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ABSTRACT: 

 

2D image matching problem is often stated as an image-to-shape or shape-to-shape matching problem. Such shape-based matching 

techniques should provide the matching of scene image fragments registered in various lighting, weather and season conditions or in 

different spectral bands. Most popular shape-to-shape matching technique is based on mutual information approach. Another well-

known approach is a morphological image-to-shape matching proposed by Pytiev. In this paper we propose the new image-to-shape 

matching technique based on heat kernels and diffusion maps. The corresponding Diffusion Morphology is proposed as a new 

generalization of Pytiev morphological scheme. The fast implementation of morphological diffusion filtering is described. 

Experimental comparison of new and aforementioned shape-based matching techniques is reported applying to the TV and IR image 

matching problem. 
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1. INTRODUCTION 

This paper addresses the problem of shape-based image 

matching with no dependence on the concrete intensity or 

radiometric pixel values. For example, one can compare images 

of one scene captured in different seasons, times of day, weather 

and lighting conditions, spectral ranges and so on. In such cases 

the traditional image matching techniques like least square 

matching (LSM) or zero mean normalized cross correlation 

(ZNCC) are usually unstable due to the variability of intensity. 

The most popular technique for image shape comparison 

utilizes the mutual information (MI) measure based on 

probabilistic reasoning and information theory (Maes et al, 

1997). The other approach was proposed by Pytiev (so called 

“Pytiev morphology”) based on geometrical and algebraic 

reasoning (Pyt’ev, 1993). This approach expresses the 

geometrical idea of image shape in the evident form and 

provides the image-to-shape matching technique based on 

morphological correlation coefficient (MCC). In our paper 

(Vizilter, Zheltov, 2012) this Pytiev morphological approach 

was applied for obtaining the shape-to-shape matching 

technique based on mean square effective morphological 

correlation coefficient (MSEMCC). 

Unfortunately, the experiments with TV and IR image matching 

demonstrate that all these shape-based matching techniques are 

not robust enough relative to noise and high-frequency damage 

of images. We suppose that such insufficient robustness is a 

result of poor quality of image segmentation, because the 

traditional morphological 2D shape description as a set of flat 

zones of frame tessellation is too sensitive relative to noise, 

segmentation scheme and its parameters.  

From the other hand, in the area of manifold learning and data 

shape matching some stable shape description and matching 

techniques are known, based on heat kernels and diffusion maps 

(Belkin, Niyogi, 2001), (Lafon, 2004), (Coifman et al, 2007), 

(Memoli, 2011). These techniques do not require preliminary 

data segmentation. So, there is a chance that modified 

morphological tools based on such “diffusion” ideas will be 

more robust. 

In this paper we propose a new generalization of Pytiev 

morphological scheme based on heat kernels and diffusion 

maps. In the framework of this Diffusion Morphology the new 

image-to-shape matching technique is implemented and tested 

relative to the aforementioned matching techniques applying to 

the TV and IR images of the same scene. 

 

2. RELATED WORKS 

This section contains the brief overview of both shape-based 2D 

image comparison techniques and data description and 

matching techniques based on heat kernels and diffusion maps. 

 

2.1 Mutual information 

The approach for 2D shape matching based on mutual 

information (MI) notion from information theory was proposed 

in (Maes et al, 1997). Mutual information I(A,B) estimates the 

dependence of two random variables A and B by measuring the 

distance between the joint distribution pAB(a,b) and the 

distribution of complete independence pA(a)pB(b): 
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where H(A) is an entropy of A, H(B) is an entropy of B, and 

H(A,B) is their joint entropy. For two intensity values a and b of 

corresponding pixels in the two images, the required empirical 

estimations of joint and marginal distributions can be obtained 

by normalization of the joint (2D) and marginal (1D) 

histograms of compared image fragments. Maximal I(A,B) value 

over a set of relative fragment positions corresponds to the best 

geometrical matching of image fragments. This approach does 

not describe the image shape in the evident form, but different 

successful shape matching applications were created based on 

this MI approach in recent years, for example (Goebel, 2005), 

(Ji, 2005). 
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2.2 Morphological image analysis and geometrical 

correlation 

In the framework of Morphological Image Analysis (MIA) 

proposed by Pytiev (Pyt’ev, 1993) images are considered as 

piecewise-constant 2D functions 
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where n – number of non-intersecting connected regions of 

tessellation F of the frame , F={F1,…,Fn}; f=(f1,…,fn) – 

corresponding vector of real-valued region intensities; 

