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ABSTRACT: 

This paper aims at image matching under significantly different illumination conditions, especially illumination angle 

changes, without prior knowledge of lighting conditions. We investigated the illumination impact on Phase Correlation (PC) 

matrix by mathematical derivation and from which, we decomposed PC matrix as the multiplication product of the 

illumination impact matrix and the translation matrix. Thus the robustness to illumination variation of the widely used 

Absolute Dirichlet Curve-fitting (AD-CF) algorithm for pixel-wise disparity estimation is proved. Further, an improved PC 

matching algorithm is proposed: Absolute Dirichlet SVD (AD-SVD), to achieve illumination invariant image alignment. 

Experiments of matching DEM simulated terrain shading images under very different illumination angles demonstrated that 

AD-SVD achieved 1/20 pixels accuracy for image alignment and it is nearly entirely invariant to daily and seasonal solar 

position variation. The AD-CF algorithm was tested for generating disparity map from multi-illumination angle stereo pairs 

and the results demonstrated high fidelity to the original DEM and the Normalised Correlation Coefficient (NCC) between 

the two is 0.96. 

 

1. INTRODUCTION 

The matching of multi-temporal remote sensing imagery 

is of wide interest owing to the fact that the earth surface 

is monitored locally, regionally and globally from past to 

present. Illumination is one of the major challenges for 

multi-temporal remote sensing image matching. The 

lighting source for passive remote sensing, the Sun, 

varies in two aspects: solar intensity and solar direction 

(azimuth and zenith). The variation of solar intensity 

results in change of global brightness between two 

images, which can be corrected by radiometric 

adjustment, such as histogram matching. The solar 

direction varies with the daily times and seasons; which 

results in change of local grey level distribution (shading 

patterns). Matching images taken at different daily times 

or seasons under different solar directions is required for 

many applications. For instance, the vision-based UAV 

(Unmanned Aerial Vehicle) autonomous navigation may 

have to use high-medium resolution satellite images 

(mostly taken at the local time of 9-10am) as reference in 

matching the real time on-board images which could be 

taken in the afternoon. Another application is 

illumination robust DEM (Digital Elevation Model) 

generation in the cases that images forming stereo pairs 

are acquired separately in different illumination 

conditions. Application also includes change detection 

based on pixel-wise image matching in multi-temporal 

remote sensing for which, illumination insensitive image 

matching algorithms can pin point the real changes on 

the ground despite of shadow change interference. 

 

In this paper, we present our investigation of illumination 

impact on the Phase Correlation (PC) algorithm via 

mathematical analysis and experiments. Our study makes 

the following contributions: 

 

 The translation and illumination variations in phase 

correlation matrix can be separated and thus, 2D 

image shifts can be correctly resolved if we can 

isolate and suppress the illumination impact on the 

PC matrix.  

 Consequently, the robustness to illumination 

variation of the PC image matching algorithm: 

Absolute Dirichlet Curve-fitting (AD-CF) has been 

proved and tested for pixel-wise disparity map 

generation from stereo images taken under different 

illumination angles.  

 Further, an improved PC algorithm, named 

Absolute Dirichlet SVD (AD-SVD), is proposed to 

achieve robust illumination-insensitive image 

alignment (large window image matching) at sub-

pixel precision. 

 

There is no need of prior knowledge of illumination 

conditions (e.g. azimuth and zenith angles) in these 

algorithms. 

 

2. RELATED RESEARCH 

Illumination invariant matching algorithms have been 

studied for years in computer vision. There are two 

approaches to achieve illumination-insensitive matching, 

one is feature-based approach, which is to extract the 

unchangeable pattern under different lighting conditions, 

and the other is normalization or compensation based 

approach, which is to eliminate the illumination-sensitive 

patterns.  

 

The feature-based approach is under the assumption that 

local patterns are invariant to different imaging 

conditions (Arandjelovic, 2012). The limitation of 

feature-based approaches is that they are not truly 

invariant to local variation of illumination, because the 
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local patterns may alter greatly by direction and shape 

changes of shades and shadows.  

