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ABSTRACT: 
 
In this paper a new approach for moving objects detection in video surveillance systems is proposed. It is based on iLBP (intensity 
local binary patterns) descriptor that combines the classic LBP (local binary patterns) and the multiple regressive pseudospectra model. 
The iLBP descriptor itself is considered together with computational algorithm that is based on the sign image representation. We show 
that motion analysis methods based on iLBP allow uniformly detecting objects that move with different speed or even stop for a short 
while along with unattended objects. We also show that proposed model is comparable to the most popular modern background models, 
but is significantly faster. 
 
 

1. INTRODUCTION 

One of the key problems in the intellectual video surveillance 
systems is fast detection of moving objects. It is usually solved 
by building a background model of the scene and getting a 
difference between the built model and the current frame or a 
group of last frames.  
The most common background models are GMM (Gaussian 
Mixture Model) (Stauffer, 1999) and KDE (Kernel Density 
Estimator) (Elgammal, 2000). A fast model based on multiple 
regressive pseudospectra was also proposed (Vishnyakov, 2012). 
But all these methods, having their own advantages, also have a 
serious common drawback: they accumulate the information 
about luminance distribution over a finite period of time in every 
pixel independently and the relations between neighboring pixels 
are not taken into account. In recent time, there appeared some 
papers where authors considered every pixel with a descriptor of 
its surroundings (Heikkila, 2004; Heikkila, 2006). For example, 
the textured-based method (Heikkila, 2004) modelled the 
background with a group of histograms based on local binary 
patterns. Using LBP histograms helps to avoid labelling some 
moving background pixels as foreground since it extracts region 
texture features. However, its detection performance will sharply 
decline when scenes have strong changes. As further 
improvement of Heikkila approach, dynamic background 
modelling and subtraction based on spatio-temporal local binary 
patterns were introduced in (Zhang, 2008) and modeling pixel 
process with scale invariant local patterns were introduced in 
(Liao, 2010) to handle different illumination variations. Such 
approaches substantially increase quality characteristics of both 
background models and video analysis algorithms. However, it 
appears to be almost inacceptable due to its computational 
complexity, when a real-time processing is needed for multi-
camera (not a single camera) setup. 
In this work, we propose a new iLBP (intensity local binary 
patterns) descriptor and build a fast background model on its 
basis. Together with regressive estimate of the value of an 
individual pixel, we use a statistical estimate of the LBP 
descriptor components.  This approach allows stabilizing the 
value of the descriptor and constructing a background model that 
is robust to lighting conditions changes in the scene and is 
applicable for the real time multi-camera setup. 
 

2. iLBP DESCRIPTOR AND BACKGROUND MODEL 

2.1 LBP descriptor 

Let us consider the classic LBP descriptor (Ojala, 1994, 1996). 
Let 𝐼𝐼(𝑥𝑥,𝑦𝑦) be intensity of the current pixel (𝑥𝑥,𝑦𝑦). LBP operator 
LBP(𝑥𝑥,𝑦𝑦) labels pixels of an image by thresholding eight 
neighborhood of each pixel with the center value:  
 

𝐶𝐶LBP(𝑥𝑥 + 𝑑𝑑𝑥𝑥𝑖𝑖 ,𝑦𝑦 + 𝑑𝑑𝑑𝑑𝑖𝑖) = 

= �1: 𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 + 𝑑𝑑𝑥𝑥𝑖𝑖 ,𝑦𝑦 + 𝑑𝑑𝑑𝑑𝑖𝑖) ≥ 0
0: 𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 + 𝑑𝑑𝑥𝑥𝑖𝑖 ,𝑦𝑦 + 𝑑𝑑𝑑𝑑𝑖𝑖) < 0 

 
and considering the result (Fig. 1) as an eight bit binary number 
- local binary pattern code: 
 

LBP(𝑥𝑥,𝑦𝑦) = ∑ 2𝑖𝑖−1 ⋅ 𝐶𝐶LBP(𝑥𝑥 + 𝑑𝑑𝑥𝑥𝑖𝑖 ,𝑦𝑦 + 𝑑𝑑𝑦𝑦𝑖𝑖),8
𝑖𝑖=1     (2) 

 
where 𝑑𝑑𝑥𝑥𝑖𝑖 ,𝑑𝑑𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1. .8 -  𝑥𝑥- and 𝑦𝑦- coordinate shifts with 
respect to center pixel (𝑥𝑥,𝑦𝑦). 

 
Figure 1. Usual LBP computation. 

