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ABSTRACT: 

 

The majority of approaches to Structure from Motion apply an incremental triangulate-and-resect strategy in order to reconstruct 

camera motion and scene structure in a common reference frame. The sequential addition of images may cause a drifting behaviour 

during the reconstruction, in some cases causing the process to fail. Over the last decade, more attention has come to non-incremental 

approaches, which exploit the network characteristics arising from the 2- or 3-view relations, given for a set of images through 

relative orientations. Most approaches employ rotation registration, followed by translation registration. The latter being carried out 

with or without simultaneous scene reconstruction. We suggest an approach which starts by estimation of relative scales, followed by 

simultaneous registration of rotation and translation. The latter is achieved by employing a path-finding algorithm based on Ant-

Colony-Optimization. For scale estimation we propose a window-search adaption of Levenberg-Marquardt, which avoids 

unnecessary matrix inversions. We also suggest a simple method for detection of outlier orientations.  

 

 

1. INTRODUCTION 

Structure from Motion (SfM) is a strongly researched field 

and also well-established among users. Its application ranges 

from airborne survey to architecture and archaeology, just to 

name a few. Roughly described, the procedure consists of (i) 

establishment of geometric relations between image pairs or 

triplets by matching of visual features, (ii) fusion of camera 

poses and scene structure in a common coordinate frame 

(although i and ii not necessarily need to be executed in this 

order) and (iii) refinement of the result by bundle adjustment. 

The majority of approaches to SfM employ an incremental 

triangulate-and-resect strategy for the second task. Starting 

with a minimal solution from two or three images, further 

images are added successively, using the currently available 

3D structure. This leads to four main drawbacks. (i) The 

choice of images for the initial solution and the order in 

which the remaining images are added, have strong impact on 

the quality of the results. (ii) Short baselines may generate 

erroneous point triangulations which cause incorrect results 

in subsequent steps. (iii) Errors are accumulated and lead to a 

drifting behaviour which may result in the well-known loop 

closure problem. (iv) Ambiguous structures, e.g. repetitive 

facades or vegetation, may cause strong false-positive 2-

view-connections between images, often resulting in a failing 

reconstruction. Of course, various approaches within the 

incremental framework address these problems, but are not 

listed here.  

 

Non-incremental (or non-sequential) approaches to SfM have 

come to more attention within the last decade. Generally 

speaking, these methods address the task of fusing camera 

poses and structure in a common coordinate frame by 

exploiting the network characteristics arising from the 

relative orientations between the images. Cycles within the 

network (or camera graph) correspond to a cyclic 

concatenation of transformations and thus need to yield 

identity (Figure 1, Equation 1). In the following, we will refer 

to this circumstance as identity constraint. Since the scale of 

the baselines is unknown, the constraint only holds for the 

rotational part of the transformations. Within this context, a 

common coordinate frame can be interpreted as an additional 

node in the network, which is connected to all other nodes. 

Initially, the corresponding edges, i.e. the absolute 

orientations, are unknown. Yet, the identity constraint allows 

for expressing the absolute rotations as functions of the 

relative ones and can be solved with comparably little effort. 

This step is often entitled as rotation averaging or rotation 

registration and (although it can be solved in different ways) 

is the common starting point of all non-incremental SfM 

approaches we are aware of. 

 

 

Figure 1. Sketch of a camera graph. Chaining the relative 

transformations H needs to yield identity. 

 

The process is followed by a reconstruction of the global 

translations (camera positions). Here we encounter a larger 

diversity in the general strategies. In contrast to other 

approaches we begin our process by estimation of the 

unknown scales of the baselines and proceed by 

simultaneously solving for global rotation and translation, 

using the identity constraint. For this step we employ a 

robust, nature-inspired sampling of paths from the network of 

scaled relative orientations.  
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In the following chapter we try to classify existing 

approaches according to the underlying constraints and 

concepts for achieving robustness. Depending on the choice 

of constraint, scene reconstruction may need to be computed 

as an additional step. 

 

Note: In this paper, when speaking of absolute or global 

orientation, we neither mean a georeferenced solution, nor 

metric scaling. Instead we refer to an arbitrary reference 

frame with arbitrary scale. That is, compared to a 

georeferenced solution, a datum defect of rank seven 

remains. 

 

1.1 Related work 

Global rotation estimation: A linear least squares solution 

based on quaternion formulation of rotations is given in 

(Govindu, 2001). (Martinec & Pajdla, 2007) suggest a 

solution based on approximate rotations and subsequent 

enforcement of orthonormality for the rotation matrices. A 

gradient descent method based on matrix completion is 

presented in (Arrigoni et al., 2014). (Hartley et al., 2013) 

discusses rotation averaging in different application scenarios 

and investigates different distance measures on SO(3), the 

space of three-dimensional rotations.  