 

The normalisation-based approach is to generate a 

standard image that appears stable under different 

lighting conditions. This standard image can be generated 

in spatial domain or frequency domain. Spatial domain 

normalisation approaches include Histogram 

Equalization (HE) and Adaptive Histogram Equalization 

(AHE) (Pizer et al., 1987). The frequency-based 

approach is based on the enhancement of high frequency 

information, which assumed to be less sensitive to 

illumination variation. Wavelet analysis and DCT were 

used for the purpose (Discrete Cosine Transform) (Chen, 

Er, & Wu, 2006). Problems of normalization method are 

similar to that of feature-based approach. They are not 

truly invariant to illumination angle changes that alter the 

local texture depending of terrain slopes. Moreover, by 

eliminating illumination variations, the quality of image 

inevitably declines. This quality declination is acceptable 

for image matching using large windows, but can results 

in lost-correspondence when using small window 

matched for pixel-wise disparity estimation. 

 

The goal of our research is not only precise alignment 

between the images under different illumination 

conditions, but also disparity map generation between 

them, without prior knowledge of lighting conditions. 

This requires the matching algorithm to be robust enough 

to illumination variation for large matching windows as 

well as for small matching windows. None of above 

approaches provides effective solutions. In the following 

sections, we are going to derive and test novel and 

effective Phase Correlation based algorithms towards 

illumination insensitive image matching.  

 

3. IMPACT OF ILLUMINATION VARIATIONS 

ON PHASE CORRELATION MATRIX 

3.1 Illumination Impact Phase Correlation Matrix 

Phase Correlation is a frequency-based image matching 

algorithm (Kuglin, 1975). Suppose that a translational 

shift (   )  was made between two identical images 

 (   ) and  (   ); this spatial shift of the two images 

results in a phase shift in the frequency domain of their 

Fourier Transforms  (   ) and  (   ) and expressed as 

cross power spectrum  (   ):  

 

  (   )  
 (   )  (   )

| (   )  (   )|
    (     ) (1) 

 

The Phase Correlation defined above is a 2π wrapped 

complex matrix and the density and orientation of PC 

fringes are  (     ) and p/q. The translational shift (p, 

q) can then be resolved at integer level via IFT (Inverse 

Fourier Transform) to convert  (   ) to a Dirac delta 

function(Kuglin, 1975):     ( (   ))   (      
 ); it can also be resolved directly in frequency domain 

at sub-pixel accuracy (Foroosh, Zerubia, & Berthod, 

2002; Hoge, 2003; J. G. Liu & Yan, 2008; Morgan, Liu, 

& Yan, 2010). 

 

Here, the two images are supposed to be identical 

however, the two images are not identical if they are 

taken under different lighting conditions. Consider two 

images   (   )  and  (   )  are of different lighting 

conditions and with a translational shift (   ), and their 

Fourier spectrums are   (   ) and  (   ) respectively. 

The cross power spectrum   (   ) for  (   )  and 

 (   ) is 

 

   (   )   (   )    (     ) (2) 

 

Eq. (2) indicates that the PC matrix    of two images 

with a translational shift and under different illumination 

conditions can be decomposed into two phase correlation 

matrices: the illumination impact matrix     (   ) 

corresponding to texture difference caused by 

illumination variation and the translation matrix     

   (     )  resulted from the 2D shift.    and    are 

unknown and only PC matrix    can be calculated 

directly from the image matching. For illumination-

insensitive image matching, the aim is to extract the 

translation matrix  (  ) from the PC matrix   , and this 

can be achieved by eliminating the impact of    from   . 
It is therefore essential to investigate how    is affected 

by illumination conditions. 

 

3.2 Local Illumination Change Caused by Variation 

of Azimuth Angle 

In this section, we focus on the impact of azimuth angle 

variation on Phase Correlation matrix. Azimuth angles 

are the compass directions of the sunlight. An example of 

azimuth angle variation is demonstrated in Figure 1. Two 

terrain shading images (a) and (b) were generated from a 

DEM with the same zenith 45° but different azimuth 60° 

and 180°. Then, Figure 1(b) was shifted 10 pixels to the 

right and downwards. Figure 1(c)-(e) present the PC 

fringes of   ,    and   . Here    corresponds to the 

impact of azimuth angle change without shifts;    is the 

PC matrix generated from two identical images under the 

same illumination condition and with a shift. In this case, 

the translation matrix       (     ), where u=10 and 

v=10.    is the PC matrix generated from Figure (a) and 

(b). Figure 1(f) shows the pixel-wise multiplication 

product of     , which is nearly identical to    in Figure 

1(e) as the proof of Eq. (2). 

 

 

Figure 1. Impact of azimuth angle variation on Phase 

Correlation.  