 
Comparison of LBP descriptors as binary vectors is calculated 
using the Hamming distance 𝐻𝐻(∙): 
 

 𝐷𝐷LBP(𝑎𝑎, 𝑏𝑏) = 𝐻𝐻�LBP(𝑎𝑎), LBP(𝑏𝑏)�  (3) 
 
Threshold tr is often used when comparing the pixels to reduce 
noise influence.  
 

𝐶𝐶LBP(𝑥𝑥 + 𝑑𝑑𝑑𝑑,𝑦𝑦 + 𝑑𝑑𝑑𝑑, 𝑡𝑡𝑡𝑡) = 

= �1: 𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 + 𝑑𝑑𝑑𝑑,𝑦𝑦 + 𝑑𝑑𝑑𝑑) ≥ 𝑡𝑡𝑡𝑡
0: 𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 + 𝑑𝑑𝑑𝑑,𝑦𝑦 + 𝑑𝑑𝑑𝑑) < 𝑡𝑡𝑡𝑡  

 

(4) 

(1) 
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2.2 iLBP descriptor 

However, LBP descriptors with all its advantages have some 
significant drawbacks. The main drawback is a complete 
ignoring of intensity information when comparing LBP 
descriptors. Because of this, there could be a paradoxical 
situation (wrong pixel comparison result) when intensity values 
of pixels differ drastically, but their LBP descriptors are identical. 
On the other hand, it is obvious that within a chosen scene the 
fact of a local intensity change in the point of interest is very 
important. To overcome this drawback, we define 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) 
descriptor as a collection of 𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) descriptor values and 
intensity 𝐼𝐼(𝑥𝑥,𝑦𝑦) values of the image: 
 

 iLBP(𝑥𝑥,𝑦𝑦) = {LBP(𝑥𝑥,𝑦𝑦), 𝐼𝐼(𝑥𝑥,𝑦𝑦)}   (5) 
 
The definition of iLBP descriptor lead us to the following 
formula for the distance 𝐷𝐷iLBP between the iLBP descriptors in 
the image points 𝑎𝑎 and 𝑏𝑏: 
 
𝐷𝐷iLBP(𝑎𝑎, 𝑏𝑏) = 𝑘𝑘 |𝐼𝐼(𝑎𝑎) − 𝐼𝐼(𝑏𝑏)| + 𝐻𝐻�LBP(𝑎𝑎), LBP(𝑏𝑏)� (6) 

 
where 𝑘𝑘 is a proportionality factor, 𝐻𝐻(⋅) - Hamming distance 
between two LBP descriptors. 
The proportionality factor 𝑘𝑘 can be chosen in the range of 2-8 to 
2-4 to match the possible values of the Hamming distance. 

 
2.3 iLBP background model 

We propose an approach for motion detection using a 
dynamically changing background model. In contrast to classic 
methods we consider an image not as a function of intensity, but 
as a set of iLBP descriptors computed for every point of the 
image. 
Every descriptor contains intensity value and a binary vector, and 
this dual nature is a problem. The background model can also be 
considered as containing two independent models, first one 
corresponding to the binary part (iLBP) and the other to the 
image intensity part. These models are united at the last stage of 
processing for motion detection and segmentation of moving 
regions. 
It’s convenient to use the regressive model for the “image” part, 
which has already proved itself very fast and reliable in solving 
motion detection problems  (Vishnyakov, 2012). For the “binary” 
part we propose using a simple statistical model. 
Let us consider 𝑁𝑁 consequent frames of the video. Let 𝑇𝑇 be the 
current frame. 
For the image part let us consider accumulator of the regression 
pseudospectra (Vishnyakov, 2012): 
 
𝑀𝑀𝑁𝑁(𝑥𝑥,𝑦𝑦,𝑇𝑇) = 𝛼𝛼 ⋅ 𝑀𝑀𝑁𝑁(𝑥𝑥,𝑦𝑦,𝑇𝑇 − 1) + (1 − 𝛼𝛼) ⋅ 𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑇𝑇),   (7) 
 

where 𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑇𝑇) is a (𝑥𝑥,𝑦𝑦) pixel intensity at the frame 𝑇𝑇, 
𝑀𝑀𝑁𝑁(𝑥𝑥,𝑦𝑦,𝑇𝑇) – the value of the 𝑁𝑁-frame accumulator in a pixel 
(𝑥𝑥,𝑦𝑦), 𝑁𝑁-frame means all frames from (T – N) frame up to T 
frame, 𝛼𝛼 ∈ [0,1] – regression parameter. 
For the binary part of the scene, point (x, y) is corresponded to a 
sequence of LBP descriptors on the considered frames:  
 

LBPN(x, y, T) = {LBP(x, y, T), LBP(x, y, T − 1), … ,
LBP(x, y, T − N)} 

 
Without intensity components of the descriptors this sequence 
can be considered as an implementation of stationary random 
processes n1(T), … , n8(T), ni(T) = LBPi(x, y, T). Here 
LBPi(x, y, T) is the bit 𝑖𝑖 of the LBP descriptor computed for the 

point (x, y) on the frame T. Every random process corresponds 
to a pixel in the central (x, y)  pixel’s neighbourhood and to a bit 
in the LBP code (Fig. 2). 

