
LEARNING IMAGE DESCRIPTORS FOR MATCHING BASED ON HAAR FEATURES

L. Chen, F. Rottensteiner, C. Heipke

Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany -

(chen, rottensteiner, heipke)@ipi.uni-hannover.de

Commission III, WG III/4

KEY WORDS: Image Descriptors, Descriptor Learning, Haar Features, AdaBoost, Image Matching, Pooling Configuration

ABSTRACT:

This paper presents a new and fast binary descriptor for image matching learned from Haar features. The training uses AdaBoost; the

weak learner is built on response function for Haar features, instead of histogram-type features. The weak classifier is selected from a

large weak feature pool. The selected features have different feature type, scale and position within the patch, having correspond

threshold value for weak classifiers. Besides, to cope with the fact in real matching that dissimilar matches are encountered much

more often than similar matches, cascaded classifiers are trained to motivate training algorithms see a large number of dissimilar

patch pairs. The final trained output are binary value vectors, namely descriptors, with corresponding weight and perceptron

threshold for a strong classifier in every stage. We present preliminary results which serve as a proof-of-concept of the work.

1. INTRODUCTION

Feature based image matching aims at finding homogeneous

feature points from two or more images which potentially

contain the same object or scene. Feature detection, description

and matching among descriptors form the feature based local

image matching framework. Matching algorithms should be

robust to image transformations, while recalling as many

matching points as possible and maintain as high an overall

geometric accuracy as possible. Another important aspect is the

speed of computation, where naturally faster means better when

high recall and accuracy are guaranteed.

To cope with geometric and radiometric transformations, SIFT

(Lowe, 2004) and SURF (Bay et al., 2008) apply a set of hand-

crafted filters and aggregate or pool their responses within pre-

defined regions of the image patch (Trzcinski et al., 2012). The

extent, shape and location of these regions form the pooling

configuration of the descriptors. Specifically, SIFT uses grid

regions and aggregates by histogram of gradients in rectangular

grid regions. In other descriptors such as SURF (Bay et al.,

2008) and DAISY (Tola et al., 2010), the shapes of these

pooling regions vary from grid to concentric circles around the

centre of the patch.

Building a descriptor can be seen as a combination of the

following building blocks (Brown et al., 2011a): 1) Gaussian

smoothing; 2) non-linear transformation; 3) spatial pooling or

embedding; 4) normalization. If we take matching image patch

pairs as positive matches and non-matching patch pairs as

negative matches, image matching can be converted to a two-

class classification problem. For the input training patch pairs,

the similarity measure based on every dimension of the

descriptor is built. Fed with training data, the transformation,

pooling or embedding that gets minimum loss can be found to

build a new descriptor. Work in (Brown et al., 2011a, Trzcinski

et al., 2012) has proved that blocks 2) and 3) can be learned and

the learned descriptors can improve matching performance

significantly. The parameters of these descriptors are trained

and optimized on large training data set.

Cai et al., (2011) learn descriptors from the perspective of

embedding. The Local Discriminant Projection (LDP) is

presented in their work to reduce the dimensionality and

improve the discriminability of local image descriptors. In the

work of (Brown et al., 2011), non-linear transformation and

pooling / embedding are added to the learning parts. However,

predefined pooling shapes are used, similar to the SIFT

rectangular grid and the GLOH (gradient location and

orientation histogram) log-polar location grid. In GLOH, a SIFT

descriptor is computed with three bins in radial direction and

eight in angular direction. But its learning criterion, area under

the receiver operating characteristic (ROC) curve, is not

analytical and hard to optimize. Convex optimization

(Simonyan et al., 2012) is used to learn optimal pooling

configurations. Another idea is to use weak learners based on

comparison or statistics, and use boosting to obtain the optimal

pooling configuration and embedding simultaneously (Trzcinski

et al., 2012).

In most of the current descriptor learning work, algorithms use

the same amount of positive and negative training data, which is

in contrast to the real situation in feature based matching: the

number of dissimilar matches is much higher than the number

of correct (similar) matches. In particular, without prior

knowledge, every interest point patch should be matched to all

interest point patches from another image. As true match pairs

are rare, most of these matching hypotheses will be incorrect.