To demonstrate the impact of azimuth angle variance on 

terrain shading images, we introduce a 3D space 

coordinates system called SAI defined by slope, aspect 

and intensity (Xue Wan, 2014). A terrain shading image 

is a 3D surface in SAI space, and the shape of the 3D 

surface is only related to illumination conditions, and is 

independent of terrain elevation and image translation. 

The azimuth angle change leads to SAI surface shift, but 

(f) 𝑄 𝑄  (e) 𝑄  

(c) 𝑄  (b) (a) 

(d) 𝑄  
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will not alter the surface shape. In SAI space, the cross 

power spectrum of the two images can be expressed as  

 

  (   )  
  (   )  (   )

|  (   )  (   )|
    (     )  (3) 

 

where     are unit vectors in frequency domain transfer 

from SAI space by FT.   (   )  and  (   )  are the 

Fourier spectrums of images   (   ) and  (   ) in SAI 

space. 

 

The relationship derivation of surface shift in SAI and PC 

matrix can be found in (Xue Wan, 2014). The analysis 

indicates that the change of azimuth angles may cause a 

combination of positive and negative patterns, shown in 

Figure 1(c). Thus,    can be expressed as  

 

   (   )  

{
     (   )                         

    (   )                         
 (4) 

 

where  (   )  is the polar angle in the PC power 

spectrum, and   and    are the two azimuth angles. Eq. 

(4) indicates that partial fringe patterns are inversed in 

certain angular sectors, and the angles are determined by 

two azimuth angles. 

 

From Eq. (3) and Eq. (4), the PC matrix of two images 

with a translational shift and under different illumination 

azimuth become 
   (   )  

{
   (     )  (   )                         

    (     )  (   )                         
 (5) 

 

Eq. (5) shows that although reversed fringes are 

introduced by azimuth angle variation, the fringe 

density  (     )  and fringe orientation p/q remain 

unchanged. This is evidenced by comparing Figure 1(d) 

and (e): the fringe orientation and density of    are the 

same as   . 

 

3.3 Local Illumination Change Caused by Variation 

of Zenith Angle 

Zenith angle is the angular height of the sun in the sky 

measured from the vertical. Obviously, the change of 

zenith angle does not cause reverse of image texture as it 

is irrelevant to the direction of sunlight. However, the 

brightness of texture pattern can be altered. As shown in 

Figure 2(a) and (b) two DEM terrain shading images 

under the same illumination azimuth but different zenith 

angles, 45° and 25° respectively; although the impact 

resembles the global brightness and contrast change of 

the image, it is not an affine illumination transformation.  

 

The phase angle of   (   )  is 

 (   )        (
    (  (   ))

    (  (   ))
), where     (  (   )) 

and     (  (   ))  are imagery and real part of 

  (   ). With the increase of zenith angle difference, 

the imagery part,     (  (   )), increases as well and 

because     (  (   ))
 
     (  (   ))

 
  , 

 (   )  also increases depending on local slopes. The 

detailed derivation of impact of zenith change on phase 

correlation matrix can be found in (Xue Wan, 2014), 

which is similar to adding random noise to the PC fringes 

and the larger difference the zenith angles are, the more 

noisy the    matrix will be. 

 

 

Figure 2. Impact of zenith angle variation on Phase 

Correlation  

The impact of zenith angle variation is not as severe as 

that of azimuth angle variation. It degrades the fringe 

quality in general but does not cause partial fringe 

patterns inverse in certain angular sectors. In Figure 2, 

image (b) is shifted by 10 pixels to the right and 

downwards. As shown in Figure 2(e), the    fringes are 

blurred compared to the fringes of translation matrix    

(Figure 2(d)). However, the orientation and density of the 

fringes, which determine the shift between the two 

images, remains the same as   . It can therefore be 

concluded that PC is robust to zenith angle variation for 

image matching. 

 

The analysis from §3.2 and §3.3 has demonstrated that 

the azimuth angle and zenith angle variations have 

different impacts on   , as well as   . Azimuth angle 

variation may introduce negative correlation to the 

illumination impact matrix   , thus results in a 

combination of positive and negative fringe patterns in 

the PC matrix   . The portion of positive and negative 

fringes is determined by the difference between the two 

azimuth angles. On the other hand, zenith angle variation 

adds noise to the illumination impact matrix     and 

leads to blurring fringes in the PC matrix   . No matter 

either azimuth or zenith changes, the orientation and 

density of    remain the same as the translation matrix 

  . This indicates that the shift information in    remain 

unchanged though jumbled with the impact of 

illumination variation. Thus illumination-insensitive 

image matching based on phase correction is possible. 