 
Figure 2. Random processes in relation to the central pixel for 
several consecutive frames. 
 
Then, for a binary part of a background model, we can use 
quantile 𝜑𝜑𝛼𝛼𝑖𝑖 (LBPN(𝑥𝑥,𝑦𝑦,𝑇𝑇)), 𝑖𝑖 = 1 … 8 of the trajectories of the 
random processes 𝑛𝑛1(𝑇𝑇), … ,𝑛𝑛8(𝑇𝑇). 
 

𝜑𝜑𝛼𝛼𝑖𝑖 (LBPN(𝑥𝑥,𝑦𝑦,𝑇𝑇)) = �1:∑ LBPi(𝑥𝑥,𝑦𝑦, 𝑗𝑗)  ≥ 𝑁𝑁 ⋅ 𝛼𝛼𝑇𝑇
𝑗𝑗=𝑇𝑇−𝑁𝑁

0: otherwise
,          (9) 

 
 
where 𝑁𝑁 ⋅ 𝛼𝛼 – quantile level, 𝑖𝑖 = 1, … , 8 – bit number. 
Thus, the final binary part of the descriptor is put together like 
(2): 

 
𝜑𝜑𝛼𝛼(LBPN(𝑥𝑥,𝑦𝑦,𝑇𝑇)) = ∑ 2𝑖𝑖−1 ⋅ 𝜑𝜑𝛼𝛼𝑖𝑖 (LBPN(𝑥𝑥,𝑦𝑦,𝑇𝑇)).8

𝑖𝑖=1    (10) 
 

For the moving objects detection we propose to use a similar to 
(6) sum of the differences of independent background models, 
calculated for various parameters: 
 

𝑐𝑐iLBP(𝑥𝑥,𝑦𝑦) = 𝑘𝑘 �𝑀𝑀𝑁𝑁1(𝑥𝑥,𝑦𝑦,𝑇𝑇) −𝑀𝑀𝑁𝑁2(𝑥𝑥,𝑦𝑦,𝑇𝑇)� + 
 +𝐻𝐻 �𝜑𝜑𝛼𝛼�LBPN1(𝑥𝑥,𝑦𝑦,𝑇𝑇)� − 𝜑𝜑𝛼𝛼�LBPN2(𝑥𝑥,𝑦𝑦,𝑇𝑇)��, (11) 
 
For the regular use, 𝑁𝑁2 parameter can be set to 1 frame. However, 
in general, 𝑁𝑁2 can be any number less than 𝑁𝑁1. We recommend 
setting parameter 𝑁𝑁2 equal to 𝑁𝑁1/2 or 𝑁𝑁1/4 to improve noise 
filtration.  
Main 𝑁𝑁1 parameter is a primary accumulator length and can be 
considered exactly like an accumulator in (Vishnyakov, 2012). If 
we set 𝑁𝑁1 equal to a relatively small number of frames (8…32), 
moving objects will be detected. If we set 𝑁𝑁1 equal to a relatively 
big number of frames (512…2048), unattended and carried away 
objects will be detected. 
Therefore, this approach allows uniformly detecting objects that 
move with different speed or even stop along with unattended or 
carried away objects. 
 
To identify if a (𝑥𝑥,𝑦𝑦) pixel belongs to the background or to the 
foreground we use a simple threshold: 
 

(𝑥𝑥,𝑦𝑦) ∈ � 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∶ 𝑐𝑐iLBP(𝑥𝑥,𝑦𝑦) ≥ 𝐶𝐶
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∶ 𝑐𝑐iLBP(𝑥𝑥,𝑦𝑦) < 𝐶𝐶             (12) 

 
This method of moving objects detection allows combining the 
strengths of both textural techniques of image comparison and 
intensities. 
 