Fi(x,y){0,1} – characteristic (support) function of i-th region: 

 



 


.,0

;),(,1
),(

otherwise

Fyxif
yx

i

Fi


 (2) 

 

This tessellation of image is supposed to be obtained by some 

image segmentation procedure. Set of images with the same 

tessellation F is a convex and close subspace FL2() called 

shape-tessellation, mosaic shape or simply shape: 
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For any image g(x,y)L2() the projection onto the shape F is 

determined as 
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Pytiev morphological comparison of images f(x,y) and g(x,y) is 

performed using the normalized morphological correlation 

coefficients (MCC) of the following form 
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The first formula estimates the closeness of image g to the 

“shape” of image f. Second formula measures the closeness of 

image f to the “shape” of image g. For elimination of constant 

non-informative part of image brightness following image 

normalization is usually performed: 

 

,
||||

||||
),(

gPg

gPgP
FgK

O

OF
M






||||

||||
),(

fPf

fPfP
GfK

O

OG
M






, (5) 

 

where PO f – projection of image f onto the “empty” shape O 

with one flat zone. This projection is a constant-valued image 

filled by mean value of projected image. 

Later some advances and modifications of this approach were 

proposed in (Pyt’ev et al, 2006), (Falomkin, Pyt’ev, 2007), 

(Vizilter, Zheltov, 2009), but their basic ideas are still based on 

projection of one image to the shape of other image or image 

class. 

In (Vizilter, Zheltov, 2012) the geometrical correlation 

approach was developed based on Pytiev’s morphological 

image analysis. Let f(x,y) from F is a piecewise-constant 2D 

function described above and image g(x,y) from G is an 

analogous 2D function with m as a number of tessellation 

regions G={G1,…,Gm}; g=(g1,…,gm) – vector of intensity 

values; Gj(x,y){0,1} – support function of j-th region. Let’s 

introduce following additional set of “S-variables”: S – area of 

the whole frame ; 2
),( yxS Fii   – area of tessellation 

region Fi; 
2

),( yxS Gjj   – area of tessellation region Gj; 

 ),(  ),,( yxyxS GjFiij   – area of intersection FiGj. 

Mean square effective morphological correlation coefficient 

(MSEMCC) for shapes F and G is determined as 
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where K(Fi,Gj) = Sij / S – normalized influence coefficient for 

pair of regions Fi and Gj; KM
2(Gj,Fi) = Sij / Sj – square of 

normalized morphological correlation for pair of regions. 

 

2.3 Manifold learning, diffusion maps and shape matching 

The application of heat kernels and diffusion maps to shape 

analysis is initially inspired by the manifold learning technique 

developed for nonlinear dimensionality reduction (NLDR). 

Most interesting NLDR techniques are the following: Isomap 

(Tenenbaum et al, 2000), Locally Linear Embedding (LLE) 

(Roweis et al 2000), Kernel Principle Component Analysis 

(Scholkopf, 1999), Laplacian Eigenmaps (Belkin, Niyogi, 

2001), Hessian LLE (Donoho, 2003), Manifold Sculpting 

(Gashler, 2008) and some other. The terms “heat kernel” and 

“heat dissipation” were introduced in (Belkin, Niyogi, 2001) in 

the context of Laplacian Eigenmap. In this concept they play the 

role of some manifold shape characteristics. Based on this, 

authors of (Lafon, 2004), (Coifman, Lafon 2006), (Coifman et 

al, 2007) introduced and developed the theory of diffusion maps 

(DM). 

Let the manifold be described by some set of points X={xi} in a 

high-dimensional space. The solution of NLDR problem in DM 

approach has a following form: 

 Generate a neighborhood graph G.  

 Form a heat kernel (matrix of pairwise similarity weights) 

H = || hij || using the rule. If i-th and j-th points are 

connected in G, then 
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else hij = 0. 

 Normalize the heat kernel, and obtain the diffusion kernel 

P = M-1 H, 

where M = || mij || is a diagonal matrix of column sums for H: 

mii = i hij. 