 

4. ILLUMINATION-INSENSITIVE SUB-PIXEL 

PC MATCHING 

4.1 Sub-pixel PC Matching 

As indicated in §3.1, the integer translation shift between 

two images can be estimated by the peak location of 

Dirac delta function   that is the IFT of the PC matrix. 

Several approaches have been proposed to achieve sub-

pixel PC matching, and they fall into two categories: IFT 

spatial domain based PC and frequency domain based 

PC.  

 

In the first category, sub-pixel location is determined by 

peak fitting of the absolute Dirichlet function, a down-

sampled Dirac function, in spatial domain by IFT 

(Argyriou & Vlachos, 2006). This AD-CF (Absolute 

Dirichlet function Curve Fitting) method is robust to 

(b) (a) 

(f) 𝑄 𝑄  (e) 𝑄  (d) 𝑄  

(c) 𝑄  

3 
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illumination variation as discussed later. However, this 

method cannot reach very high sub-pixel accuracy, and 

the average matching accuracy is about 1/10 pixel.  

 

In the second category, sub-pixel shifts are directly 

resolved in frequency domain by PC fringe analysis.   , 

the translation matrix of PC is a rank one matrix, and can 

be decomposed as the product of two dominant singular 

vectors   ( ) and   ( ) (Hoge, 2003). 

 

       (     )               ( )  ( ) (6) 

 

The sub-pixel image displacement is calculated by 

unwarping the two vectors. The sub-pixel displacement 

can then be estimated directly in frequency domain using 

either SVD (singular value decomposition) (Hoge, 2003) 

or 2D fitting technique using Quick Maximum Density 

Power Estimator (QMDPE) (J. G. Liu & Yan, 2008; J. 

Liu & Yan, 2006). Compared to spatial domain-based 

methods, frequency-based methods achieve higher sub-

pixel accuracy (1/20-1/50 pixels), since the sub-pixel 

displacement is directly solved by fringe analysis. 

However, these methods is less robust to illumination 

variation, thus we proposed an improved PC-SVD 

algorithm for image alignment in the following.  

 

4.2 Absolute Dirichlet Function SVD (AD-SVD) 

Algorithm for Illumination-Insensitive Image 

Matching 

We consider that the images for matching are acquired in 

the same imaging geometry but under different lighting 

conditions (e.g. morning and afternoon), and there is only 

a 2D translation between the two images. This is the 

general case for alignment of multi-temporal satellite 

images and aerial photos.  

 

The performance of the frequency domain SVD-PC 

algorithm to illumination variation is affected mainly by 

the impact of azimuth angle change. According to Eq. 

(5), there are two fringe patterns in cross power spectrum 

PC matrix generated by images under different azimuth 

angle,       (     ) and   
      (     ). The SVD 

of   
  will result in two different vectors   

 ( )  and 

  
 ( ). This means that there are four dominant singular 

vectors   
 ( ),   ( ),   

 ( ) and   ( ) for LSF (Least 

Square Fitting). After phase unwarping, there are two 

separated lines in one image direction, and the LSF may 

fail to achieve a proper fit to the true slopes as illustrated 

in Figure 3(a) where, the green and purple lines represent 

the singular vectors in x and y direction after unwrapping, 

and the red and yellow lines the LSF results for x and y 

direction respectively. 

 

To solve the problem, we proposed an algorithm called 

Absolute Dirichlet function SVD (AD-SVD). According 

to §3.2, azimuth angle variation yields a combination of 

positive and negative correlation in the PC matrix   , and 

in the corresponding Dirichlet function after IFT, a 

positive peak and a negative peak appear (Figure 4(b)). 

As the azimuth angle variation does not alter the 

orientation and density of the fringes, we can correct the 

negative fringes by taking the absolute value of the 

Dirichlet function  (   ) (Figure 4(c)). 

 

     (   )  | (   )| (7) 

 

Transform the     (   ) back to frequency domain by 

FT,  

 

        (    (   )) (8) 

 

A new cross power spectrum      is then generated as 

shown in Figure 4(d) in which, negative fringes are in 

accordance to positive fringes. SVD can then be applied 

to      to calculate the sub-pixel image shift. As shown 

in Figure 3(b), after correcting negative fringes via the 

absolute value of Dirichlet function, there is only one line 

each in phase component of the dominant singular 

vectors   ( ) and   ( ). LSF fitting is then correct.  