2.4 iLBP computation remarks 

In the practical implementation of the approach described above, 
a number of significant challenges appear. The first obvious 
problem is to store a sequence of LBP.  
The easiest way is to use 8 integer variables (𝑃𝑃1, … ,𝑃𝑃8), where 
each 𝑃𝑃𝑖𝑖  corresponds to its bit descriptor: 

(8) 
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𝑃𝑃𝑖𝑖(LBPN(𝑥𝑥,𝑦𝑦,𝑇𝑇)) = � 2𝑡𝑡−1 
𝑁𝑁

𝑡𝑡=1

LBPti(𝑥𝑥,𝑦𝑦) 

 
Then the problem of computing quantiles reduces to the well 
known population counting problem. This task can be quickly 
calculated by modern processor commands, for example, 
popcnt(). 
Another difficulty is the necessity of calculation of the LBP 
descriptors for each frame, wherein the most processor time in 
the calculation of the descriptor is used by paired comparisons. 
If reconfigurable or customary processors are available this is not 
a problem (Boutellier et al., 2012), but for an ordinary PC 
hardware the nontrivial solution to this problem is a sign 
representation of the image. With this approach we consider the 
image as a plurality of paired comparisons (more is 1 and less is 
0). In addition, symmetric pairwise comparisons are considered 
equivalent. Such a representation can be shown as a flat 
undirected graph (Fig. 3). 

 
Figure 3. Presentation of image as an undirected graph. 

 
In this graph, each node corresponds to a pixel of the image, and 
the weights of the edges correspond to the pairwise comparisons. 
Then the Hamming distance for the two binary parts of the iLBP 
descriptors is the number of mismatches of the weights 𝑤𝑤 of the 
respective edges of the sign representation (accounting that the 
graph is undirected, you can use a simple rule 𝑤𝑤(𝑎𝑎,𝑏𝑏) = 1 −
𝑤𝑤(𝑏𝑏, 𝑎𝑎), where 𝑎𝑎 and 𝑏𝑏 are related nodes). In considered case, we 
do not need to take into account the orientation of the edges, 
because descriptors are compared in the same points on different 
frames. 
Background model, described in the previous section, can be 
easily transformed for the sign representation of the image: 

 

𝜑𝜑𝛼𝛼𝑖𝑖 (LBPN(𝑥𝑥,𝑦𝑦,𝑇𝑇)) = �1:∑ wt ��
𝑥𝑥
𝑦𝑦� , �𝑥𝑥 + 𝑑𝑑𝑥𝑥𝑖𝑖

𝑦𝑦 + 𝑑𝑑𝑦𝑦𝑖𝑖
�� ≥ 𝑁𝑁 ⋅ 𝛼𝛼𝑁𝑁

𝑡𝑡=1

0: otherwise
 

(14) 
 
Thus, all the operations described in the previous section are 
easily transferred to the case of the sign representation. However, 
for computing, storing and comparing of sign representations we 
require half as much processor and memory operations. In 
addition, this representation shows the relationship of this 
approach to the morphological image analysis, described in 
(Karkishchenko, 2010). This fact explains the high stability of the 
algorithm to changes in brightness and external noises. 
 

3. TESTING RESULTS 

In order to demonstrate the efficiency and effectiveness of 
the proposed approach we compared our experimental results 
with the well-known background modeling methods GMM 
(Stauffer, 1999), KDE (Elgammal, 2000), STLBP (Spatio-
temporal local binary patterns) (Zhang, 2008) on the two video 
sequences ("highway" and "PETS 2006"). Particularity of the 
“highway” video is the large number of branches and moving 

shadows cast by them. Significant challenge for the analysis of 
the video “PETS 2006” is the large number of moving objects in 
the background, partially fenced and having low constrast. 
Quantitative results of the methods of GMM, KDE and iLBP 

model are shown in Table 1, Table 2, image comparison – in 
Figure 4. Under false negatives we mean the number of 
background pixels that were not found. Under the false positives 
– the number of background pixels that have been considered as 
a moving object by the algorithm. Ground truth images, 
processed images, frames per second, true positive, false positive, 
false negative results for GMM, KDE, STLBP  were taken from 
the video database CDNET (Goyette, 2012) for change detection. 
Note that all processed images from CDNET were median 
filtered. iLBP result images were not filtered to show what it is 
capable off. Achieved iLBP results allow suggesting that the 
proposed method is not generally inferior to GMM, KDE and 
STLBP, but greatly exceeds them in computation and gives 
reasonable moving objects masks in outdoor scenarios. 
 

