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ABSTRACT: 

 

Dense image matching methods enable the retrieval of dense surface information using any kind of imagery. The best quality can be 

achieved for highly overlapping datasets, which avoids occlusions and provides highly redundant observations. Thus, images are 

acquired close to each other. This leads to datasets with increasing size - especially when large scenes are captured. While image 

acquisition can be performed in relatively short time, more time is required for data processing due to the computational complexity 

of the involved algorithms. For the dense surface reconstruction task, Multi-View Stereo algorithms can be used – which are typically 

beneficial due to the efficiency of image matching on stereo models. Our dense image matching solution SURE uses such an 

approach, where the result of stereo matching is fused using a multi-stereo triangulation in order to exploit the available redundancy. 

One key challenge of such Multi-View Stereo methods is the selection of suitable stereo models, where object space information 

should be considered to avoid unnecessary processing. Subsequently, the dense image matching step provides up to one 3D point for 

each pixel, which leads to massive point clouds. This large amount of 3D data needs to be filtered and integrated efficiently in object 

space. Within this paper, we present an out-of-core octree, which enables neighborhood and overlap analysis between point clouds. It 

is used on low-resolution point clouds to support the stereo model selection. Also, this tree is designed for the processing of massive 

point clouds with low memory requirements and thus can be used to perform outlier rejection, redundancy removal and resampling.   

 

1. INTRODUCTION 

1.1 Motivation 

The first step of Multi-View Stereo methods is the selection of 

suitable stereo models. This can be achieved using the available 

orientation information – e.g. the camera position as well as 

their viewing direction. The viewing direction indicates whether 

the cameras are convergent or divergent, which can be used to 

filter suitable stereo models followed by a selection of the n 

closest cameras.  

 

This approach however suffers from the unknown intersection 

angles at the object surface, since the distance between the 

camera and the acquired surface is not known. This is 

particularly a challenge for short baseline imagery (e.g. video 

streams), where the intersection angle of the n closest images 

would be too small to retrieve precise geometry.  

 

Besides, many images cover the same surface and thus highly 

redundant data is processed. For some applications, this 

redundancy can be beneficial in order to reduce noise. However, 

in most applications this benefit does not compensate the high 

processing time requirements. Thus, a reduction of the involved 

stereo models would be beneficial, which requires additional 

knowledge about the geometric conditions.  

 

Consequently, a method is required to analyse the surface in 

object space – which can be retrieved as a sparse point cloud by 

performing a dense reconstruction step on low resolution like 

within our Multi-Stereo solution SURE [Rothermel et al., 2012].  

The neighbourhood analysis should be able to detect the 

overlapping points between point clouds from different images, 

while automatically adapting to varying point density, as it is 

frequently occurring due to the varying image scale. Moreover, 

an option to process large datasets should also be provided to be 

able to utilize the analysis methods for filtering tasks on high 

resolution point clouds.   

1.2 Stereo model selection for Multi-View Stereo 

Stereo model selection is an important step for Multi-View 

Stereo methods. Besides high coverage, high geometric quality 

should be achieved.  This geometric quality is mainly dependent 

on image scale and the intersection angle at the object. While a 

geometrically optimal intersection angle is about 90°, the 

matching quality suffers from such large intersection angles, 

since the image similarity is low. This leads to lower 

performance for image matching and thus to lower reliability 

and density. This is particularly to be considered for dense 

matching tasks, which yield high completeness at the surface. 

 

Besides the intersection angle, the image similarity is decreased 

for surfaces, which are not parallel to the image plane. 

Furthermore, such slanted surfaces are particularly difficult for 

dense matching algorithms similar to Semi Global Matching as 

used in SURE, due to the smoothness constraint used in these 

algorithms [Wenzel et al., 2013]. This smoothness constraint is 

based on penalty terms, where disparity jumps of zero or one 

pixel are treated with a lower penalty than higher jumps. Thus, 

the optimization through the smoothness constraint gets lost if a 

disparity gradient of 1 is exceeded.   

