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ABSTRACT:  

 

This paper presents a new and fast binary descriptor for image matching learned from Haar features. The training uses AdaBoost; the 

weak learner is built on response function for Haar features, instead of histogram-type features. The weak classifier is selected from a 

large weak feature pool. The selected features have different feature type, scale and position within the patch, having correspond 

threshold value for weak classifiers. Besides, to cope with the fact in real matching that dissimilar matches are encountered much 

more often than similar matches,  cascaded classifiers are trained to motivate training algorithms see a large number of dissimilar 

patch pairs. The final trained output are binary value vectors, namely descriptors, with corresponding weight and perceptron 

threshold for a strong classifier in every stage. We present preliminary results which serve as a proof-of-concept of the work.  

 

 

1. INTRODUCTION 

Feature based image matching aims at finding homogeneous 

feature points from two or more images which potentially 

contain the same object or scene. Feature detection, description 

and matching among descriptors form the feature based local 

image matching framework. Matching algorithms should be 

robust to image transformations, while recalling as many 

matching points as possible and maintain as high an overall 

geometric accuracy as possible. Another important aspect is the 

speed of computation, where naturally faster means better when 

high recall and accuracy are guaranteed.  

  

To cope with geometric and radiometric transformations, SIFT 

(Lowe, 2004) and SURF (Bay et al., 2008) apply a set of hand-

crafted filters and aggregate or pool their responses within pre-

defined regions of the image patch (Trzcinski et al., 2012). The 

extent, shape and location of these regions form the pooling 

configuration of the descriptors. Specifically, SIFT uses grid 

regions and aggregates by histogram of gradients in rectangular 

grid regions. In other descriptors such as SURF (Bay et al., 

2008) and DAISY (Tola et al., 2010), the shapes of these 

pooling regions vary from grid to concentric circles around the 

centre of the patch. 

 

Building a descriptor can be seen as a combination of the 

following building blocks (Brown et al., 2011a): 1) Gaussian 

smoothing; 2) non-linear transformation; 3) spatial pooling or 

embedding; 4) normalization. If we take matching image patch 

pairs as positive matches and non-matching patch pairs as 

negative matches, image matching can be converted to a two-

class classification problem. For the input training patch pairs, 

the similarity measure based on every dimension of the 

descriptor is built. Fed with training data, the transformation, 

pooling or embedding that gets minimum loss can be found to 

build a new descriptor. Work in (Brown et al., 2011a, Trzcinski 

et al., 2012) has proved that blocks 2) and 3) can be learned and 

the learned descriptors can improve matching performance 

significantly. The parameters of these descriptors are trained 

and optimized on large training data set.  

 

Cai et al., (2011) learn descriptors from the perspective of 

embedding. The Local Discriminant Projection (LDP) is 

presented in their work to reduce the dimensionality and 

improve the discriminability of local image descriptors. In the 

work of (Brown et al., 2011), non-linear transformation and 

pooling / embedding are added to the learning parts. However, 

predefined pooling shapes are used, similar to the SIFT 

rectangular grid and the GLOH (gradient location and 

orientation histogram) log-polar location grid. In GLOH, a SIFT 

descriptor is computed with three bins in radial direction and 

eight in angular direction. But its learning criterion, area under 

the receiver operating characteristic (ROC) curve, is not 

analytical and hard to optimize. Convex optimization 

(Simonyan et al., 2012) is used to learn optimal pooling 

configurations. Another idea is to use weak learners based on 

comparison or statistics, and use boosting to obtain the optimal 

pooling configuration and embedding simultaneously (Trzcinski 

et al., 2012).  

 

In most of the current descriptor learning work, algorithms use 

the same amount of positive and negative training data, which is 

in contrast to the real situation in feature based matching: the 

number of dissimilar matches is much higher than the number 

of correct (similar) matches. In particular, without prior 

knowledge, every interest point patch should be matched to all 

interest point patches from another image. As true match pairs 

are rare, most of these matching hypotheses will be incorrect. 

Therefore, in a real matching scenario, a negative matching 

output appears much more often than a positive output. Perhaps 

more importantly: incorrect pairs will have a broader statistical 

distribution and more learning pairs are required to represent 

this distribution.  

