus (RANSAC)
algorithm (Fischler and Bolles, 1981) is applied. Based on the
procedure as detailed in (Bhalerao et al., 2013) the parameters
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Table 3: Middleburry Stereo Dataset

Feature Name of file Size
Indoor lampshade1 1300× 1110

Figure 3: Input A-N-F view triplet images for Marius D crater
and DEM, yellow line shows the scan line for which experiment
is performed whose results are shown in figure 4

are obtained for epipolar resampling. Using these parameters Aft
(and Fore) to are resampled to follow epiploar geometry w.r.t.
Nadir.

7.2 DSI Generation

Using the above cost function as in equation DSI is generated.

7.3 Best Path Search

The proposed method is a global matching method that defines an
energy function and a penalty term. The initial conditions used
are

1. only a single local minima can be the correct disparity for
a column or row. (This condition satisfies the unique match
property of stereo matching).

2. The translation between two disparities should be less than a
threshold. (This condition satisfies the smoothness criterion
of stereo matching).

The initial traversing direction of the best path can be any either
a row, or a column of the DSI, here path traversed is from the
column to column. This optimized path at a column first look for
global minima if there is a global minima present at the location;
this is the solution. If global minima is absent, it looks for global
minima of adjacent columns, one to left and one to right Cml and
Cmr or moves several columns if could not find it in immediate
adjacent column. Using all local minima of the current column
(Pm0), and neighbouring global minima Cml, Cmr; an optimiza-
tion rule for considering a local minimum as desired solution is
formulated. Weightages are given to all local minima inversely
proportional to their location from the selected global minimum.
The best path is then selected based on highest weight from Cml,
Cmr . The path is then traversed for the next column. The addi-
tional rule for the path is to honour all the (Cm) but may omit a
local minimum from the set (Pm0) of a particular column. The
result is thus a smooth profile.

Table 4: Correct matches

Dataset Scan line Correct Matches
WTA DP Proposed

Goldsscmidt B 1000 1685 1735 1783
1500 1227 1685 1840

Gassendi G 1000 1321 1670 1796
1500 1053 1227 1556

Marius D 1000 1143 1685 1840
1500 1242 1670 1796

Lamp 150 843 956 1053
150 873 986 1071

Total pixels in scan line = 2150 pixels, for CH1 dataset
Total pixels in scan line = 1110 pixels, for Middleburry dataset

8. EXPERIMENTAL RESULTS

Using data from CH-1 mission TMC data-set the experiment is
performed for three known features as indicated in table 1. Ta-
ble 4 gives the result obtained for one of the craters. For accuracy
assessment obtained results are compared with the LOLA data
set. LOLA is laser altimetry dataset. It provides the location and
elevation. The data from CH1 triplets only provides location and
disparity which can not be directly compared unless precisely lo-
cated for location accuracy. Therefore, first the TMC data is cor-
rected with Clementine data for planimetric error. Later based
on Clementine data the LOLA data is obtained for the same lo-
cation. The resolution of LOLA is 29 meters and resolution of
TMC is 5 meters. Therefore, different profiles are compared for
accuracy assessment. It has been observed that a large number of
incorrect matches are removed using the defined criteria. Figure
4 shows one of the results of the experimentation for Marius D
crater and Middlebury image . The obtained result is compared
with LOLA after transforming it by scaling and offsetting, it has
been observed more that 90% of points obtained are matched cor-
rectly. The experiment is also performed on Middlebury dataset.
As the proposed method, is based on scan-line hence to com-
pare the results from proposed methodology has been compared
with dynamic programming algorithm, along with the basic block
matching. It has been observed; dynamic programming fails if
the disparity is very large as once it choose an incorrect disparity
it’s not easy for the algorithm to come hence to correct the path.
The method gives the smoother result as compared to both the
basic block matching and dynamic programming. In the case of
crater, the DP doesn’t gives good result at all.

Figure 4: Disparities generated by (A) Blockmatching (B) Dy-
namic Programming (C) proposed method for Marius D crater
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9. CONCLUSION AND FUTURE WORK

In this paper we used a method for triplet matching, which is
based on standard stereo matching techniques. We proposed a
method which uses information from triplet of images using a
DSI to define rules to find out incorrect matches. In future work
the distribution of the matches will be considered and qualitative
analysis will be done using ground truth from other sensor. In
present work the complete set DEM for a region is not investi-
gated properly, instead profile is only investigated which will be
carried in future work.
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