 Select the scale parameter t, and form the t-degree 

diffusion matrix Pt, t1. 

 Compute the spectral decomposition of Pt with eigenvalues 
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and corresponding eigenfunctions {ψi} 

 Map the data to the low-dimensional vector space via 

selection of l eigenvalues and forming new coordinates 

based on corresponding eigenfunctions: 
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The normalization of heat kernel provides here both the linear 

smoothing diffusion operator Pt, and its interpretation in terms 

of Markov chain with transition matrix Pt for t steps of random 

walking. Thus, the Euclidean distance in this new space can be 

interpreted as a probability of point-to-point transition in t steps 

of this random walking. Such distance is called a diffusion 

distance, and it is very popular now in the area of high 

dimensional data analysis and machine learning. 

Being inspired by NLDR task, the DM approach was later 

successfully applied for other types of data analysis problems. 

In particular, the following image restoration technique was 

outlined in (Coifman et al, 2007). Let I(p) be a 2D image with 

p=(xp,yp). And let pixels be described by some feature vector 

v(p). Then for given >0 the diffusion kernel is defined as 
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The filtering of image I by this diffusion filter has a usual form 
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Figure 1. Examples of diffusion filtering for denoising of TV 

and IR images  

 

Fig. 1 demonstrates the examples of TV and IR images 

diffusion filtering. In this case, like in paper (Coifman et al, 

2007), v(p) is just a 5×5 vector of grayscale image values in a 

5×5 pixel neighborhood. Both for TV and for IR image the 

shape was preserved and the noise was essentially removed. The 

reason of such success in noise suppression is an adaptive 

smoothing with high kernel weights for similar neighbors and 

low or zero weights for dissimilar. 

Let’s note that idea of linear smoothing with adaptive kernel is 

utilized in different image restoration techniques, for example in 

(Takeda et al, 2007), (Milanfar, 2013). But the DM approach 

provides a unified way for shape description, shape comparison 

and shape-based image restoration. 

Let’s look at the data shape matching techniques based on heat 

kernels, diffusion maps and their spectral features. A number of 

such approaches including heat kernel signature (HKS), heat 

kernel spectrum (set of eigenvalues), heat kernel signature 

distribution (HKSD) and heat trace (HT) are proposed and 

developed in (Sun et al, 2009), (de Goes et al, 2008), (Lieu, 

Saito, 2008), (Reuter et al, 2006) and other papers. In the 

brilliant paper (Memoli, 2011) the overview, classification and 

unified mathematical description of these techniques are given. 

Moreover, the special Gromov-Wasserstein distances are 

proposed for shape matching based on such spectral 

characteristics, and the stability (robustness) of such distances 

and matching procedures are theoretically proved (Memoli, 

2011). These theoretical results are supported by impressive 

experiments with 3D models and real data collections. These 

results allow supposing, that the combination of DM and MIA 

approaches could create some effective 2D image and shape 

matching tools. 

 

3. DIFFUSION MORPHOLOGY AND IMAGE 

MATCHING 

In the first part of this section we propose a new generalized 

morphological framework based on diffusion shape models. In 

the second part the corresponding new morphological image 

and shape matching technique is described. 

 

3.1 Generalized diffusion morphology 

Let the image be a 2D function 
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where R – set of real numbers, R2 – image plane,  – 

rectangular frame region of image plane. Images are elements of 

Hilbert space L2() with scalar product (f,g) and 

norm || f || = (f,f)1/2. 

Let’s introduce the generalized definitions of basic MIA notions 

by substitution of “mosaic shape” to “diffusion shape” in order 

to obtain the relaxed version of MIA. 

The relational model of diffusion shape F for image f is a heat 

kernel hF(x,y,u,v): [0,1], such that 

 

       ,,,,,,,  ;,,,,,, yxvuhvuyxhvuyxhyxyxh FFFF   

 

and the unique basic similarity measurement function  exists 

providing 
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The operator model of diffusion shape F is a diffusion operator 