 

Global translation and structure estimation based on 

collinearity: A reformulation of the collinearity constraint is 

used in (Kahl, 2005) to simultaneously estimate camera poses 

and scene structure. The concept is picked up by e.g. (Olsson 

& Enqvist, 2011) and (Martinec & Pajdla, 2007). The latter 

suggest a reduction of the number of reconstructed points by 

selecting four representative points per image pair.  

 

Global translation estimation based on coplanarity: In 

(Arie-Nachimson et al., 2012) the relative orientation 

between cameras within the epipolar constraint is formulated 

as concatenation of the corresponding absolute orientations. 

The resulting system contains the observations of the scene 

points, but no object space coordinates; hence, the number of 

unknowns is reduced drastically. (Arrigoni et al., 2014) adopt 

this method for their reconstruction pipeline. 

 

Global translation estimation based on identity: These 

approaches solely rely on the transformations between 

camera frames, thus creating very small systems. (Govindu, 

2001) eliminates the unknown scale of the heading vectors by 

applying the cross-product with the correspondingly chained 

absolute camera positions and solves the system using a 

weighted least squares method. (Sim & Hartley, 2006) 

achieve scale elimination by setting the heading vector equal 

to the normalized version of the chained global camera 

positions and solve for unknowns employing L∞ 

minimization. (Moulon et al., 2013) keeps the heading vector 

scales as unknowns in order to ensure chirality (right-

handedness, points must be triangulated in front of a camera) 

while creating a linear system.  

 

Robustness to relative translation based on trifocal 

tensor: As mentioned above, short baselines between images 

may cause erroneous triangulation results in incremental SfM 

frameworks. This is caused by a strong sensitivity of the 

relative translation estimation to short base lines (which is 

not the case for relative rotations). It is frequently suggested 

(also for non-incremental approaches) to compensate for this 

by employing image triplets and trifocal tensor estimation, 

e.g. (Sim & Hartley, 2006) or (Moulon et al., 2013). 

The identity constraint to cycles of transformations not only 

gives rise to methods of point-free estimation of camera 

poses. It also allows detection of outliers among the relative 

orientations by evaluating the deviation from identity. The 

concept is often referred to as cycle consistency. 

 

Robustness to global rotation based on spanning trees: A 

spanning tree of relative orientations, derived from the 

camera graph, can be used to compute putative absolute 

orientations, by chaining the relative orientations 

accordingly. When edges, which have not been used in the 

tree, are added, they create cycles which can be evaluated in 

terms of consistency. Since the number of orientations used 

in the tree is constant, also the number of unused edges is 

independent of the considered tree. (Govindu, 2006) suggests 

a RANSAC (Fischler & Bolles, 1981) approach, considering 

unused edges, whose consistency falls within a threshold, as 

inliers. The spanning tree yielding the highest number of 

inliers is kept for further computations. (Olsson & Enqvist, 

2011) extend the approach by guided sampling of the trees, 

i.e. the selection probability of the edges is weighted 

according to the number of matches between the 

corresponding images. In (Enqvist et al., 2011) repeatedly 

building maximum spanning trees over the number of 

correspondences and rejection of inconsistent edges is 

suggested. The consistency measure is normalised by the 

square root of the cycle length, to take error accumulation 

into account.  

 

Robustness to relative rotations based on inference: (Zach 

et al., 2010) utilizes Bayesian inference to the complete graph 

of relative orientations, over cycles of maximum length six, 

to detect erroneous relative rotations in the network and 

remove corresponding edges.  

 

1.2 Outline of our approach 

We pick up the idea of pure motion estimation from the 

identity constraint. Our goal is to implement a non-

incremental SfM pipeline which avoids reconstruction of 

scene points as far as possible, to keep the number of 

unknowns small, for as long as possible. This includes global 

epipolar estimation as a replacement for bundle adjustment. 

In other words, we aim at fully decoupling motion estimation 

from scene reconstruction. As outcome of such an approach, 

we expect superior scalability to large data sets, but also see 

possibilities for application in SLAM or pure visual 

navigation, where computation power may be restricted or 

reconstruction is not, or only partially, needed. For instance, 

scene reconstruction could be run in a separate thread and 

turned off, when an area is traversed, which has already been 

visited. Presently we focus on the non-real-time scenario. 