 

Inspired by the above points, multi-stage cascaded learning is 

used in our work. New negative training samples, which are 

non-separable in former stages, can be added in the next stage, 

and then the discrimination of the learned descriptor can 

improve as the number of stages increases. By training in this 

cascaded way, the learning algorithm can see large numbers of 
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negative samples. More importantly, in the early stages 

descriptors are tuned to eliminate negative matching pairs 

reliably, a large number of wrong matches will be eliminated 

early and later stages only focus on promising candidate pairs. 

Therefore the matching can be speeded up. 

 

On the other hand, different transformations in the non-linear 

transformation stage correspond to different kinds of weak 

features for learning. There are mainly two kinds of features: 

comparison-based and histogram-based features. Normally, 

comparison-based features lead to binary descriptors and 

histogram-based features lead to floating point descriptors. A 

point worth noting here is histogram-based features need more 

complex computation than comparison-based weak features. In 

our work, Haar features are used in combination with threshold 

perceptron. They can be computed efficiently using the concept 

of integral images and each dimension can be calculated using 

only a few basic operations like addition, subtraction and value 

accessing, thus the descriptor building computation speed can 

be boosted. Besides, the output descriptors are binary vectors, 

therefore the speed of similarity computation can benefit again 

from Hamming distance computations.  

 

2. RELATED WORK 

Descriptors are built on the patch surrounding a feature point. 

SIFT (Lowe, 2004) is the well-acknowledged breakthrough 

descriptor, in which grid pooling shapes are designed and 

gradient features in each pooling region are aggregated by 

histograms. Further works inherit this pooling and aggregation 

principle and introduce dimension reduction, like PCA-SIFT 

(Ke & Sukthankar, 2004), which lowers the descriptor from 128 

dimensions to 36 dimensions by PCA, but applying PCA slows 

down the feature computation (Bay et al., 2008). An alternative 

extension, GLOH (Mikolajczyk et al., 2005), changes shapes of 

pooling from rectangular grid to log-polar grid, whereas DAISY 

(Tola et al., 2010) extends the pooling region to concentric 

circles. Another landmark work, SURF (Bay et al., 2008), 

mainly benefits from using integral images and approximation 

box filters for first-order, second-order and mixed partial 

derivatives. It finishes matching in a fraction of the time SIFT 

used while it achieves a performance comparable to SIFT. 

 

Another important category, binary descriptors, are widely used 

to reduce memory requirements to boost the speed of similarity 

and matching computation. Local Binary Patterns were first 

used to build a descriptor in (Heikkilä et al., 2009). Each 

dimension of this binary vector represents a comparison result 

between the central pixel and one of its N neighbours. 

Following this principle, other comparison-based binary 

descriptors are ORB (Rublee et al., 2011), BRISK (Leutenegger 

et al., 2011) and BRIEF (Calonder et al., 2010), which extend 

the comparison location from neighbours to more general 

separate locations inside a patch surrounding a feature point. To 

choose the comparison locations, ORB uses training data with 

the goal of improving recognition rate. 

 

Image matching can be transformed to a two-class classification 

problem as mentioned before. Early descriptor learning work 

aims at learning discriminative feature embedding or finding 

discriminative projections, while these works still use classic 

descriptors like SIFT as input (Strecha et al., 2012). More 

recent work emphasises pooling shape optimizing and optimal 

weighting simultaneously. In (Brown et al., 2011), a complete 

descriptor learning framework was first presented. The authors 

test different combinations of transformations, spatial pooling, 

embedding and post normalization, with the objective function 

of maximizing the area under the ROC curve, to find a final 

optimized descriptor. The learned best parametric descriptor 

corresponds to steerable filters with DAISY-like Gaussian 

summation regions. A further extension of this work is convex 

optimization introduced in (Simonyan et al., 2012) to tackle the 

hard optimization problem in (Brown et al., 2011) . 

 

Our work is closely related to BOOM (Babenko et al., 2007) 

and BinBoost (Trzcinski et al., 2012). BOOM first calculates a 

sum-type and a histogram-type feature, which indicate the sum 

and statistical property of Haar features inside a patch, then it 

builds similarity based on some norm. This similarity value is 

defined as a pair feature. These features are plugged into 

AdaBoost cascaded training. The work of the authors is not a 

descriptor learning, but an optimized task specific training for 

the matching similarity measure. Our work builds perceptrons 

on weak learners directly based on Haar features, and the output 

is a binary descriptor. BinBoost (Trzcinski et al., 2012) chooses 

comparisons and histograms of gradients inside pooling regions 

as weak learners, then uses boosting to train weights and 

projections to finally get the learned binary descriptor. 