 

Apart from image similarity and matching performance, the 

mutual coverage of stereo models is also decreased with higher 

intersection angles – in particular for non-planar objects. Within 

previous investigations, stereo models between 5 and 30 degree 

intersections have shown to be a suitable compromise for 

arbitrary surfaces [Wenzel et al., 2013]. In particular when 

multi-stereo triangulation like in SURE is used, such 

intersection angles can lead to high geometric quality if the 

cameras are well distributed. For example, an image with one 

stereo model on the left side with 20 degrees and another model 

on the right side with 20 degrees leads to an overall intersection 

angle of 40 degrees for pixels that could successfully be 

matched in both stereo models. At the same time, the image 

similarity within the stereo models is high, which leads to a 

high matching quality. 
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A simple approach to stereo model selection is the selection 

based on the n closest stereo models to a particular image. This 

approach however fails, if the image density is very high (e.g. 

video) or the distance to the object is high – since both lead to 

too low intersection angles at the object and thus to insufficient 

precision on the object. 

 

In order to improve stereo model selection, object space 

information should be taken into account. The selection should 

be performed according to suitable intersection angles at the 

object, while taking the overlap into account since it indicates 

connection as well as mutual coverage of each particular stereo 

model. Thus, completeness and geometric quality can be 

improved.  

 

1.3 Approach 

In order to perform overlap analysis in object space, nearest 

neighbourhood analysis needs to be performed efficiently. Such 

efficient queries can be implemented using indexing and tree 

structures, such as the octree data structure [Meagher et al., 

1980], which indexes the data by subsequently partitioning a 

cube into eight sub-cubes. Octrees also support efficient data 

update and are suitable for out-of-core implementations - 

enabling streaming data from the hard disk, instead of keeping 

the entire data in the main memory. Thus, only the currently 

required data is held in the memory, while unused parts are 

written to disk.  

 

Out-of-core tree structures are widely used – in research often 

for visualization, such as [Ueng et al., 1997], [Corrêa et al., 

2002] or [Lindstrom, 2003]. Besides this application, processing 

on the data is also performed – for example Poisson surface 

reconstruction like in [Bolitho et al., 2007] or mesh 

simplification [Cignoni et al., 2003]. [Elseberg et al., 2011] use 

an out-of-core tree with adaptive depth also for point cloud 

processing and visualization, which improves the support of 

non-uniformly distributed point clouds. 

 

For the tasks of overlap analysis and point cloud filtering, we 

require a flexible implementation of such an out-of-core 

structure, enabling specific operations on tree nodes as well as 

additional data fields. Within this paper, we use the PineTree 

implementation, which we presented in [Wenzel et al., 2014]. 

The Pine Tree framework is based on an octree, and thus allows 

fast data adding and update. Its regular spatial driven portioning 

can be implemented efficiently for operations in-core, but also 

enables switching to out-of-core storage for parts of the tree if 

required.  

 

In order to perform the selection of suitable images as well as 

the stereo models, the information of overlapping surfaces is 

required. For this purpose, one point cloud is derived for each 

image using dense image matching on low resolution (e.g. 200 

by 200 Pixels). Subsequently, the tree is subdivided into deeper 

levels, until each node contains not more than a predefined 

count of points of each point cloud. This leads to clusters of 

homologous points indicating overlap information independent 

of the scale and adapting to non-uniform distribution and 

density. 

 

Within the analysis of overlap in object space, this overlap 

information can be used to build connectivity information. This 

connectivity information is subsequently analysed to select 

stereo models and images to be processed in order to improve 

the geometric quality of the reconstruction and to reduce 

processing time.  