Therefore, in a real matching scenario, a negative matching

output appears much more often than a positive output. Perhaps

more importantly: incorrect pairs will have a broader statistical

distribution and more learning pairs are required to represent

this distribution.

Inspired by the above points, multi-stage cascaded learning is

used in our work. New negative training samples, which are

non-separable in former stages, can be added in the next stage,

and then the discrimination of the learned descriptor can

improve as the number of stages increases. By training in this

cascaded way, the learning algorithm can see large numbers of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-61-2014 61

negative samples. More importantly, in the early stages

descriptors are tuned to eliminate negative matching pairs

reliably, a large number of wrong matches will be eliminated

early and later stages only focus on promising candidate pairs.

Therefore the matching can be speeded up.

On the other hand, different transformations in the non-linear

transformation stage correspond to different kinds of weak

features for learning. There are mainly two kinds of features:

comparison-based and histogram-based features. Normally,

comparison-based features lead to binary descriptors and

histogram-based features lead to floating point descriptors. A

point worth noting here is histogram-based features need more

complex computation than comparison-based weak features. In

our work, Haar features are used in combination with threshold

perceptron. They can be computed efficiently using the concept

of integral images and each dimension can be calculated using

only a few basic operations like addition, subtraction and value

accessing, thus the descriptor building computation speed can

be boosted. Besides, the output descriptors are binary vectors,

therefore the speed of similarity computation can benefit again

from Hamming distance computations.

2. RELATED WORK

Descriptors are built on the patch surrounding a feature point.

SIFT (Lowe, 2004) is the well-acknowledged breakthrough

descriptor, in which grid pooling shapes are designed and

gradient features in each pooling region are aggregated by

histograms. Further works inherit this pooling and aggregation

principle and introduce dimension reduction, like PCA-SIFT

(Ke & Sukthankar, 2004), which lowers the descriptor from 128

dimensions to 36 dimensions by PCA, but applying PCA slows

down the feature computation (Bay et al., 2008). An alternative

extension, GLOH (Mikolajczyk et al., 2005), changes shapes of

pooling from rectangular grid to log-polar grid, whereas DAISY

(Tola et al., 2010) extends the pooling region to concentric

circles. Another landmark work, SURF (Bay et al., 2008),

mainly benefits from using integral images and approximation

box filters for first-order, second-order and mixed partial

derivatives. It finishes matching in a fraction of the time SIFT

used while it achieves a performance comparable to SIFT.

Another important category, binary descriptors, are widely used

to reduce memory requirements to boost the speed of similarity

and matching computation. Local Binary Patterns were first

used to build a descriptor in (Heikkilä et al., 2009). Each

dimension of this binary vector represents a comparison result

between the central pixel and one of its N neighbours.

Following this principle, other comparison-based binary

descriptors are ORB (Rublee et al., 2011), BRISK (Leutenegger

et al., 2011) and BRIEF (Calonder et al., 2010), which extend

the comparison location from neighbours to more general

separate locations inside a patch surrounding a feature point. To

choose the comparison locations, ORB uses training data with

the goal of improving recognition rate.

Image matching can be transformed to a two-class classification

problem as mentioned before. Early descriptor learning work

aims at learning discriminative feature embedding or finding

discriminative projections, while these works still use classic

descriptors like SIFT as input (Strecha et al., 2012). More

recent work emphasises pooling shape optimizing and optimal

weighting simultaneously. In (Brown et al., 2011), a complete

descriptor learning framework was first presented. The authors

test different combinations of transformations, spatial pooling,

embedding and post normalization, with the objective function

of maximizing the area under the ROC curve, to find a final

optimized descriptor. The learned best parametric descriptor

corresponds to steerable filters with DAISY-like Gaussian

summation regions. A further extension of this work is convex

optimization introduced in (Simonyan et al., 2012) to tackle the

hard optimization problem in (Brown et al., 2011) .