However, an equal amount of similar and dissimilar training 

samples is used in their work. In contrary, we use response 

functions based on Haar features and train the descriptor in a 

cascaded learning framework. The computation of weak 

features is faster because of the usage of Haar features and the 

number of training samples can be much larger than in other 

methods. 

 

3. LEARNING ALGORITHM 

3.1 Problem modelling 

Trzcinski et al. (2012) define a label l∈ {-1,+1} for every 

intensity patch pair P={X1, X2}, showing whether P is a similar 

(+1) or a dissimilar (-1) pair. Each patch X has a descriptor 

C(X)=[C1(X).. CD(X)] which maps the patch to a D-dimensional 

vector. The function f(C(X1),C(X2))=fC(X1,X2) represents the 

similarity function between X1 and X2 in training. The sum of 

exponential loss L over all training examples is minimized 

based on a model for fC: 

 1 2

1

exp ,
N

i C i i

i

L l f X X


     .                (1) 

In (1), N is the number of training patch pairs and i is the index 

of a training sample. Minimizing L means that the similarity 

between similar patch pairs is maximized and between 

dissimilar patch patches is minimized. The similarity function 

can be written in the Boosted similarity Sensitive Coding format 

as in (Trzcinski et al., 2012): 

1 2 1 2 1 2

1

( , ) ( , ) ( ) ( )
D

C SSC d d d

d

f X X f X X h X h X


            (2) 

where hd(·)is the response function for the dth descriptor 

component and αd is the weight of hd(·).  
 

3.2 Weak learners 

In this research we choose a response function h(·) based on 

Haar features (Viola, Jones, 2004):  

1 ( , , , )
( , , )

1

if f X fi fs fl
h X f

otherwise





 



            (3) 

where fi … basic feature type index, explaining which type of 

 basic Haar features is used, as shown in Fig. 1.  

           fs … feature scale, the scaling factor of the 

 basic Haar features.  
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           fl …  feature locations, describing the feature positions 

 within the patch. 

         f= f(X, fi, fs, fl) … feature with scaling, position and 

 feature type within the patch. 

          θ   …    threshold for response function h(·). 

 

 

 

 

Fig. 1 Haar feature sets used for weak feature learning 

 

Fig. 1. The seven basic Haar feature types used for training. 

 

In Fig. 1, there are seven kinds of basic Haar feature types, each 

of them indicate their corresponding filtering box. The black 

area for every feature filtering box in Fig.1 means -1 and the 

white one means +1. The indices of these filtering boxes are 

from 1 to 7, each one has a basic size (from left to right: 2 by 2, 

2 by 2, 3 by 2, 2 by 3, 2 by 2, 4 by 2, and 2 by 2 in width and 

height respectively). Assume the basic feature filter size is wid 

in width and heig in height, the size of patch X is wid_X and 

heig_X. These basic features can be translated to position fl and 

scaled by factor fs within a patch as shown in Fig. 2. The solid 

outline represents the patch border, and the inside dashed 

rectangle represents the feature computation extent. This dashed 

rectangle can be translated, scaled within the patch and varied 

for the basic type of Haar features. Then fl can take any values 

so that the dashed line in Fig. 2 fits inside the patch for a given 

Haar feature type and fs is any natural number which is not 

larger than the min(FLOOR(wid_X/wid), FLOOR 

(heig_X/heig)). Within the patch X, each Haar feature f(X, fi, fs, 

fl) can be calculated very efficiently (Viola, Jones, 2004) using 

the integral image concept for patch X. 