 

Fig. 1: Octree data structure for spatial indexing. The space is 
subsequently partitioned into eight equal sized sub-cubes. At the final 

nodes, the data is stored – enabling fast neighbourhood queries by top-

down tree traversal. Image source: Wikipedia  

 

The retrieval of homologous points is also beneficial for the task 

of point cloud filtering. It can be customized to spatial 

resampling using a pre-defined minimum voxel width or a 

specified reduction-factor of the local resolution. The latter also 

adapts to non-uniform distribution.  

 

Besides the reduction of redundancy and spatial resampling, an 

outlier rejection can be performed since noisy points from more 

sparse clouds (e.g. due to other image scale) will not be 

included in this voxel. This can be complemented by an 

additional constraint of a minimum number of detections from 

different clouds, which enables validation in object space. 

 

Within this paper, the stereo voxel partitioning on multiple 

clouds – including the determination of homologous points for 

the overlap estimation and the point filtering approach, will be 

described in section 2. The homologous point information 

serves as a base for the overlap analysis for the determination of 

suitable images and stereo models, which is described in section 

3. In section 4, the performance of the presented approach is 

discussed in respect to exemplary datasets – followed by the 

conclusions and future work in section 5. 

 

2. VOXEL PARTITIONING ON MULTIPLE CLOUDS 

2.1 Determination of homologous points 

For point clouds from images – e.g. derived using dense image 

matching methods, the source image is known for each point. 

This information can be used for further analysis, such as local 

density estimation, redundancy detection or overlap information 

determination in object space. In order to derive this 

information, identical points between the point clouds 

(homologous points) need to be detected.  

 

The key challenge of point clouds from image matching is the 

non-uniform distribution, which is mainly caused by varying 

image scale. Thus, we always consider the densest point cloud 

as a reference. A point is homologous to another point in this 

densest point cloud, if it is with half of the distance to the 

closest point of the densest point cloud. Thus, each point needs 

to be evaluated with respect to its neighbourhood – in particular, 

the locally densest point cloud. In order to provide an efficient 

implementation, we use the native voxel shaped tree structure of 

the octree used in the PineTree framework, to perform an 

approximated nearest neighbour query. Thus, we evaluate voxel 

cubes and its sub-partitions instead of evaluating each point 

individually, enabling more efficient processing. 
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2.2 Filtering based on point source information 

2.2.1 Filtering locally densest cloud 

 

After adding point clouds from multiple images to the octree 

data structure, the partitioning can be used to evaluate the local 

neighbourhood based on constraints on this point source 

information. This enables adaptive approaches guided by the 

locally densest cloud, instead of defining a fixed tree depth or a 

fixed voxel width.  

 

By constraining each voxel to have only one point from each 

source, the partitioning of the tree will be performed until each 

final voxel has the width according to the highest point density. 

By rejecting all other point clouds, only the densest cloud is 

preserved, which is typically the one with the highest precision. 

Alternatively, other measures of precision can be used as 

constraint if available. The filtering is thus particularly 

beneficial to reduce redundancy by preserving only precise 

information. 

 

2.2.2 Point validation 

 

Furthermore, adding a constraint of having at least two points in 

this voxel, a validation of this point can be performed. If no 

additional point from another source is available, the points in 

the voxel are rejected, otherwise the remaining points can either 

be merged or only the point from the locally densest cloud is 

preserved. Enforcing such a fold constraint enables validation in 

object space, where each point needs to be confirmed by a point 

from another point source. Thus, outliers can be rejected. This is 

beneficial, when images are covering the same object, but are 

not suited for image matching between each other - e.g. due to a 

too large baseline or different image scale. Here, surface 

information can be derived for each image cluster by 

performing stereo matching on suitable models, followed by 

integration in object space of the resulting point clouds. 

 

2.3 Extended voxel sizes 

In the default approach, the tree is sub-partitioned, until each 

voxel has only one point from each image-wise point cloud and 

thus, adapts to the locally densest cloud. This approach can also 

be extended by setting the threshold of this maximum 

occurrence of each class in a voxel to higher values than 1. For 

example, with a threshold of 4, data reduction can be performed 

adaptively, since 4 points of the densest cloud will be merged to 

one cloud.  