 

 

Figure 3. Comparison of SVD and AD-SVD unwrapping 

and LSF fitting results. (a) SVD results of the PC matrix 

for Fig. 1(a)-(b). (b) AD-SVD results of Fig. 1(a)-(b).  

 

 

Figure 4. AD-SVD algorithm for azimuth angle 

variation. (a) PC fringes between images of different 

azimuth angles. (b) Dirichlet function derived from IFT 

of (a). (c) The absolute value of the Dirichlet function in 

(b). (d) The power spectrum fringes of the FT of (c). 

As indicated in section 3.3, the impact of zenith angle 

variation to Phase Correlation matrix is similar to adding 

random noise to the image, which does not alter the local 

texture distribution, so that both original Dirichlet 

function and the AD-SVD algorithm perform equally 

well to zenith angle variation. Multi-temporal imaging in 

different daily time (e.g. from morning to afternoon) 

encounters the sun illumination changes in both azimuth 

and zenith angles and thus the AD-SVD algorithm is 

overall more robust. 

 

As a SVD based algorithm, AD-SVD performs robustly 

and accurately in large window matching but become 

unstable for matching window size smaller than 128×128 

pixels, will be further discussed in §5.1, because of too 

few data available for SVD operations. It is therefore best 

for image alignment in relatively large windows.  

 

4.3 Illumination-Insensitive Pixel-Wise Disparity 

Map Generation Using Absolute Dirichlet Function 

Curve Fitting (AD-CF) 

Although Phase correlation has been widely applied for 

pixel-wise dense disparity maps from stereo images of 

identical or very similar illumination angles (Fleet, 1994; 

Morgan et al., 2010), the capability of Phase correlation 

pixel-wise disparity estimation from images taken under 

different sunlight angles at different times and seasons 

(b) (a) 

(b) (a) (c) (d) 
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has not yet been fully investigated. This capability can 

considerably increase the data availability for DEM 

generation as well as enhance other 3D data related 

applications. 

 

As indicated in §4.2, by using absolute value of Dirichlet 

function, the negative correlation can be corrected. The 

AD-CF algorithm is therefore illumination insensitive. 

The AD-CF is similar to the AD-SVD; the only 

difference is that instead of transforming the absolute 

value of Dirichlet function back to frequency domain, a 

curve fitting is directly applied to the absolute Dirichlet 

function in spatial domain. This approach may not 

achieve as high sub-pixel accuracy as the AD-SVD for 

large window image alignment but it is stable and fast in 

small window image matching scan for disparity map 

generation at pixel level accuracy. 

 

For small window (e.g. 32×32 pixels) image matching, 

the frequency domain PC algorithms, such as SVD-PC 

and AD-SVD, are simply not functional when negative 

correlation is significant in the PC matrix, in the case of 

very different azimuth angles between the pair of multi-

temporal images. However, AD-CF algorithm can 

tolerate considerable azimuth angle difference, up to 60°, 

as well as much greater zenith angle change than SVD-

PC algorithm. Figure 5 shows an example of disparity 

estimation from images under different zenith angles. 

The size of matching window is 32×32 pixels. With 30° 

zenith angle difference, images in Figure 5 (a) and (b) are 

significantly different in textures however, the AD-CF 

still presents a distinctive peak in Dirichlet function, 

shown in Figure 5(c), while SVD-PC failed to achieve a 

reliable and accurate estimation of disparity as illustrated 

in Figure 5 (d). The robustness of LSF in SVD algorithm 

declines significantly when the number of fitting points 

becomes too small; the algorithm is vulnerable to noise 

and unstable in the case of a small matching window. 

This example demonstrates the robustness of the AD-CF 

towards illumination variation.  

 

 

Figure 5. Disparity estimation from a pair of images with 

different zenith angles using PC-Delta-function and 

SVD-PC in a small matching window. 

For most sun-synchronised earth observation satellites, 

the imaging local time is fixed (e.g. 10:00 am) but 

considerable variation of solar position can occur 

between images taken in different seasons, such as 

summer and winter. The seasonal solar position variation 

is mainly zenith angle change while the azimuth angle 

change is limited within 30°. Thus AD-CF is robust to 

seasonal variation of solar illumination for pixel-wise 

disparity estimation in derivation of DEM from a stereo 

pair of multi-seasonal images. 

 

5. EXPERIMENT 

5.1 Sub-pixel Image Alignment under Different 

Illumination Conditions 

Image alignment experiments were carried out under 

very different illumination conditions, especially large 

azimuth angle variation. We used DEM simulated terrain 

shading images to test the robustness of our algorithm. 