Our work is closely related to BOOM (Babenko et al., 2007)

and BinBoost (Trzcinski et al., 2012). BOOM first calculates a

sum-type and a histogram-type feature, which indicate the sum

and statistical property of Haar features inside a patch, then it

builds similarity based on some norm. This similarity value is

defined as a pair feature. These features are plugged into

AdaBoost cascaded training. The work of the authors is not a

descriptor learning, but an optimized task specific training for

the matching similarity measure. Our work builds perceptrons

on weak learners directly based on Haar features, and the output

is a binary descriptor. BinBoost (Trzcinski et al., 2012) chooses

comparisons and histograms of gradients inside pooling regions

as weak learners, then uses boosting to train weights and

projections to finally get the learned binary descriptor.

However, an equal amount of similar and dissimilar training

samples is used in their work. In contrary, we use response

functions based on Haar features and train the descriptor in a

cascaded learning framework. The computation of weak

features is faster because of the usage of Haar features and the

number of training samples can be much larger than in other

methods.

3. LEARNING ALGORITHM

3.1 Problem modelling

Trzcinski et al. (2012) define a label l∈ {-1,+1} for every

intensity patch pair P={X1, X2}, showing whether P is a similar

(+1) or a dissimilar (-1) pair. Each patch X has a descriptor

C(X)=[C1(X).. CD(X)] which maps the patch to a D-dimensional

vector. The function f(C(X1),C(X2))=fC(X1,X2) represents the

similarity function between X1 and X2 in training. The sum of

exponential loss L over all training examples is minimized

based on a model for fC:

 1 2

1

exp ,
N

i C i i

i

L l f X X

 . (1)

In (1), N is the number of training patch pairs and i is the index

of a training sample. Minimizing L means that the similarity

between similar patch pairs is maximized and between

dissimilar patch patches is minimized. The similarity function

can be written in the Boosted similarity Sensitive Coding format

as in (Trzcinski et al., 2012):

1 2 1 2 1 2

1

(,) (,) () ()
D

C SSC d d d

d

f X X f X X h X h X

 (2)

where hd(·)is the response function for the dth descriptor

component and αd is the weight of hd(·).

3.2 Weak learners

In this research we choose a response function h(·) based on

Haar features (Viola, Jones, 2004):

1 (, , ,)
(, ,)

1

if f X fi fs fl
h X f

otherwise

 (3)

where fi … basic feature type index, explaining which type of

 basic Haar features is used, as shown in Fig. 1.

 fs … feature scale, the scaling factor of the

 basic Haar features.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-61-2014 62

 fl … feature locations, describing the feature positions

 within the patch.

 f= f(X, fi, fs, fl) … feature with scaling, position and

 feature type within the patch.

 θ … threshold for response function h(·).

Fig. 1 Haar feature sets used for weak feature learning

Fig. 1. The seven basic Haar feature types used for training.

In Fig. 1, there are seven kinds of basic Haar feature types, each

of them indicate their corresponding filtering box. The black

area for every feature filtering box in Fig.1 means -1 and the

white one means +1. The indices of these filtering boxes are

from 1 to 7, each one has a basic size (from left to right: 2 by 2,

2 by 2, 3 by 2, 2 by 3, 2 by 2, 4 by 2, and 2 by 2 in width and

height respectively). Assume the basic feature filter size is wid

in width and heig in height, the size of patch X is wid_X and

heig_X. These basic features can be translated to position fl and

scaled by factor fs within a patch as shown in Fig. 2. The solid

outline represents the patch border, and the inside dashed

rectangle represents the feature computation extent. This dashed

rectangle can be translated, scaled within the patch and varied

for the basic type of Haar features. Then fl can take any values

so that the dashed line in Fig. 2 fits inside the patch for a given

Haar feature type and fs is any natural number which is not

larger than the min(FLOOR(wid_X/wid), FLOOR

(heig_X/heig)). Within the patch X, each Haar feature f(X, fi, fs,

fl) can be calculated very efficiently (Viola, Jones, 2004) using

the integral image concept for patch X.