 

Besides the adaptive voxel size, constraints for a fixed voxel 

width can also be introduced, where the sub-partitioning is 

performed until either the maximum occurrence threshold or 

this fixed voxel size is reached. This leads to equally distributed 

points where sufficient data density is available. 

 

3. STEREO MODEL SELECTION 

3.1 Stereo model selection in object space 

As stated in section 1.2, a suitable stereo model selection should 

ensure for each stereo model 

  

1) Sufficient overlap between the stereo models, in 

order to ensure completeness and image similarity. 

 

2) A sufficient intersection angle at the object, in order 

to optimize the geometric condition for precision. 

3.1.1 Object space information 

 

In order to retrieve the intersection angle at the object, object 

space information is required. If no prior information is given 

(e.g. sparse feature points from Structure from Motion), this 

information can be retrieved using Dense Image Matching at 

low resolution (e.g. 200 by 200 pixels). For each decreased 

resolution level, the image resolution is decreased by a factor of 

4, while the disparities to be evaluated decrease by a factor of 2 

like the image width. Thus, each lower resolution level 

decreases the complexity of the matching by 1/8 – which results 

for a level 5 processing in a 1/40th of the processing time at 

original resolution. Consequently, one low resolution point 

cloud per image can be derived efficiently, which can be 

analysed within subsequent steps.  

 

3.1.2 Overlap estimation 

 

The estimation of overlap in object space is performed using the 

sparse point clouds derived from the previous step. Given that 

one point cloud is derived for each image, the clouds can be 

integrated into an adaptive voxel grid as described in section 2. 

Here, the used octree is sub-partitioned, until each voxel 

contains a maximum of one point per point cloud. By enforcing 

a minimum number of points from several clouds (e.g. fold 2), 

data filtering can be performed as described in section 2.2.2.  

 

As a result, each integrated point can be stored with its 

corresponding point source information, stored as a vector of 

cloud indices for each point. This correspondence cloud can 

then be used to derive a connectivity matrix – indicating the 

number of connections for each stereo model. In order to derive 

this matrix, one connection is added for each correspondence of 

different clouds for each point in the correspondence cloud, as 

shown in table 1. 

 

Set img_count to image count 
Create matrix C with img_count rows and cols 
Set matrix to 0 
 

For each point k in correspondence cloud 
   For each cloud index i 
      Set C(i,i) = C(i,i) + 1  
      For each cloud index j = i+1       
         Set C(i,j) = C(i,j) + 1 
         Set C(j,i) = C(j,i) + 1 

      End For each 
   End For each 

End For each 

 

Table 1: Derivation of connectivity matrix from correspondence cloud 

The result from this step is a connectivity matrix C, indicating 

the number of connections for each stereo model (point count 

connectivity). The count of points for the stereo model between 

image i and image j can be found in the matrix element C( i, j ). 

On the main diagonal, the total number of points with 

connections for this image can be found. Thus, a normalized 

point count connectivity can be created, by dividing each row r 

by its total number of points on the diagonal element C( i, j ).  

 

Consequently, each element value in each row r depicts the 

percentage of connections and thus, the overlap in object space. 

By using a maximum occurrence of 1, the voxels are partitioned 

until only one point from each point cloud is available. 

However, this voxel width is typically too small to derive 

reliable overlap information, due to shifts of the point clouds, 

density differences and sampling effects from the voxel grid. 
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Consequently, the voxel width for deriving the correspondence 

point cloud needs to be extended. As described in section 2.3, 

the voxel width can be extended by either defining a minimum 

voxel width value, or by increasing the maximum occurrence 

threshold. However, the first approach doesn’t adapt to non-

uniform distribution – furthermore, the desired sampling width 

is typically not known. Thus, we use an increased maximum 

occurrence value (e.g. 10), which leads to clusters of points. 