PF with normalized diffusion kernel pF(x,y,u,v), such that 
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So, any relational model hF corresponds to the unique operator 

model with normalized kernel pF: 
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The spatial model of diffusion shape F for image f(x,y) with 

precision n is an eigenspace of diffusion operator PF 
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where {1,…,n} – n first eigenvalues, а {1(x,y),…,n(x,y)} – 

n first eigenfunctions of morphological diffusion operator PF: 
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It is easy to see, that in particular case of heat kernel of the form 
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it expresses the binary relation “points of equal values”, and the 

diffusion-based morphological definitions stated above degrade 

to the MIA definitions given in section 2.2. Really, in this case 

the similarity relation  becomes an equivalent relation on the 

image frame points splitting them to a set of non-overlapping 

regions F={F1,…,Fn}, where n is a number of regions of frame 

tessellation F. Hence, the morphological diffusion operator 

becomes a morphological projector PF = PF PF with n 1-valued 

eigenvalues and characteristic (support) functions 

i(x,y) = χFi(x,y) (2) of n regions as eigenfunctions. So, the 

diffusion shape in this particular case becomes a mosaic shape 

F of the form (3). And for any g(x,y)L2() the diffusion 

filtering PF becomes a morphological projection onto the 

mosaic shape F of the classic form (4). 

Thus, the Pytiev MIA approach is a particular case of 

generalized diffusion morphology described in this section. So, 

all shape analysis schemes and tools of MIA can be recovered 

on this wider basis just using the diffusion operator instead of 

Pytiev morphological projector. 

Let’s note that the formal definition of diffusion morphology 

can start directly from a heat kernel of the classic form 
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where dij – basic distance between i-th and j-th points of 

discrete digital image. In this formulation of diffusion 

morphology the MIA case corresponds to a special selection of 

basic distance as a discrete distance by pixel value: 
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Then the heat kernel takes a form hij = hF*(xi,yi,uj,vj) of binary 

relation “points of equal values” that forces the transformation 

of diffusion operator to the mosaic projector. 

The final note here is that different choice of descriptors and 

metrics for pixel or/and region comparison provides the design 

of different diffusion morphologies with different semantic 

properties. Additionally, one can use the diffusion filter Pt with 

scale parameter t for morphological scale space analysis. 

Thus, this generalized morphological approach provides more 

information about the image shape than just the information 

about shape of frame tessellation exploited by MI or original 

MIA. And if this new information is robust relative to noise, it 

will support the higher quality of matching. 

 

3.2 Image and shape matching based on diffusion 

morphology 

In Pytiev morphology the comparison of image g(x,y) and shape 

of image f(x,y) is performed using the normalized 

morphological correlation coefficient of the following form 

 

||||

||||
),(

g

gP
FgK F

M 
, 

 

and this coefficient satisfies the property KM(f,F)=1 due to the 

fact that f = PF f. The diffusion morphological operator is not a 

projector, but it is a smoothing filter with || PF f ||  || f ||. 

Nevertheless, it is natural to suppose that the smoothing power 

of PF will be essentially less for images with similar shapes than 

for images with different shapes. So, the morphological 

diffusion correlation coefficient (MDCC) is defined as a ratio of 

Pytiev morphological coefficients 
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where KM(f,F) describes the power of self-smoothing of f by F. 

Let’s note that MDCC is a correct generalization of MCC, 

because in case of projective morphology || f || = || PF f || and 

KMD(g,F)=KM(g,F). 

As in MCC, for elimination of non-informative part of image 

brightness images should be normalized before comparison: 
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where PO f – morphological filtering of image f by the “empty” 

diffusion shape O. But in diffusion morphology such 

normalization is not the trivial subtraction of global mean value 

(like in Pytiev MIA). It is a subtraction of mean value in a 

sliding window determined by support neighborhood (effective 

size) of heat kernel. This subtraction preserves the local 

informative features only (in the corresponding scale of 

analysis). These informative elements of image g will be passed 

(if the shape G is similar to shape F) or extremely smoothed (if 

the shape G is essentially different) by the diffusion filter PF. 

This trick is called morphological image normalization (Fig.2). 

 

 
(а) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2. Example of morphological image normalization: 

a) image f; b) image g; c) image f normalized by self-shape F 

( fPfP OF  ); d) image g normalized by shape F ( gPgP OF  ). 

If the effective size of heat kernel is small, such diffusion 

image-to-shape matching technique uses the local features only 

like the points-based and contour-based matching techniques. 