Fig. 2. The location fl, scale fs and feature type index fi of a

Haar feature within a patch

The number of possible features K is the number of all possible

combination of fl and fs for every fi. Note that different fi may

have different fl and fs due to the varying basic size. We set

wid_X = heig_X = 32, and take the first basic weak feature

(fi=1) as an example, the basic size is wid =heig = 2, and the

largest scale is 16 (=min(FLOOR(32/2), FLOOR (32/2)). For

each scale, the position fl has a different value range, the larger

fs, the narrower is the value range of fl. For instance, if fs = 3,

the value range of fl is {(x, y)|1≤x≤27, 1≤y≤27}, which

ensures that the box lies completely inside the patch. Calculated

in this manner, the whole number of combination over fi, fs, fl

equals K. For our example, we obtain K=31050.

As shown in (3), θ is the threshold of the weak classifier.

Suppose we have M training patch pairs, then there are 2M

response values for a specific feature. After these features are

sorted by their value, any threshold that lies between two

adjacent feature values can be equal. Therefore, the total

number of distinct thresholds θ is 2M. The number of possible

binary weak classifiers is 2MK. For instance, given M=2000,

the number of weak classifiers is 124.2 million.

3.3 AdaBoost training

AdaBoost (Freund and Schapire, 1995) is used to train the

response functions h. The learning algorithm works as follows:

Algorithm.1. AdaBoost training descriptors algorithm

Input: M training patch pairs (Pi, li) containing both similar

and dissimilar patch pairs, where i∈{1,2...,M}. Dimensions of

descriptor D.

1) Initialize weights w1,i=1 / M

2) for d=1:D

- Normalize weights so that the sum of weights is 1

- Select the best weak classifier that minimizes the

weighted matching error.
, , 1, 2,min (, ,) (, ,)

d dd f d i i d d i d d i

i

w h X f h X f l

Define hd(X)= h(X, fd, θd) where fd, θd minimize
εd. Define αd=log(1/βd).

- Update weights: 1

1, ,
ie

d i d i dw w

 , βd=εd/(1-εd).

ei=0 if sample i is classified correctly, ei=1 otherwise.
 end

Output: Parameters: fd, θd, d, αd

The predicted label of matching is calculated as h(X1,i, f, θ)*

h(X2,i, f, θ), which is the product of two weak response values

on the same patch pairs. The initial weighting of different

samples are the same, in each iteration we choose the best weak

classifier that minimizes weighted matching error and update

error. The weight updating decreases the weights of correctly

classified samples and keeps the weights of incorrectly

classified samples in the current iteration, so after weighting

normalization in the next iteration, the weight of incorrect

classification samples is higher. As a consequence, the next

iteration of learning will focus on "difficult" samples.

The descriptor for patch X is C(X)=[h1(X) h2(X)... hD(X)], where

hd(X)= h(X, fd, θd). The final strong classifier C(P)

 ()C P sign H (4)

where

1 2

1

(() ())
D

d d d

d

H h X h X

Let (4) have a more general form

 1
(,)

1

if H T
C P T

otherwise

 (5)

When the threshold T in (5) decreases, more samples are

classified as matching pairs, this improves the true positive rate

but also leads to more non-matching patch pairs classified as

matching pairs, which results in a higher false positive rate.

Varying the threshold T means finding a trade-off between true

positive rate and false positive rate.

3.4 Cascade Classifier learning

Inspired by the work of (Viola, Jones, 2004), we propose a

cascaded training and classification strategy for image matching.

The training includes multiple training stages; each stage is

trained by AdaBoost. The false positive samples from a large set

of dissimilar patch pairs in the current stage are used to define

fs

fl=(x, y)

fi

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-61-2014 63

the negative training samples in the next stage. On the other

hand, similar patches in training are fixed across all stages. This

means that the training can see a huge number of negative

examples which considers the fact that dissimilar patch pairs

appear much more than similar patch pairs in a real matching

scenario. The cascaded training algorithm is shown in algorithm

2, and a diagram of different sets changed in training is shown

in Fig. 3. Here, the false positive rate (FPR) and the true

positive rate (TPR) are defined towards the matching pairs. If a

patch pair with the true label of similar is classified as similar,

namely a matching pair, then it is predicted as a true positive

result in our definition.