Since each correspondence within such a cluster is only taken 

into account once, the correspondence information becomes 

more reliable. Furthermore, the number of correspondences is 

reduced, which is beneficial for processing time in particular for 

large datasets. 

 

3.1.3 Angle estimation 

 

In order to estimate the angle between stereo models, the angle 

of intersection at each point from the correspondence point 

cloud is evaluated. For this purpose, two rays are reconstructed 

from the known camera centres of the respective images to this 

point. With the cosine function, the angle between these rays 

can be determined. This angle is stored in another connectivity 

matrix similar to section 3.1.2, where each stereo model 

between image i und j is represented in the matrix cell i, j. In 

order to derive the mean angle for each stereo model, the angles 

are accumulated by adding up the angles determined for each 

model in the respective cell in the angle connectivity matrix A.  

 

3.1.4 Decision criterion 

 

Stereo models with long baselines for optimal intersection 

angles typically suffer from insufficient overlap and image 

similarity. In contrast, stereo models with short baseline and 

optimal image similarity, typically suffer from an insufficient 

intersection angle. Thus, a compromise is required to select the 

optimal stereo model.   

 

For this purpose, we propose a combined criterion � – 

comprising the overlap � and a mean angle �	at the object. The 

value � is represented in the normalized point count 

connectivity described in section 3.1.2, which indicates the 

overlap within a range between 0 and 1. The mean angle � is 

available in the angle connectivity matrix. 

 

The algorithm shall select stereo models closest to a certain 

angle, while taking into account the overlap information. For 

this purpose, a vector of desired angles can be defined (e.g. 10° 

and 20°) to derive stereo models close to this configuration. In 

order to avoid rough thresholds but to adapt flexibly, we use a 

Gaussian distribution around the defined angles as weight for 

the overlap information. This results in a decision criterion. 

 

The Gaussian distribution can be represented by the probability 

density function depending on the parameter x, an expectation 

value � as well as the standard deviation � as follows: 

 

��	
 = 1

�√2� 	
 	������� 	
�

 

 

For our purposes, we require a distribution with a value range of 

[0,1] dependent on the desired angle � (e.g. the selected 10°) 

according to the given angles �. For this purpose, we omit the 

normalization and define the distribution with regard to the 

given angles. Furthermore, we add a small constant shift � (e.g. 

0.01), to not let the distribution be close to 0, but allow small 

weights for stereo models distant to the desired angle. This is 

beneficial, if no other stereo models are available. 

Introducing the shift � requires again normalization, in order to 

achieve a value range for the angle weight between 0 and 1. 

This h leads to the angle weight � as follows: 

 

���
 = 1

1 + � �� + 
���
��� 	
�

�
	
 

 

In order to prefer images with high overlap and similar angles at 

once, we can integrate the overlap � with the angle weight � to 

the criterion	���, �
: 
 

���, �
 = �� =
�

1 + � �� + 
���
��� 	
�

�
	
 

 

By finding the stereo model with a maximum for the 

criterion	�, the most suitable stereo model can be defined for 

the previously determined vector of angles	�. For example, two 

stereo models with 15° can be determined iteratively, by 

deactivating already selected models.  

 

A key parameter of the criterion is now the standard deviation, 

since it defines the allowed range, where the angle overrules the 

overlap information. For example, if a stereo model of 5° is 

selected, but another model with 8° degrees exists with a 50% 

higher overlap, we would like to allow the decision to prefer the 

more overlapping image. For this purpose, we select a rather 

high standard deviation (e.g. 10 degrees) – enabling a rough 

preference, while not overruling the important overlap 

information. 

 

For equally distributed stations – e.g. as a circle around an 

object, the algorithm would select the left and right image. 