Terrain shading images were generated using ER Mapper 

from a DEM dataset of a mountainous region selected 

from the ASTER GDEM (Global Digital Elevation 

Model) with 30 m spatial resolution and 7-14 m elevation 

accuracy.  

 

5.1.1  Azimuth variation 

In this experiment, six terrain shading images with the 

same zenith angle (45°) but different azimuth angles in 

the range of 60° - 360° were generated, as shown in 

Figure 6. Figure 6(a) was shifted 4.5 pixels rightward and 

downward by image up-sampling.  

 

 
Figure 6. Terrain shading images of different azimuth 

angles (as annotated) and the same zenith angle 45°.  

 

Matching accuracy is assessed by the average value of 

shifts in x and y directions: 

 

   (|  |  |  |)   (9) 

 

where        ,        , (   )  is the measured 

frame shift, and (     ) is the actual frame shift. In this 

experiment,               . 

 

Three PC-based matching algorithms were then 

compared: SVD, Absolute Dirichlet Curve-fitting (AD-

CF) and Absolute Dirichlet SVD (AD-SVD). Table 1 

presents the matching accuracy for image matching 

windows of 512×512, 256×256, and 128×128 pixels. The 

data in Table 1 shows that the overall PC matching 

accuracy declines with the decrease of matching window 

size. SVD based PC is not robust to azimuth angle 

variation, as it failed in most cases. The reason is that 

there are both positive and negative fringes in the PC 

matrix and thus LSF failed to fit a line properly. For AD-

CF, it succeeded in most cases, which indicates that AD-

CF can be regarded as effective in image alignment and 

sub-pixel accuracy is generally attainable, especially for 

the azimuth angle difference within 60°. Compared to 

AD-CF, AD-SVD achieved higher matching accuracy 

than SVD-PC and AD-CF for all the three window sizes, 

averaging 0.05 pixels accuracy. An interesting 

observation of AD-SVD is that the matching accuracy is 

(d) SVD fitting (a) zenith=55° (b) zenith=25° (c) Dirichlet 

function 

(a) 60° (b)120° (c)180° 

(d)240° (e)300° (f)360° 
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quite consistent for all illumination variation cases for 

instance, the accuracy of 60°-120° is almost the same as 

that of 60°-240°. For matching window of 256×256 

pixels and 128×128 pixels, AD-SVD is the most stable 

and robust among the three algorithms to the three tested 

window sizes. The matching accuracy of AD-SVD is 

consistent to all the azimuth angles and mostly less than 

0.1 pixels. However, when further reduction of the 

matching window size to 64×64 and 32×32 pixels, all the 

three algorithms became malfunction to large azimuth 

angle differences producing significant errors much 

greater than 1 pixel.  

 

Table 1. Sub-pixel matching performance of three 

algorithms for different azimuth angles using window 

sizes: 512×512 pixels, 256×256 pixels, 128×128 pixels  

Azimuth 
60°-

120° 

60°-

180° 

60°-

240° 

60°-

300° 

60°-

360° 

Aver

age 

5
1
2 

SVD 3.624 7.351 3.291 0.648 0.062 2.995 

AD-

CF 
0.017 0.150 0.330 0.204 0.096 0.155 

AD-
SVD 

0.033 0.050 0.036 0.070 0.039 0.046 

2
5
6 

SVD 3.600 1.365 0.902 0.317 0.030 1.243 

AD-
CF 

0.061 0.394 0.478 0.442 0.761 0.427 

AD-

SVD 
0.047 0.028 0.016 0.057 0.046 0.039 

1
2
8 

SVD 0.611 1.592 1.809 1.532 0.061 1.121 

AD-

CF 
0.120 0.392 0.438 4.427 0.163 1.108 

AD-

SVD 
0.050 0.097 0.045 0.135 0.092 0.084 

 

 

5.1.2  Daily change of solar illumination 

In this experiment, terrain shading images (Figure 7) 

were generated under different azimuth and zenith angles 

corresponding to the daily azimuth and zenith variation 

of the sun in two hours interval from 8:00 to 16:00 hours. 

 

Figure 7. DEM simulated terrain shading images under 

illumination conditions of different time on a day. 