 

 

 

 

 

 

 

 

 

Fig. 2. The location fl, scale fs and feature type index fi of a 

Haar feature within a patch 

 

The number of possible features K is the number of all possible 

combination of fl and fs for every fi. Note that different fi may 

have different fl and fs due to the varying basic size. We set 

wid_X = heig_X = 32, and take the first basic weak feature 

(fi=1) as an example, the basic size is wid =heig = 2, and the 

largest scale is 16 (=min( FLOOR(32/2), FLOOR (32/2)). For 

each scale, the position fl has a different value range, the larger 

fs, the narrower is the value range of fl. For instance, if fs = 3, 

the value range of fl is {(x, y)|1≤x≤27, 1≤y≤27}, which 

ensures that the box lies completely inside the patch. Calculated 

in this manner, the whole number of combination over fi, fs, fl 

equals K. For our example, we obtain K=31050.    

 

As shown in (3), θ is the threshold of the weak classifier. 

Suppose we have M training patch pairs, then there are 2M 

response values for a specific feature. After these features are 

sorted by their value, any threshold that lies between two 

adjacent feature values can be equal. Therefore, the total 

number of distinct thresholds θ is 2M. The number of possible 

binary weak classifiers is 2MK. For instance, given M=2000, 

the number of weak classifiers is 124.2 million. 

 

3.3  AdaBoost training 

AdaBoost (Freund and Schapire, 1995) is used to train the 

response functions h. The learning algorithm works as follows: 

 

Algorithm.1. AdaBoost training descriptors algorithm 

Input: M training patch pairs (Pi, li) containing both similar 

and dissimilar patch pairs, where i∈{1,2...,M}. Dimensions of 

descriptor D. 

1) Initialize weights w1,i=1 / M 

2) for d=1:D 

- Normalize weights so that the sum of weights is 1   

- Select the best weak classifier that minimizes the 

weighted matching error.  
, , 1, 2,min ( , , ) ( , , )

d dd f d i i d d i d d i

i

w h X f h X f l      

Define hd(X)= h(X, fd,  θd)  where fd,  θd minimize 
εd. Define αd=log(1/βd). 

- Update weights: 1

1, ,
ie

d i d i dw w  

  , βd=εd/(1-εd). 

ei=0 if sample i is classified correctly, ei=1 otherwise. 
       end 

Output: Parameters: fd, θd, d, αd 

 

The predicted label of matching is calculated as h(X1,i, f, θ)* 

h(X2,i, f, θ), which is the product of two weak response values 

on the same patch pairs. The initial weighting of different 

samples are the same, in each iteration we choose the best weak 

classifier that minimizes weighted matching error and update 

error. The weight updating decreases the weights of correctly 

classified samples and keeps the weights of incorrectly 

classified samples in the current iteration, so after weighting 

normalization in the next iteration, the weight of incorrect 

classification samples is higher. As a consequence, the next 

iteration of learning will focus on "difficult" samples.  

 

The descriptor for patch X is C(X)=[h1(X) h2(X)... hD(X)], where 

hd(X)= h(X, fd, θd). The final strong classifier C(P) 

                         ( )C P sign H                            (4) 

where 

1 2

1

( ( ) ( ))
D

d d d

d

H h X h X


   

Let (4) have a more general form 

                       1
( , )

1

if H T
C P T

otherwise


 



                  (5) 

 

When the threshold T in (5) decreases, more samples are 

classified as matching pairs, this improves the true positive rate 

but also leads to more non-matching patch pairs classified as 

matching pairs, which results in a higher false positive rate. 

Varying the threshold T means finding a trade-off between true 

positive rate and false positive rate. 

 

3.4 Cascade Classifier learning 

Inspired by the work of (Viola, Jones, 2004), we propose a 

cascaded training and classification strategy for image matching. 

The training includes multiple training stages; each stage is 

trained by AdaBoost. The false positive samples from a large set 

of dissimilar patch pairs in the current stage are used to define 

fs 

fl=(x, y) 

fi 
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the negative training samples in the next stage. On the other 

hand, similar patches in training are fixed across all stages. This 

means that the training can see a huge number of negative 

examples which considers the fact that dissimilar patch pairs 

appear much more than similar patch pairs in a real matching 

scenario. The cascaded training algorithm is shown in algorithm 

2, and a diagram of different sets changed in training is shown 

in Fig. 3. Here, the false positive rate (FPR) and the true 

positive rate (TPR) are defined towards the matching pairs. If a 

patch pair with the true label of similar is classified as similar, 

namely a matching pair, then it is predicted as a true positive 

result in our definition. 

 

Algorithm 2.  Cascaded classifier learning algorithm. 