Algorithm 2. Cascaded classifier learning algorithm.

The final cascaded classifier works in the form of a decision list.

Suppose the final learned classifier include S stages, to classify

a patch pair, it will be classified as similar (matched) only if all

AdaBoost classifiers in this decision list classify it as similar. A

hidden benefit of this cascaded classification, as mentioned in

(Viola, Jones, 2004), is that the number of negative training

samples that the final algorithm sees can be very large. In later

stages, the algorithm tends to concentrate on more difficult

samples which cannot be classified correctly by former stage

classifiers. Another benefit is that a large number of dissimilar

matches can be rejected in early stages, thus the computation

speed can be further improved.

ee

Fig. 3. Multi-stage cascaded training from large dissimilar,

similar, initial dissimilar and validation sets.

4. EXPERIMENTS

This section describes our experiments and the performance

evaluation of our descriptor. First, we introduce the training

data generation, and then we give some experiments of specific

parameters in the descriptor learning process.

4.1 Training data

We use the Brown datasets (Brown et al., 2011b) in our

experiments. This dataset includes three separate datasets -

Notre dame, Yosemite and Liberty. The patches are centred on

real interest points from the difference of Gaussian or Harris

detectors. We first reduce the patch size from the original 64 by

64 pixels to 32 by 32 pixels. In each dataset, there are at least

two patches from two or more different images for one interest

point; the number of patches corresponding to one interest point.

Suppose a specific interest point corresponds to Num_Patch

patches, we choose the first patch as one patch and any of the

following other Num_Patch-1 patches as its corresponding

patch to form similar patch pairs. To generate dissimilar patch

pairs, we randomly selected different interest point index pairs

and select the patches also randomly from the patches to each

interest point.

4.2 AdaBoost training

In this section we report the performance of the AdaBoost

training descriptor. To create the ROC curve the perceptron

threshold T in (5) is adjusted from +∞ to -∞. In the first

experiment, 5000 similar patch pairs and 5000 dissimilar patch

pairs are used to train a descriptor with the algorithm described

in 3.3. Different dimensions of trained classifiers are used to

test the performance. The result is shown in Fig. 4.

It can be seen from Fig. 4 that when the dimension D of the

descriptor becomes higher, the matching performance is

improved, but the improvement slows down for D>60. The

performance of 60 and 80 dimensions is almost the same and

performance for D>20 improves quite slowly. A possible

explanation of this curve is that in higher dimensions, namely

when d in algorithm 1 is larger, the classification error εd of

each individual classifier becomes close to 0.5 as we observed

Input: V: validation sets

 LD: large dissimilar patch pair sets

FPRtarget : target overall false positive rate

t: the minimum acceptable TPR in every layer

S : similar patch pair sets for training. Its size is nS.

DS: initial dissimilar patch pair sets. Its size is nDS

1) i=0.

 Set initial sets for training: DS1=DS. LD1=LD

 FPR0=1, TPR0=1.

2) While FPRi > FPRtarget

 i = i+1, FPRi = FPRi-1

 Train classifier with DSi and S using AdaBoost

algorithm in section 3.3. The trained classifier is Ci

(P). Parameters learned this step is fd
i , θd

 i, d
 i, αd

 i.

See equation (4) for defination of these parameters.

 While TPR < t * TPRi-1

 vary perceptron threshold T in (5) for the

current strong classifier and compute the

corresponding TPR on V.

 end While (TPR < t * TPRi-1)

 Ti=T

 Compute the corresponding FPRi and TPR i on V.

 Set DS to be empty set.

 Apply the current cascaded classifiers {Cr(P, Tr)|1≤r≤
i} on LDi and delete correctly classified patch pairs

from LDi to obtain LDi+1.