Fortunately, as we stated above, the theory of diffusion maps 

has a natural instrument for multi-scale data analysis – 

parameter t (number of Markov random walking steps). The 

description of the image shape by the set of different scale 

diffusion operators {Pt} allows performing the morphological 

scale-space analysis. 
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Finally, as well as for Pytiev correlation coefficient, we prefer 

to use the square of MDCC instead of MDCC, because both 

KM
2(g,F) and KMD

2(g,F) can be interpreted as statistical 

coefficient of determination between the model (shape F) and 

observed data (image g). So, the generalized morphological 

technique for image-to-shape matching is formed. 

 

4. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

In the first part of this section we describe the original fast 

implementation of diffusion filters and morphological diffusion 

operators. This implementation provides a possibility for real-

time image processing. It was utilized in our comparative 

experiments with different shape matching techniques for TV 

and IR image matching task. These experiments and 

corresponding results are outlined in the second part of this 

section. 

 

4.1 Fast implementation of morphological diffusion 

operators 

The computation of diffusion filtering with heat kernel of the 

form 
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where v(p) is a neighborhood of image point p, is an extremely 

time-consuming procedure even for reasonable size of v(p). In 

this paper we propose to substitute such computationally 

unpleasant descriptors by the new type of point feature 

descriptors – iLBP (intensity + LBP): 
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where m(p) – mean value of v(p); LBP(p) – threshold LBP 

(Ahonen, 2004) for v(p). The local binary pattern (LBP) is 

calculated here as an 8-bit vector for each pixel p based on a 

comparison of its value and values of its 8 nearest neighbors. If 

the value of neighbor pixel is less than the value of central pixel 

and the difference between them is greater than threshold, then 

the corresponding bit is set to 1, otherwise – to 0. 

Correspondingly we substitute the original neighborhood 

matching metrics by the special iLBP matching metrics: 
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where dham – Hamming distance, β – importance weight for 

intensity part of iLBP. Local binary patterns are stored as bit 

fields, and the computation of Hamming distance is performed 

via bitwise XOR operation. The exponent is calculated using 

table values. Mean value in a sliding window is computed by a 

fast algorithm with sliding sum recalculation. Due to this, the 

usage of iLBP allows both increasing the computational speed 

and obtaining heat kernels very similar to original. The software 

implementation of this idea provides the processing time about 

300 ms for image size 640×480 and PC with Core i7 – 860 

/8Gb/ GeForce GTX 680 in one thread. 

The application of CUDA technology (NVIDIA, 2014) 

additionally improves the performance of diffusion filtering. 

Our current CUDA-based implementation provides the 

processing time about 40 ms for image size 640×480 and the 

same PC configuration. Thus, it allows performing the diffusion 

filtering and correspondingly the proposed shape-based 

matching procedure in real-time. 

 

4.2 TV and IR matching experiments and results 

The scheme of experimental comparison of matching techniques 

over a set of real images is following. Some clear fragments of 

TV image (“etalon” fragments) are compared with all equal-

sized fragments of corresponding IR image without 

segmentation. TV fragments are segmented with n =4 levels 

using least square optimal segmentation procedure. 

For segmented image fragments f (TV) and non-segmented g 

(IR) at each fragment g position (x,y) following similarity 

measures are calculated: mutual information MI(F,G) (1); 

square of centered Pytiev morphological coefficient KM
2(f,G) 

(5); square of MSEMCC KM
2(F,G) (6); square of MDCC 

KMD
2(f,G) (7). 

The quality of these measures is estimated by following 

statistics of 2D correlation function С(x,y) – signal-to-noise 

ratio (SNR) and exceeding of first maximum to second one (E): 
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where C1 – global maximum of correlation value; C2 – second 

global maximum of correlation value out of some small 

neighborhood of first global maximum; μ – mean value of 

correlation function; σ – dispersion of correlation function. 

Figures 3, 5, 7, 9 demonstrate four matching examples 

(correspondingly Examples 1, 2, 3, 4) of experimental clear TV 

data and IR data corrupted by Gaussian noise. Figures 4, 6, 8, 

10 demonstrate corresponding 2D-graphs of correlation fields 

for different matching scores. Corresponding numerical data are 

listed in tables 1-4. 

According to these experiments, proposed MDCC provides 

essentially higher and sharper correlation peak relative to other 

similarity measures including state-of-art mutual information 

score. 