The largest azimuth angles difference appears between 

the time of 08:00 and 16:00, approximately 177°, and in 

this case, the textures in two related images are almost 

reversed. The largest zenith difference appears between 

the time of 08:00 and 12:00, about 36°, resulting in 

significant global brightness and contrast changes. Again, 

we shifted the first image (08:00) 4.5pixels in x and y 

direction, and image matching was then carried out using 

SVD, AD-CF and AD-SVD. The matching results are 

shown in Table 2. 

    Table 2. Sub-pixel matching performance of three 

algorithms for daily solar illumination variation (Pixel) 

Time SVD AD-CF AD-SVD 

08:00-10:00 1.8789 0.1084 0.0165 

08:00-12:00 3.7592 0.3796 0.0748 

08:00-14:00 0.3184 0.4591 0.1049 

08:00-16:00 0.0162 0.1403 0.0384 

 

Table 2 indicates that SVD-PC is not robust to daily 

sunlight angle variation; it failed in 08:00-10:00 and 

08:00-12:00, and only reached sub-pixel accuracy in 

08:00-16:00. As for AD-CF, although it succeeded in all 

time periods, the sub-pixel accuracy was reached for only 

two cases: 08:00-10:00 and 08:00-16:00. AD-SVD 

achieved sub-pixel accuracy for all the time intervals at 

less than 0.1 pixels and its performance is obviously 

better than the other two algorithms.  

 

5.2 DEM Generation from Multi-seasonal Images 

5.2.1 DEM Generation from terrain shading images 

by different zenith angles 

In this experiment, simulated multi-zenith angle terrain 

shading stereo images were generated from pre-

mentioned DEM data. ER Mapper image processing 

software was used for the imagery data generation. 

Firstly, the DEM was displayed in a 3D perspective view 

under a given illumination direction and a terrain shading 

image was generated in position 1, shown in Figure 8 (a). 

Then, slightly tilt this DEM 3D perspective display to 

another view position, the position 2, where another 

terrain shading image was generated, shown in Figure 

8(b). With slightly different view angles, the images 

captured in these two positions formulate a stereo pair 

with the baseline of about 80 pixels in x direction and no 

shift in y direction. Finally, three more terrain shading 

images were generated under different zenith angles in 

the view of position 2, as shown in Figure 8 (c)-(e). The 

image size of these terrain shading images is 990×890 

pixels. 

 

 

Figure 8. Terrain shading images of different zenith 

angles and the same azimuth angle (60°).  

The AD-CF algorithm described in §4.3 was then applied 

to process these four pairs of stereo images via 32×32 

matching window scanning. Four disparity maps are 

shown in Figure 9, together with the original DEM for 

comparison. The image resolution of disparity maps is 

lower than the original DEM, because the terrain shading 

(a)8:00 (b)10:00 (c)12:00 

(d)14:00 (e)16:00 

(a) 75° (b) 75° (c) 60° 

(d) 45° (e) 30° 
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images are generated from the DEM dataset by down-

sampled 3D visualization. We applied NCC (normalized 

cross correlation) for disparity quality assessment, 

because NCC is not sensitive to image sampling. Table 3 

presents the NCC coefficients between each generated 

disparity maps and the original DEM. 

 

 

Figure 9. Sub-pixel disparity maps compared with 

original DEM. 

Table 3. NCC coefficients between disparity maps and 

original DEM 

Zenith  75°-75° 75°-60° 75°-45° 75°-30° 

NCC 0.9825 0.9821 0.9670 0.9484 

 

Although NCC coefficients declined with the increase of 

zenith angle difference, the overall high correlation 

values confirm that the disparity maps have been re-

constructed from these multi-zenith angles stereo image 

pairs with high fidelity. This experiment has 

demonstrated that AD-CF algorithm is able to generate 

DEMs from stereo images of very different zenith angles. 

 

5.2.2 DEM Generation from terrain shading images 

under multi-seasonal sun illumination 

In this experiment, a stereo pair of DEM terrain shading 

images was generated according to real sunlight angles in 

winter and summer. The sunlight angles of London 

(51°N, 0°) at 10:00 am on 1st January and 1st June were 

calculated. Figure 10(a) shows simulated winter terrain 

shading image with azimuth 151° and zenith 79°, and (b) 

shows summer terrain shading image with azimuth 130° 

and zenith 37°. The difference of azimuth angle is 21° 

and the zenith difference is 42°. Judging from the image 

histograms Figure 10(c) and (d), the grey value 

distribution of the two shading images is incomparable as 

the result of different illumination. The stereo pair was 

then generated in the same way as that in §5.2.1, and the 

image size is 890×990 pixels.  