 

Starting with a set of relative orientations between images the 

outline of our suggested approach is:  

 

1. Remove outlier orientations by rotational cycle 

consistency 

2. Estimate the scale of the baselines 

3. Remove outlier orientations by translational cycle 

consistency 

4. Compute approximate absolute orientations using a 

robust, adaptively guided tree sampling procedure 
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5. A: Refine absolute orientations by global epipolar 

adjustment, then triangulate scene structure 

B: triangulate scene structure, then refine using 

bundle adjustment 

 

Since this is work in progress, this paper covers only steps 1 

to 4, which represent the process of finding starting values 

for the bundle adjustment, or, as we plan for our future work, 

global epipolar adjustment. We suggest a simple 

accumulative procedure for detection of outlier orientations 

based on rotational cycle consistency. It is employed before 

scaling the heading vectors using least squares in a window 

search approach, based on the Levenberg-Marquardt 

framework. The previous outlier-detection method is then re-

applied to the scaled translations. We conclude the process by 

retrieving approximate absolute orientations using a nature 

inspired tree sampling procedure, which adopts sampling 

probabilities to the encountered errors. 

 

2. OUTLIER DETECTION 

Trilaterally connected images form the shortest cycles in a 

camera graph. The identity constraint for a cycle formed by 

images i, j, k is given by: 
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Or equivalently: 

 

               
   

 

The indices are given as ‘from-to’ transformation direction. s 

is the unknown scale of a baseline. As mentioned, the 

rotational part is independent of s and can therefore be 

evaluated without scale information. 

 

For each triplet of images we compute the geodesic angular 

distance      between identity and the chained rotations, 

derived from the Frobenius norm (chordal distance, Hartley 

et al., 2014) and weighted by the square root of the cycle 

length as suggested in (Enqvist et al., 2011). 
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For each edge ij we compute the mean error of all n triangles 

sharing this edge. 
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We consider edges with        as outliers. If there are 

outliers, we iteratively remove the edge with the largest error 

and re-compute the errors. Multiple computations are easily 

avoided by using a triangle/edge incidence matrix containing 

the errors      and setting corresponding entries to 0, when 

an edge is removed.  

 

If scale (Chapter 3) is available for the relative camera 

translations, the same procedure can be used to detect 

translational outliers. Since no direct metric is available for 

the scales, we use an angular displacement   between a 

‘measured’ scaled heading vector    
  and the heading vector 

   
  resulting from ‘chaining’ the two remaining (upper index 

m or c, respectively). 
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As in contrast to the rotational case, permutation of the 

identity constraint leads to different results. We use the mean 

of the three possible results (again, weighted by cycle length) 

as error measure      for a triangle. 
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The remaining steps equal the rotational case, except, we 

allow for larger deviation; edges with        are considered 

being outliers. When no more outliers are found, we re-

estimate the scale of the remaining baselines. 

 

3. SCALE ESTIMATION 

The unknown scales s in the translational part of (Equation 1) 

can easily be solved, for example using singular value 

decomposition. Yet, in order to ensure chirality, it should be 

carried out including inequality constraints, such that    . 

We implemented such an approach to compare it to our 

suggested approach, which is a window search adaption of 

the Levenberg-Marquardt (LM) framework. LM (Equation 7, 

often referred to as damped least squares) is a simple 

modification of iterative least squares and is known to be less 

sensitive to the quality of starting points x0 and to outliers. It 

introduces a modification to the normal equation matrix N, by 

superimposing a matrix Nd, which contains only the diagonal 

elements of N. Additionally, Nd is scaled by a factor  , i.e. 

the diagonal elements of the normal equation matrix are 

emphasized for large  .  

 

 
 

Figure 2. Sketch of our Levenberg-Marquardt-like window 

search approach. Stars depict the centres of the search 

windows, circles show the best solution found within the 

window. 

  

For a small   the solution dx is very close to the least squares 

solution. By increasing  , the solution direction changes from 

least squares to steepest gradient and is simultaneously 

damped. The iterations are usually started with a damped 
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solution. In each iteration, the new solution is checked, 

whether it improves the residuals. If this is the case the result 

is accepted, the starting point x0 is updated and   is decreased 

by dividing by a factor k (step size). Otherwise, the result is 

dismissed,   is increased by multiplying by k and a new 

result dx is computed from the same starting point. 

 

        

 

   (     )      
(7) 

 

A drawback of LM is the necessity to repeatedly invert the 

modified normal equation matrix. We pick up the general 

idea of damping and direction modification, but try to avoid 

unnecessary inversions through a window search approach. 