 

The final cascaded classifier works in the form of a decision list. 

Suppose the final learned classifier include S stages, to classify 

a patch pair, it will be classified as similar (matched) only if all 

AdaBoost classifiers in this decision list classify it as similar.  A 

hidden benefit of this cascaded classification, as mentioned in 

(Viola, Jones, 2004), is that the number of negative training 

samples that the final algorithm sees can be very large. In later 

stages, the algorithm tends to concentrate on more difficult 

samples which cannot be classified correctly by former stage 

classifiers. Another benefit is that a large number of dissimilar 

matches can be rejected in early stages, thus the computation 

speed can be further improved. 

 

ee 

 
Fig. 3. Multi-stage cascaded training from large dissimilar, 

similar, initial dissimilar and validation sets. 

 

4. EXPERIMENTS 

This section describes our experiments and the performance 

evaluation of our descriptor. First, we introduce the training 

data generation, and then we give some experiments of specific 

parameters in the descriptor learning process.  

 

4.1 Training data  

We use the Brown datasets (Brown et al., 2011b) in our 

experiments. This dataset includes three separate datasets - 

Notre dame, Yosemite and Liberty. The patches are centred on 

real interest points from the difference of Gaussian or Harris 

detectors. We first reduce the patch size from the original 64 by 

64 pixels to 32 by 32 pixels. In each dataset, there are at least 

two patches from two or more different images for one interest 

point; the number of patches corresponding to one interest point. 

Suppose a specific interest point corresponds to Num_Patch 

patches, we choose the first patch as one patch and any of the 

following other Num_Patch-1 patches as its corresponding 

patch to form similar patch pairs. To generate dissimilar patch 

pairs, we randomly selected different interest point index pairs 

and select the patches also randomly from the patches to each 

interest point. 
 

4.2 AdaBoost training  

In this section we report the performance of the AdaBoost 

training descriptor. To create the ROC curve the perceptron 

threshold T in (5) is adjusted from +∞ to -∞. In the first 

experiment, 5000 similar patch pairs and 5000 dissimilar patch 

pairs are used to train a descriptor with the algorithm described 

in 3.3. Different dimensions of trained classifiers are used to 

test the performance. The result is shown in Fig. 4. 

 

It can be seen from Fig. 4 that when the dimension D of the  

descriptor becomes higher, the matching performance is 

improved, but the improvement slows down for D>60. The 

performance of 60 and 80 dimensions is almost the same and 

performance for D>20 improves quite slowly. A possible 

explanation of this curve is that in higher dimensions, namely 

when d in algorithm 1 is larger, the classification error εd of 

each individual classifier becomes close to 0.5 as we observed 

Input: V:  validation sets 

 LD: large dissimilar patch pair sets  

FPRtarget : target overall false positive rate  

t: the minimum acceptable TPR in every layer 

S : similar patch pair sets for training. Its size is nS.  

DS: initial dissimilar patch pair sets. Its size is nDS 

1)  i=0. 

    Set initial sets for training:  DS1=DS. LD1=LD 

    FPR0=1, TPR0=1. 

2) While FPRi > FPRtarget 

 i = i+1, FPRi = FPRi-1 

 Train classifier with DSi and S using AdaBoost 

algorithm in section 3.3. The trained classifier is Ci 

(P). Parameters learned this step is  fd
i , θd

 i, d
 i, αd

 i. 

See equation (4) for defination of these parameters. 

  While TPR < t * TPRi-1 

 vary perceptron threshold T in (5) for the 

current strong classifier and compute the 

corresponding TPR on V. 

      end While (TPR < t * TPRi-1) 

 Ti=T 

 Compute the corresponding FPRi  and TPR i on V. 

 Set DS to be empty set.  

 Apply the current cascaded classifiers {Cr(P, Tr)|1≤r≤
i} on LDi and delete correctly classified patch pairs 

from LDi to obtain LDi+1. 

 Randomly select nDS patch pairs from LD i+1. Collect 

these selected patch pairs into DSi+1, namely the 

dissimilar patch pairs for training of next stage. 

    end While (FPRi > FPRtarget) 

3) Record the number of stages Num_S=i. 

Output: Cascaded classifier { Cj(P) |1≤ j≤Num_S} and 

corresponding perceptron thresholds { Tj |1≤j≤Num_S}. 