 Randomly select nDS patch pairs from LD i+1. Collect

these selected patch pairs into DSi+1, namely the

dissimilar patch pairs for training of next stage.

 end While (FPRi > FPRtarget)

3) Record the number of stages Num_S=i.

Output: Cascaded classifier { Cj(P) |1≤ j≤Num_S} and

corresponding perceptron thresholds { Tj |1≤j≤Num_S}.

V

LD
1

S

DS
1

1st stage

training

2nd stage

training

3rd-rth stage

training

C
1
(P),T1 C

2
(P),T2

C

r
(P),Tr

Obtain cascaded classifiers and

corresponding perceptron thresholds

V

 LD1

S

DS
2

LD
2

V

S

DS
3

LD
3

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-61-2014 64

in our experiments, which is roughly equal to a random guess.

This kind of weak classifier barely contributes to the

performance.

Fig. 4. ROC for descriptor learned at different dimensionality

using 5000 similar + 5000 dissimilar samples

Fig. 5. ROC and 95% error rate for learned descriptor of

different dimensionality using using 10000 similar + 10000

dissimilar samples

Another experiment for different dimensions and performance

with 10000 similar and 10000 dissimilar patch pairs is given,

achieving quite similar result. The result is shown in figure 5,

which also presents the 95% error rate, which is the false

positive rate when the true positive rate is 95%, for different

dimensions D.

Fig. 5 also shows that the 95% error rate is relatively stable for

D>25, and the ROC performance improves barely when using

D>25. The descriptor resulting from using the first 25

dimensions can get very close in performance to the descriptor

trained with the first 40 dimensions.

4.3 Cascaded AdaBoost descriptor learning

4.3.1 Cascaded Classifier Learning: To train the cascaded

classifiers, we use 5000 positive and 5000 initial negative

training samples, the large negative sets includes 700000

negative samples chosen from the Notre dame and Yosemite

datasets. The validation set V includes 10000 positive and

10000 negative samples also chosen from the Notre dame and

Yosemite datasets. Since the target true positive rate is 98% in

every stage, the overall TPR goes down and it is impossible to

get a 95% error rate. We use the accuracy as evaluation

indicator. The trained cascaded classifier includes 12 stages.

The change of TPR, FPR and accuracy on the validation set

over different stages is listed in Fig. 6.

Fig. 6. TPR, FPR and Accuracy during training on validation

set

From Fig. 6, we can see that the TPR decreases almost linearly,

while the rate of descent for FPR is getting slower as the

number of cascade stages increases. The whole accuracy reaches

a steady level when using more than 8 stages.

4.3.2 Performance Evaluation: To test the performance

across datasets, we applied the trained cascaded classifier on

test sets includes 5000 positive and 5000 negative samples

which were randomly selected from the Liberty dataset. The

confusion matrix is listed in table 1. As can been seen from the

table, the recall for correct matches is 76.5%, while the overall

accuracy is 86.0%.

 Reference = +1 Reference = -1

output = +1 TP=3827 FP=224

output = -1 FN=1173 TN=4776

 Table 1. Confusion matrix of cross dataset test for cascaded

classification

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-61-2014 65

Some of the randomly selected false positive, false negative,

true positive and true negative patch pairs are shown in Fig. 7.

False Positive Pairs

False Negative Pairs

True Positive Pairs

True Negative Pairs

Fig. 7. Some cascaded classification result tested on Liberty set

5. CONCLUSION & FUTURE WORK

We have proposed a cascaded training and classification

strategy for image matching. The feature pool is built on the

threshold of response function for Haar features with different

scales, and locations within the patch. The cascaded AdaBoost

algorithm is used to train the classifier and descriptors at the

individual shapes. In our cascaded learning framework, an order

of 104 training samples is used in every stage, which leads to a

classifier that is effective in 20 to 30 dimensions as shown in

our experiment. Correspondingly, image matching is the

process of going through a decision list. Only patch pairs

reaching the final stage and classified as similar are accepted as

successful matches in our algorithm. A potential drawback in

our work is that the similarity measure used in this work lacks

modelling the correlation between weak response functions.