In each iteration we compute two separate solutions dxls and 

dxsg and combine them to a solution dx by: 
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Here,    induces the direction change, whereas    damps the 

solution. Thus, we are able to modify damping and direction 

independently. Within an inner loop, we evaluate all 

combinations for   ⁄ ,   and   , a total of nine solutions. 

Depending on which combination yields the best 

improvement of the residuals, we individually multiply or 

divide the damping factors by k2 (squared step size to avoid 

overlapping windows) or leave them untouched and proceed 

with a subsequent inner iteration (Figure 2). We repeat the 

inner loop until no improvement is achieved. Only after 

termination of the inner loop, we update x0 and compute new 

solution vectors by (Equation 8). 

 

Using the described procedure, we solve for scales using a 

non-linear formulation of the translational identity.  

 

    
 

   

(                ) (9) 

 

Again, permutation is taken into account, yielding nine 

equations per triangle. We also tested a linear formulation in 

our framework, but observe less sensitivity to outlier 

orientations, when using (Equation 9). This also holds in 

comparison to our implementation of an inequality-

constrained svd solution (Figure 3). Although the current 

implementation does not take chirality into account, we have 

not encountered any problems so far. Yet, we are planning to 

add inequality constraints to our approach, to be sure in this 

point. 

 

 
 

 
 

Figure 3. Absolute orientation results of our overall approach 

with outlier detection turned off (dataset CastleP30). Left: 

scales estimated with svd and inequalities. Right: scales 

estimated using our suggested approach. Although still 

erroneous due to no outlier removal being performed, it is 

much closer to the real solution. Compare this with Figure 7, 

right column. 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 4. Mean convergence behaviour (median error in ° over iterations, 100 runs over 100 iterations) of different tree sampling 

methods. The dashed lines show the best directly picked result. The solid lines show the best result for minimal spanning trees 

derived from dynamic weighting. After a few iterations our suggested method (solid red) finds superior solutions. Datasets from left 

to right: FountainP11, HerzJesuP25 and CastleP30, all being part of the benchmark dataset of (Strecha et al., 2008). The images are 

undistorted. The numbers in the names of the dataset indicate the number of images. 
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Figure 5. Mean convergence behaviour (100 runs over 100 iterations) on datasets with uncalibrated cameras. Left to Right: Statue 

(two circles, 55 images), Boat (one circle, 56 images), VikingTroll (three arches, 49 images) 

 

 

4. APPROXIMATE ABSOLUTE ORIENTAIONS 

Having removed outliers among the relative orientations and 

estimated the scales of the baselines, we find approximate 

absolute orientations by tree sampling. We employ a path-

finding algorithm which might be described as a dynamically 

reweighted RANSAC approach and is closely related to Ant-

Colony-Optimization (ACO, Dorigo et al. 1999). 

 

Initially, ants search for food in a random manner, leaving a 

trail of pheromones, which they can follow on their way back 

to the formicary. If the search was successful, they lay 

another layer of pheromones. The pheromone trail influences 

other ants in their choice of path. The more ants that follow a 

trail, the stronger the attraction of the path to a source of 

food. When the source is consumed, the pheromones 

evaporate and the search behaviour falls back to random. 

ACO simulates this procedure by picking a number of 

random paths from a graph and evaluating them with respect 

to some quality measure. The results are induced to the graph 

as weighting of the edges of the path. Basic variants evaluate 

picked trees as a whole and reweight corresponding edges of 

the graph by the same value; other variants evaluate each tree 

segment individually. Evaporation is often simulated by 

decreasing ‘old’ weights, in order to avoid premature 

convergence. In subsequent iterations, the same number of 

paths is picked, while adjusting the probability of choosing 

an edge to the current weightings. Over time, the minimal (or 

maximal) spanning tree of the graph converges. 

 

4.1 Outline of our approach 

In our approach we only use one ‘ant’, which means, we 

update the weights of the graph after each sampled tree. 

Furthermore, we do not evaporate weights explicitly, but 

build mean weights over the iterations. Edges of a sampled 

tree are evaluated individually, as described in the following. 

 

We start by initializing the weights of the camera graph with 

a positive value close to zero, to avoid division by zero in the 

following steps. We pick a random tree, using the reciprocal 

values of the weights as probability measures. Each edge, not 

being part of the tree, forms a cycle, when added to the tree. 

A cycle is evaluated according to (4) and (6), the only 

difference being, that we allow arbitrary cycle length and 

reweight accordingly. We take the mean of both values as an 

error measure  . The errors for all cycles are computed and 

accumulated over the corresponding segments of the tree. 