V 

LD
1
 

S 

DS
1
 

1st stage 

training 

2nd stage 

training 

3rd-rth stage 

training 

C
1
(P),T1 C

2
(P),T2 

 
C

r
(P),Tr 

 

Obtain cascaded classifiers and 

corresponding perceptron thresholds 

V 

 LD1  

S 

DS
2
 

LD
2
 

V 

 

S 

DS
3
 

LD
3
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in our experiments, which is roughly equal to a random guess. 

This kind of weak classifier barely contributes to the 

performance. 

 
Fig. 4. ROC for descriptor learned at different dimensionality 

using 5000 similar + 5000 dissimilar samples  

 

 

 
Fig. 5. ROC and 95% error rate for learned descriptor of 

different dimensionality using using 10000 similar + 10000 

dissimilar samples 

Another experiment for different dimensions and performance 

with 10000 similar and 10000 dissimilar patch pairs is given, 

achieving quite similar result.  The result is shown in figure 5, 

which also presents the 95% error rate, which is the false 

positive rate when the true positive rate is 95%, for different 

dimensions D. 

 

Fig. 5 also shows that the 95% error rate is relatively stable for 

D>25, and the ROC performance improves barely when using 

D>25. The descriptor resulting from using the first 25 

dimensions can get very close in performance to the descriptor 

trained with the first 40 dimensions.  

 

4.3 Cascaded AdaBoost descriptor learning  

4.3.1 Cascaded Classifier Learning: To train the cascaded 

classifiers, we use 5000 positive and 5000 initial negative 

training samples, the large negative sets includes 700000 

negative samples chosen from the Notre dame and Yosemite 

datasets. The validation set V includes 10000 positive and 

10000 negative samples also chosen from the Notre dame and 

Yosemite datasets. Since the target true positive rate is 98% in 

every stage, the overall TPR goes down and it is impossible to 

get a 95% error rate. We use the accuracy as evaluation 

indicator. The trained cascaded classifier includes 12 stages. 

The change of TPR, FPR and accuracy on the validation set 

over different stages is listed in Fig. 6. 

 
Fig. 6.  TPR, FPR and Accuracy during training on validation 

set 

 

From Fig. 6, we can see that the TPR decreases almost linearly, 

while the rate of descent for FPR is getting slower as the 

number of cascade stages increases. The whole accuracy reaches  

a steady level when using more than 8 stages.  

  

4.3.2 Performance Evaluation: To test the performance 

across datasets, we applied the trained cascaded classifier on 

test sets includes 5000 positive and 5000 negative samples 

which were randomly selected from the Liberty dataset. The 

confusion matrix is listed in table 1. As can been seen from the 

table, the recall for correct matches is 76.5%, while the overall 

accuracy is 86.0%.  

 

 Reference = +1 Reference = -1 

output = +1 TP=3827 FP=224 

output = -1 FN=1173 TN=4776 

 Table 1. Confusion matrix of cross dataset test for cascaded 

classification 
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Some of the randomly selected false positive, false negative, 

true positive and true negative patch pairs are shown in Fig. 7. 

 

False Positive Pairs 

 

False Negative Pairs 

 
True Positive Pairs 

 

True Negative Pairs 

 
Fig. 7. Some cascaded classification result tested on Liberty set 

 

5. CONCLUSION & FUTURE WORK 

We have proposed a cascaded training and classification 

strategy for image matching. The feature pool is built on the 

threshold of response function for Haar features with different 

scales, and locations within the patch. The cascaded AdaBoost 

algorithm is used to train the classifier and descriptors at the 

individual shapes. In our cascaded learning framework, an order 

of 104 training samples is used in every stage, which leads to a 

classifier that is effective in 20 to 30 dimensions as shown in 

our experiment. Correspondingly, image matching is the 

process of going through a decision list. Only patch pairs 

reaching the final stage and classified as similar are accepted as 

successful matches in our algorithm. A potential drawback in 

our work is that the similarity measure used in this work lacks 

modelling the correlation between weak response functions.  

 

In future research, we will compare the performance of our 

descriptor to classic descriptors. Additionally, we also intend to 

extend this descriptor learning directly on image intensity 

patches, instead of only on patches surrounding feature point, to 

make it more general.    
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