Furthermore, the weighting of the angle enables the selection of 

a stereo model even if no model with the desired angle exists. It 

will be selected according to the angle similarity and the 

available overlap. This enables the specification of generic 

angles	�, where the impact of the angle in relation to the overlap 

is defined by	�. At a difference of one � to the selected angle, 

the proposed distribution will lead to a weight of roughly 0.5, 

and thus compensates at this point a 50% higher overlap of the 

image. Closer to the selected angle µ, stereo models with higher 

overlap will still be preferred, since the weight difference is 

smaller.  

 

3.1.5 Implementation overview 

 

The implementation of the stereo model selection can be 

divided into the following steps: 

 

1) Overlap estimation: 

a. Integration into voxel space 

b. Building up of correspondence point cloud 

2) Derivation of point count connectivity matrix 

a. Normalization (contains �) 

3) Derivation of angle connectivity matrix (contains �) 

4) Determination of suitable models  

For each image i: 

 For each desired angle �: 

- Determine decision criterion �(�,�) 

- Find and select maximum of � 

- Deactivate model for following queries 

 

4. DISCUSSION 

The proposed method for stereo model selection and point cloud 

filtering has been shown for three exemplary datasets on pages 

6-8.  
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The first dataset consists of 43 camera stations acquired as a 

ring around a church ruin in St. Andrews, Scotland. Thus, the 

angle between each image is roughly 8-10 degrees. For 

evaluation purposes, we defined the angles to be selected (µ) as 

two 8 degree models, two 16 degree models and two 32 degree 

models – even though such a large amount of stereo models 

would in practice not be required. Figure 2.2 shows the 

normalized overlap connectivity matrix, which indicates the 

connection in dependency of the area covered by the particular 

image. Furthermore, the mean angle connectivity as well as the 

finally selected stereo models are shown. The selected stereo 

models show that the selection according to the angle succeeds. 

In the following figure 2.3, the overlaps as well as the decision 

criterion for selection is given, where the overlap is weighted 

with the selected angle. Figure 2.4 shows the result of dense 

surface reconstruction with SURE. The filtering described in 

section 2.2 was applied using different values for the maximum 

occurrence value. As shown, the data amount can be reduced 

while preserving detail. 

 

The El Capitan example on page 7 shows a dataset from 

Yosemite National Park in California. 42 images were acquired 

with wide angle and far distance from a large object. The key 

challenge in this dataset is the small baseline between the 

images with respect to the distance to the object. For the 

classical approach of selecting n nearest neighbours (e.g. 5) as 

the stereo model, the dense reconstruction would lead to 

unreliable data due to insufficient geometric conditions. The 

presented approach selects the models based on the object space 

information and enables the derivation of a reasonable surface. 

 

The Rottenburg example on page 8 shows a partial dataset of a 

church tower, which was acquired using an octocopter RPAS. 

Here, the challenge is the inhomogeneous distribution including 

very short base lines between the first images. Also here, the 

algorithm proofs to select the right stereo models according to 

the specified angles.  

 

5. CONCLUSIONS AND FUTURE WORK 

The out-of-core octree used within this work proved as a 

suitable solution for spatial data storage and querying. Due to 

the out-of-core technique, not the whole datasets needs to be in 

memory, but can be processed automatically in parts. This 

enables scalability to large datasets. Furthermore, the octree 

represents a tree structure suitable for fast data queries, while 

supporting efficient data update and removal. Within Multi—

Stereo methods for dense surface reconstruction, this enables 

processing surface information in object space. This is suitable 

for a variety of applications, such as point cloud filtering as 

described in section 2, but also for stereo model selection as 

described in section 3.  

 

For the point cloud filtering, the tree is used in combination 

with constraints on the point source information resulting from 

different point clouds. By partitioning the tree until each voxel 

contains only one point from each point cloud, the point cloud 

with the highest local density can be filtered. This is particularly 

beneficial for Photogrammetric applications, where the varying 

image scale leads to non-uniform point distribution. 