Frames 787 frame 1627 frame 
Original 

  
Ground 

truth 

  
KDE 

  
GMM 

  
STLBP 

  
iLBP 

  
 

Figure 4. Detection of moving objects using iLBP background 
model. Line 1 – frame numbers of “highway” video, line 2 – 

(13) 
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corresponding frames, line 3 – ground truth, line 4 – KDE, line 5 
– GMM, line 6 – STLBP, line 7 – iLBP. 
 

Method TP FP FN FPS 
GMM 5011645 378316 446344 ~42 
KDE 5118955 368979 339034 ~18 

STLBP 5188688 56464 269301 ~58 
iLBP 4803545 449439 411211 ~920 

Table 1. Results for GMM, KDE, STLBP and iLBP  for the 
“highway” video. TP - True Positive, FP - False Positive, FN - 

False Negative. 
 

Method TP FP FN FPS 
GMM 4232121 1154934 596069 ~21 
KDE 3816139 790623 1012051 ~9 

STLBP 3727875 838047 1100315 ~29 
iLBP 3956678 1004934 1200881 ~670 

Table 2. Results for GMM, KDE, STLBP and iLBP for the 
“PETS 2006” video. TP - True Positive, FP - False Positive, 

FN - False Negative. 
 

4. CONCLUSION 

The problem of automatic video analysis for the detection and 
tracking of moving objects is the most significant problem in the 
field of motion analysis, applied to problems of video 
surveillance and security systems. In this paper, we proposed a 
new approach to the problem of background modeling and 
subtraction based on combination of image intensity and binary 
information in each pixel. For this purpose, we introduced a new 
descriptor iLBP and a fast method for iLBP evaluation on a 
sequence of images when reconfigurable or customary 
processors are not available and processing speed is crucial. 
The evaluation results of the proposed approach are given for the 
publicly available outdoor scenarios. Achieved speed is more 
than satisfactory while preserving reasonable loss in overall 
performance. 
 
References 

Stauffer C.  and Grimson W. E. L., 1999. Adaptive background 
mixture models for real-time tracking. In Proc. Int. Conf. on 
Computer Vision and Pattern Recognition, Vol. 2, IEEE, 
Piscataway, NJ. 
 
Elgammal A., Harwood D. and Davis, L., 2000. Non-parametric 
model for background subtraction. In Proc. Eur. Conf. on 
Computer Vision, Lect. Notes Comput. Science. 1843, pp. 751-
767. 
 
Vishnyakov B., Vizilter Y., Knyaz V., 2012. Spectrum-Based 
Object Detection And Tracking Technique For Digital Video 
Surveillance. International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, pp. 579-583. 
 
Ojala T., Pietikäinen M., and Harwood D., 1994. Performance 
evaluation of texture measures with classification based on 
Kullback discrimination of distributions. Proceedings of the 12th 
IAPR International Conference on Pattern Recognition. vol. 1, 
pp. 582 - 585. 
 
Ojala T., Pietikäinen M., and Harwood D., 1996. A Comparative 
Study of Texture Measures with Classification Based on Feature 
Distributions. Pattern Recognition. vol. 29, pp. 51-59 
 

Heikkila M., Pietikainen M., Heikkila J., 2004. A texture-based 
method for detecting moving objects. Proc. British Machine 
Vision Conf., vol. 1, pp. 187–196. 
 
Heikkila M., Pietikainen M., 2006. A texture-based method 
for modeling the background and detecting moving objects. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 28(4): 657–662. 
 
Zhang S., Yao H., Liu S., 2008.  Dynamic background 
modeling and subtraction using spatio-temporal local binary 
patterns. Proc. IEEE Int. Conf. Image Process., pp.1556 -1559. 
 
Liao S., Zhao G., Kellokumpu V., Pietikainen M., Li S., 2010. 
Modeling pixel process with scale invariant local patterns for 
background subtraction in complex scenes. In Proc. Int. Conf. on 
Computer Vision and Pattern Recognition. pp. 1301-1306. 
 
Boutellier, J., Lundbom, I., Janhunen, J., Ylimainen, J., 
Hannuksela J., 2012.  Application-specific instruction processor 
for extracting local binary patterns. Design and Architectures for 
Signal and Image Processing (DASIP), pp.1-8. 
 
Karkishchenko A., Goncharov A., 2010. Stability investigation 
of the sign representation of images. Automation and Remote 
Control. Vol. 71, Issue 9, pp. 1793-1803. 
 
Goyette N., Jodoin P.-M., Porikli F., Konrad J. and Ishwar P., 
2012. Changedetection.net: a new change detection benchmark 
dataset. In Proc. IEEE Workshop on Change Detection (CDW-
2012) at CVPR-2012. pp. 1-8. 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-347-2014 350