Simultaneously, we count ‘traverses’ of the tree edges, i.e. 

the number of cycles a tree edge is part of (Figure 6). The 

accumulated errors at the edges are then normalized by the 

according number of traverses. 

 

 
 

Figure 6. Sketch of a simple graph. The nodes are connected 

over a spanning tree (green). Unused edges (dashed blue) 

form cycles. The numbers indicate how many cycles a tree 

edge is part of. 

 

Being   
  the error of a cycle i containing the tree edge e; and 

n being the number of all cycles containing e, the total error 

measure    for the tree edge e is: 

 

   
 

 
∑  

 

 

   

 (10) 

 

We evaluate all edges of the tree in this manner and add the 

results to the weighting of the overall graph. We repeat the 

tree sampling process iteratively, while counting how often 

an edge of the graph is chosen as a tree segment. The 

accumulated weights in the graph are normalized 
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Figure 7. Top-view plots of the camera positions for the datasets of Figure 4 (same order), First image used as reference frame. 

Upper Row: Results derived after 20 iterations of our approach. The cameras are connected by edges corresponding to the established 

2-view-connections. The colours indicate the weights created over the iterations. Thick lines represent the minimal spanning tree. 

Lower row: Reference solution computed using a commercial SfM software. 

 

accordingly. The procedure results in the probability of 

choosing edges causing large errors being lower than that of 

choosing edges causing small errors. 

 

To evaluate the quality    of a sampled tree t, we choose the 

median of all    of the tree. At this point, it might be 

considered to choose the best sampled path as solution, 

which would resemble a pure RANSAC approach. Yet, the 

goal of our procedure is to find a non-random path with 

superior quality, i.e. the minimal spanning tree over the 

weighted graph should converge to a solution better than the 

best randomly picked path, or at least find the solution 

earlier. 

 

4.2 Experiments 

In our experiments we let the process run for 100 iterations, 

and repeat 100 times for a dataset. The plots (Figure 4 and 5) 

show the mean convergence behaviour. We evaluate three 

different sampling variants: 

 

- pure random sampling without influences on 

choice probabilities (unweighted, ‘ransac’), close to 

(Govindu, 2006) 

- random sampling with probabilities according to 

the number of correspondences (fixed weights, 

‘corrsac’), close to (Olsson & Enqvist, 2011) 

-  random sampling using our suggested approach 

(dynamic weights, ‘acosac’) 

 

Additionally, we use all three variants to create weights for 

the edges as described and evaluate the convergence of the 

corresponding minimal spanning tree. The experiments show, 

fixed weighting according to the number of correspondences 

usually performs best among the tested random sampling 

approaches, but results in the worst minimal spanning tree 

result. Unweighted random sampling performs worst, but 

generates considerably good minimal spanning tree solutions. 

This may be explained by a better coverage over the space of 

possible solutions, resulting in a better estimation of errors 

per edge. Although random sampling based on the ACO-

weights only produces medium sampling results, it produces 

the best minimal spanning tree solution. The latter being the 

best performing of the tested variants, after a few iterations. 

Illustrations of absolute camera orientations for the test data 

sets, derived after only 20 iterations, can be found in Figure 7 

and 8.   

 

5. CONCLUSIONS 

We presented a procedure to derive absolute orientations 

from a graph of relative orientations in a non-incremental 

way. A simple method, to detect outlier orientations based on 

cycle consistency, was suggested, which can be used for 

rotations and translations (in presence of scale information). 

To estimate scales we suggested a hybrid least squares / 

steepest gradient window search approach, which imitates the 

behaviour of Levenberg-Marquardt while decreasing the 

number of matrix inversions and being considerably 

insensitive to outliers. In order to derive approximate 

absolute orientations based on tree sampling, we propose a 

path finding algorithm based on Ant-Colony-Optimization 

and show in our experiments, that it outperforms other 

sampling methods after a few iterations.  

 

We achieve good results for most datasets we have tested. 

However, our approach, which avoids rotation registration, 

may be over-optimistic in cases of weakly connected graphs 

with strong drifting behaviour, as can be seen in Figure 8 

(middle column). Thus, we consider performing rotation 

registration before scale estimation, to make our process 

more reliable. In combination with the optimization schemes 

presented, we expect being able to present a fully working, 

scalable and robust pipeline for non-incremental Structure 

from Motion in near the future. 
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Figure 8. Top-view plots of the camera positions for the datasets of Figure 4. 
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