In future research, we will compare the performance of our

descriptor to classic descriptors. Additionally, we also intend to

extend this descriptor learning directly on image intensity

patches, instead of only on patches surrounding feature point, to

make it more general.

ACKNOWLEDGEMENTS

The author Lin Chen would like to thank the China Scholarship

Council (CSC), which supports his PhD study in Leibniz

Universität Hannover, Germany. The authors would also like to

thank Tobias Klinger, Ralph Schmidt and other colleagues for

instructive discussions.

REFERENCES

Babenko, B., Dollár, P., and Belongie, S., 2007. Task specific

local region matching. IEEE 11th International Conference on

Computer Vision. 1-8.

Bay, H., Ess, A., Tuytelaars, T., et al., 2008. Speeded-up robust

features (SURF). Computer Vision and Image Understanding,

110(3): 346-359.

Brown, M., Hua, G., Winder, S., 2011a. Discriminative learning

of local image descriptors. IEEE Trans Pattern Anal Mach

Intell, 33(1): 43-57.

Brown, M., Süstrunk, S., Fua, P., 2011b. Spatio-chromatic

decorrelation by shift-invariant filtering. Proceeding IEEE

Conf. Computer Vision and Pattern Recognition Workshops,

27-34.

Cai, H., Mikolajczyk, K., Matas, J., 2011, Learning linear

discriminant projections for dimensionality reduction of image

descriptors. IEEE Trans Pattern Anal Mach Intell, 33(2): 338-

352.

Calonder, M., Lepetit, V., Strecha, C., et al. 2010. Brief: Binary

robust independent elementary features, European Conference

on Computer Vision (ECCV) 2010, Springer Berlin Heidelberg,

778-792.

Freund, Y., Schapire, R. E., 1995. A desicion-theoretic

generaliza- tion of on-line learning and an application to

boosting. Computational learning theory. Springer Berlin

Heidelberg, 23-37.

Ke, Y., Sukthankar, R., 2004. PCA-SIFT: A more distinctive

representation for local image descriptors. Proceeding IEEE

Conf. Computer Vision and Pattern Recognition, (2): II-506-II-

513

Leutenegger, S., Chli, M., Siegwart, R. Y.. BRISK, 2011.

Binary robust invariant scalable keypoints. IEEE 11th

International Conference on Computer Vision: 2548-2555.

Lowe, D. G., 2004. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vision,

60(2): 91-110.

Heikkilä, M., Matti, P., Cordelia, S., 2009. Description of

interest regions with local binary patterns. Pattern

Recognition, 42(3): 425-436.

Mikolajczyk, K., Cordelia, S., 2005. A performance evaluation

of local descriptors. IEEE Trans Pattern Anal Mach Intell,

10(27): 1615-1630.

Rublee, E., Rabaud, V., Konolige, K., et al. 2011. ORB: an

efficient alternative to SIFT or SURF. ICCV 2011, Proceeding

IEEE Conf. International Conference on Computer Vision:

2564-2571.

Simonyan, K., Vedaldi, A., Zisserman, A., 2012. Descriptor

learning using convex optimisation. European Conference on

Computer Vision (ECCV) 2012. Springer Berlin Heidelberg,

243-256.

Strecha, C., Bronstein, A. M., Bronstein, M. M., Fua, P., 2012.

LDAHash: Improved matching with smaller descriptors. IEEE

Trans Pattern Anal Mach Intell, 34(1), 66-78.

Trzcinski, T., Christoudias, M., Lepetit, V., et al, 2012.

Learning image descriptors with the boosting-trick. Advances in

neural information processing systems:269-277.

Tola, E., Vincent, L., Fua, P., 2010. Daisy: An efficient dense

descriptor applied to wide-baseline stereo. IEEE Trans Pattern

Anal Mach Intell, 32(5): 815-830.

Viola, P., Jones, M. J., 2004. Robust real-time face detection.

International Journal of Computer Vision, 57(2): 137-154.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-61-2014 66