Furthermore, constraints on minimum detections from different 

sources can be used to perform point validation in object space. 

 

Within the stereo model selection, the flexible structure of the 

tree can be used to analyse overlaps between point clouds 

efficiently. Adaptive voxel sizes enable a clustering adapting to 

the local point density, while providing reliable overlap 

information. In order to determine optimal stereo models, this 

overlap and the local intersection angle are taken into account 

using a weighting function. The resulting criterion can be 

maximized to find suitable stereo models according to 

predefined intersection angles, while the method adapts robustly 

by selecting alternative models if models with the particular 

angles are not available.  

 

The presented approach can be reduced to improve geometric 

conditions for the dense reconstruction, but also to reduce 

processing time. This is in particular suitable for datasets, where 

images were acquired with small baselines – e.g. due to high 

acquisition frequency as found in video streams.  

 

Within future work, the impact of different configurations of 

selected angles will be further evaluated. Furthermore, the 

image point clouds will be evaluated in clusters according to the 

depth, in order to avoid difficulties of the mean angle due to 

large depth variations in the scene. Also, the derived overlap 

information shall be used to determine a minimum set of 

reliable stereo models, in order to reduce processing time. 
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Fig. 2.1: St. Andrews dataset. 43 images with 5 Megapixels each distributed in a circle around the object. 

 
Fig. 2.2: Normalized overlap, mean angle and decision on the St. Andrews dataset for µ=[8°,8°,16°,16°,32°,32°] 

 

Fig. 2.3: Decision criterion for angles 8° (red), 16° (green) and 32° (blue). Dotted, black: overlap information. Line: theoretical distribution based on 

angle only. Dotted: effective distribution of criterion based on the angle including the overlap factor for St. Andrews example dataset. 

     

Fig. 2.4: Resulting point cloud after stereo models selection and dense image matching with SURE. Left: full view, filtered with maximum occurence 

1. Right: Detail from full cloud (49.1 Mio. pts.), filtered with mo 1 (7.1 Mio. pts.), filtered with mo 2 (3.8 Mio. pts.), filtered with mo 4 (1.9 Mio. pts.) 
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Fig. 3.1: El Capitan dataset. 42 images with 16 Megapixels each distributed in line at far distance from the object. 

 
Fig. 3.2: Normalized overlap, mean angle and decision on the El Capitan dataset for µ=[8°,8°,16°,16°,32°,32°] 

Fig. 3.3: Decision criterion for angles 8° (red), 16° (green) and 32° (blue). Dotted, black: overlap information. Line: theoretical distribution based on 
angle only. Dotted: effective distribution of criterion based on the angle including the overlap factor for El Capitan example dataset. 

Fig. 3.4: Left: resulting point cloud after stereo models selection and dense image matching with SURE. Right: triangle mesh derived from point 

cloud. Point cloud count original:  146 Mio. pts. Filtering with maximum occurrence 1: 31 Mio. pts., mo 2: 18 Mio. pts., mo 4: 11 Mio. pts. 
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Fig. 4.1: Rottenburg dataset. 11 images with 16 Megapixels each distributed closely to each other. 

 
Fig. 4.2: Normalized overlap, mean angle and decision on the Rottenburg dataset for µ=[8°,8°,16°,16°,32°,32°] 

Fig. 4.3: Decision criterion for angles 8° (red), 16° (green) and 32° (blue). Dotted, black: overlap information. Line: theoretical distribution based on 

angle only. Dotted: effective distribution of criterion based on the angle including the overlap factor for Rottenburg example dataset. 

 

Fig. 4.4: Resulting point cloud after stereo models selection and dense image matching with SURE (filtered with maximum occurence 1). 

 Full cloud (84 Mio. pts.), filtered with mo 1 (13 Mio. pts.), filtered with mo 2 (5 Mio. pts.), filtered with mo 4 (2.4 Mio. pts.) 
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