 

The disparity map produced by the AD-CF phase 

correlation scan using a 32×32 pixels matching window 

is shown in Figure 11(a). Compared with the original 

DEM in Figure 11(b), the disparity map in Figure 11(a) 

fully recovers the topography in the reference DEM 

without visually observable errors though the spatial 

details are slightly degraded which is inevitable for data 

re-generation. The correlation between the two data is 

very high, NCC=0.9616. To illustrate the accuracy, DEM 

profiles are plotted along the horizontal and vertical lines 

going through the image centre shown in Figure 11; the 

shapes of the re-generated DEM (disparity map) and the 

original match nearly exactly with slight missing of 

details as expected. This experiment demonstrates that 

the AD-CF PC algorithm is robust and invariant to the 

seasonal solar illumination variation for DEM 

generation. The processing speed is fast: total 8.75 

second, 2.28 seconds for image alignment and 6.47 

seconds for pixel-wise disparity estimation.  

 

Figure 10. Disparity map generation from winter and 

summer terrain shading images. 

 

 

Figure 11. Comparison between the generated disparity 

map and original DEM.  

 

5.3.3 DEM Generation from multi-sensors remote 

sensing imagery 

A DEM generation experiment was carried out using an 

aerial image from Bluesky and a Geoeye satellite image 

of Cranfied, UK, under different solar illumination 

conditions. The stereo images are generated by manually 

clipping the common area in aerial and satellite images 

as shown in Figure 12. Illumination difference widely 

exists between the aerial image and the satellite image. 

The image size is 3602×3698 pixels. Judging from 

shadow directions in the two images, the sunlight is from 

SW in the aerial image, while it is from SE in the satellite 

image. Apart from illumination difference, the stereo 

images shown in Figure 12 also have global radiation 

discrepancy and geometric distortion. This adds 

difficulty for disparity map generation. Dense matching 

for pixel-wise disparity estimation was carried out using 

the AD-CF algorithm via 32×32 window matching 

scanning.  

 

Figure 13 is a 3D perspective view of draping the aerial 

image on the generated disparity map, which shows that 

the AD-CF is quite robust to reconstruct the overall 3D 

terrain surface correctly from this multi-sensor/season 

non-conventional stereo image pair though there are 

considerable errors in area of trees that change greatly in 

different seasons. This preliminary result shows the 

potential of AD-CF to generate DEM from multi-sensor 

(a) DEM (b) 75°-75° (c) 75°-60° 

(d) 75°-45° (e) 75°-30° 

(a) Winter (b) Summer (c) Histogram 

of (a) 

(d) Histogram 

of (b) 

(d) Horizontal profile (c) Vertical profile  

(b) DEM (a) Disparity 

map 
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remote sensing images and thus to enlarge opportunity 

for 3D mapping where remote sensing images are 

limited. 

 

                         (a)                                (b) 

Figure 12. Multi-source remote sensing images for 

matching. (a) Aerial image (Copyright Blue Sky 

International Ltd). (b) Geoeye satellite image (Copyright 

Digital Globe). 

 

Figure 13. DEM generation by aerial image and satellite 

image under different illumination. 

 

6. CONCLUSION 

In this paper, we investigated the impact of local 

illumination variation on PC matrix of overlapped 

images. Through mathematic derivation, we proved that 

the PC matrix is a result of pixel-wise multiplication of a 

illumination impact matrix and a translation matrix. 

Consequently, we found that azimuth angle variation 

results in inversed fringes and the impact of zenith angle 

variation is equivalent to increase noise in the PC matrix 

while the orientation and density of the PC fringes are 

not altered by illumination change. This is the key factor 

for PC based image matching algorithms being robust to 

illumination angle variation, such as the Absolute 

Dirichlet Curve Fitting (AD-CF) algorithm. Further, we 

proposed an absolute Dirichlet-based SVD (AD-SVD) 

algorithm for illumination-insensitive image alignment 

matching at sub-pixel precision. Via image alignment 

experiments using simulated terrain shading images with 

significant illumination angle variation, AD-SVD can 

reach 0.05 pixel matching accuracy between images no 

smaller than 128×128 pixels. Then, the well-established 

AD-CF algorithm was tested for pixel-wise disparity 

estimation from simulated terrain shading images and 

aerial-satellite stereo pairs under different illumination 

conditions. 

 

The research is further progressing and new experiment 

results of image alignment and DEM generation using 

more remote sensing images taken under very different 

sun illumination angles will be presented in due course.  
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