 

Measure Max value SNR E 

MI(F,G) 0.10812 4.4657 3.1907 

KM
2(f,G); 0.1006 4.5859 2.7913 

KM
2(F,G) 0.29344 4.5531 3.3613 

KMD
2(f,G) 0,00339 9.9809 4.6698 

 

Table 1 Numeric data for TV-IR matching (Example 1). 

 

Measure Max value SNR E 

MI(F,G) 0.20079 8.2561 1.3156 

KM
2(f,G); (mismatch) - - 

KM
2(F,G) 0.49002 9.0658 1.3958 

KMD
2(f,G) 0.00807 15.2569 1.5128 

 

Table 2 Numeric data for TV-IR matching (Example 2). 

 

Measure Max value SNR E 

MI(F,G) 0.048 3.0601 1.0293 

KM
2(f,G); 0.0391 2.8682 1.2919 

KM
2(F,G) 0.39671 3.5967 1.1626 

KMD
2(f,G) 0,00103 10.2286 3.8530 

 

Table 3 Numeric data for TV-IR matching (Example 3). 
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a)  

b) 

 
c) 

 

 

 

Figure 3. Example 1: a) etalon TV fragment; b) test IR image; 

c) segmented TV fragment. 

 

 
 

Figure 4. Correlation fields for TV-IR matching (Example 1). 

 

 

Measure Max value SNR E 

MI(F,G) 0.17752 5.9937 1.2923 

KM
2(f,G); 0.12125 7.9213 1.5949 

KM
2(F,G) 0.41667 6.4704 1.3463 

KMD
2(f,G) 0,00216 15.4247 1.7667 

 

Table 4 Numeric data for TV-IR matching (Example 4). 

 

In some experiments MDCC provides SNR in 2-3 times better. 

Examples 2 and 3 demonstrate the higher stability of proposed 

MDCC relative to noise in comparison with mutual information 

(1), Pytiev MCC (4) and MSEMCC (5). 

 

5. CONCLUSION 

This paper presents the new image-to-shape matching technique 

based on heat kernels and diffusion maps. 

The theoretical contribution of the paper is a formulation of 

Diffusion Morphology. It is designed as a generalization of 

Pytiev morphological image analysis (MIA) and contains MIA 

as a particular case. 

 

 
a) 

 
b) 

 
c) 

 

 

 

Figure 5. Example 2: a) etalon TV fragment; b) test IR image; 

c) segmented TV fragment. 

 

 
 

Figure 6. Correlation fields for TV-IR matching (Example 2). 

 

 

All shape analysis tools of MIA can be applied in diffusion 

morphology too using the morphological shape-based diffusion 

operator instead of morphological shape-based projector. 

Practical contributions of the paper are the new tool for image 

shape-based matching called morphological diffusion 

correlation coefficient (MDCC) and the fast implementation of 

morphological diffusion filtering using the new type of point 

feature descriptors – iLBP (intensity + LBP). This 

implementation allows performing the diffusion filtering and 

correspondingly the proposed image-to-shape matching 

procedure in real-time. 

Experimental comparison of shape-based matching techniques 

is performed applying to the TV and IR image matching 

problem. The square of MDCC is tested relative to the mutual 

information, square of centered Pytiev morphological 

correlation coefficient (MCC) and square of mean square 

effective morphological correlation coefficient (MSEMCC). 

The quality of matching is estimated by two statistics of 

correlation field: signal-to-noise ratio (SNR) and exceeding of 

first maximum to second one (E). 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-357-2014 362



 

 

 
a) 

 
b) 
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Figure 7. Example 3: a) etalon TV fragment; b) test IR image; 

c) segmented TV fragment. 

 

 
 

Figure 8. Correlation fields for TV-IR matching (Example 3) 

 

 

In our experiments with airborne TV and IR imagery the 

proposed MDCC totally outperforms all compared matching 

scores by both statistics, especially, in SNR. 

The shape of correlation field is essentially better (sharper) than 

for all concurrent coefficients. In particular, relative to the state-

of-art mutual information approach this new morphological 

technique provides SNR in 2-3 times better. Thus, we can 

conclude that proposed MDCC is a best correlation score for 

TV and IR matching problem. 
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