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ABSTRACT:

Normalized Cut according to (Shi and Malik 2000) is a well-established divisive image segmentation method. Here we use Normalized
Cut for the segmentation of laser point clouds in urban areas. In particular we propose an edge weight measure which takes local
plane parameters, RGB values and eigenvalues of the covariance matrices of the local point distribution into account. Due to its
target function, Normalized Cut favours cuts with “small cut lines / surfaces”, which appears to be a drawback for our application.
We therefore modify the target function, weighting the similarity measures with distant-depending weights. We call the induced
minimization problem “Distance-weighted Cut” (DWCut). The new target function leads to a slightly more complicated generalized
eigenvalue problem than in case of the Normalized Cut; on the other hand, the new target function is easier to interpret and avoids the
just-mentioned drawback. DWCut can be beneficially combined with an aggregation in order to reduce the computational effort and to
avoid shortcomings due to insufficient plane parameters.
Finally we present examples for the successful application of the Distance-weighted Cut principle. The method was implemented as
a plugin into the free and open source geographic information system SAGA; for preprocessing steps the proprietary SAGA-based
LiDAR software LIS was applied.

1 INTRODUCTION

Segmentation denotes the task of partitioning a set (e.g. the pix-
els of an image or the points of a laser point cloud) into disjoint
sets, whose elements share certain properties or exhibit similar-
ities with respect to certain attributes. In the case of images,
mostly low-level features like intensity, hue or vicinity are em-
ployed as segmentation criteria; for laser point clouds also geo-
metric attributes like local plane parameters, point densities etc.
come into consideration.

There are roughly speaking two groups of segmentation methods,
see e.g. (Gonzalez and Woods 2002): The first category is based
on similarity. Starting with elements having locally extremal val-
ues of a distinguishing attribute, elements with similar values are
successively aggregated by a region growing. The second cat-
egory of methods is based on discontinuity. Abrupt changes in
the criterion function are detected, often by evaluating gradients,
in order to determine the borders between two adjacent subsets.
While such borders are not necessarily closed curves / surfaces,
the segmentation turns out to be much simpler if this holds true;
any enclosed region can then be immediately associated with a
segment. The requirement is automatically fulfilled for divisive
algorithms, which subdivide the image / point cloud successively
into smaller pieces.

2 NORMALIZED CUT - BASIC DEFINITIONS

Normalized Cut (Shi and Malik 2000) is an established divisive
segmentation method. Its applications reach from low-level tasks
like image compression to semantic interpretation, e.g. the in-
terpretation of medical images, (Carballido-Gamio et al. 2004).
While it was originally conceived for perceptual grouping in raster

images, it has been successfully applied for the segmentation of
laser point clouds as well, see e.g. (Reitberger 2010). The ba-
sic model of Normalized Cut is an undirected weighted graph
G = (V,E), featuring the elements of a set V, e.g. pixels or
laser points, as nodes (vertices). E denotes the set of edges, i.e.
of all pairs of non-identical nodes (u, v), u, v ∈ V. To each edge
(u, v) a non-negative “edge weight” w(u, v) is assigned which
represents a similarity measure comparing the connected nodes
u, v. The graph G is successively subdivided into smaller sub-
graphs: ”In grouping we seek to partition the set of vertices into
disjoint sets V1, V2, . . .Vm, where by some measure the simi-
larity among the vertices in a set Vi is high and, across different
sets Vi, Vj is low.” (Shi and Malik 2000). This is achieved by
minimizing in each decomposition step a cost function, which is
essentially determined by the edge weights of the cut edges.

The choice of the cost function is decisive for the segmentation
result. Cost functions are expressed in terms of the association of
two arbitrary sets A, B, which is defined by

assoc (A,B) :=
∑

u∈A

∑

v∈B

w(u, v) (1)

Nodes are serially numbered; we shall mostly write the weights in
index notation Wij instead of w(u, v) where i, j ∈ {1, 2, . . . N}
and N is the number of nodes in V. If we require the sets A, B to
be just two disjoint subsets whose union equals the set V, assoc
itself represents a possible cost function, which is called cut in
this case:

cut (A,B) := assoc (A,B) (2)

Cut as a cost function was proposed by (Wu and Leahy 1993).
As the authors point out themselves, their minimum cut criterion
suffers from the shortcoming that it favours unbalanced cuts, i.e.
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cuts where one of the resulting subsets is small: cut (A,B) tends
to be small if the number of edges to be cut is small. For this
reason, (Shi and Malik 2000) introduced a modified cut crite-
rion, called Normalized Cut, which avoids the disadvantages of
the minimum cut criterion:

Ncut (A,B) :=
cut (A,B)

assoc(A,V)
+

cut (A,B)

assoc(B,V)
(3)

The authors point out that ”the cut that partitions out small iso-
lated points will no longer have small Ncut value, since the cut
value will almost certainly be a large percentage of the total con-
nection from that small set to all other nodes” (ibidem). That
means, if e.g. the subset A is small, not only cut (A, B), but
also assoc (A,V) will be small, so that Ncut will not automati-
cally assume small values. Compared to other cost functions the
minimization of the Ncut criterion can be achieved with relatively
low computational effort.

For a constructive mathematical formulation, the edge weights
are collected in the weight matrix W := [Wij ]; W is symmetric.
Furthermore a diagonal matrix D is defined according to

Dii =
∑

k∈V

Wik (4)

D contains for each node the sum of the weights of all incident
edges; it is therefore called total connection matrix. The matrix
L := D−W is called Laplace matrix.
The subdivision of the graph is conveniently expressed by an in-
dicator vector x of dimension N . The i-th element of x is 1 if
node i belongs to subset A and -1 if node i belongs to B. With
the definition of a second type of indicator vectors

ỹ := assoc (B,V) (1 + x)− assoc (A,V) (1− x) (5)

the following equalities are easily obtained:

ỹT (D−W) ỹ = 4 assoc (A,B) assoc2(V,V)

ỹT Dỹ = 4 assoc (A,V) assoc (B,V) assoc (V,V)

and therefore

ỹT (D−W) ỹ

ỹT Dỹ
= Ncut (A,B) (6)

The given definition of ỹ, is slightly different from the one in
(Shi and Malik 2000), however leads to the same results.
Unconstrained minimization of the ratio (6) yields the following
generalized eigenvalue problem:

(D−W) ỹ = λDỹ (7)

The eigenvalues λ of (7) represent the Ncut values of the decom-
positions which originate from the corresponding eigenvectors as
indicator vectors. Therefore it seems that the eigenvector corre-
sponding to the smallest eigenvector of (7) represents the solu-
tion of the minimization problem (6). The solution of the original
problem, however, has to fulfil some constraints:

1. A particular combination of the ỹi should vanish:

1T Dỹ = 0 (8)

2. The elements of x may assume only values 1 or -1, there-
fore according to the definition (5), the elements of ỹ are

also constrained:

ỹi ∈ {2 assoc (B,V), −2 assoc (A,V)} (9)

3. The sets A, B should not be empty, i.e. the elements of x
should not be all the same.

The total connection matrix D is assumed to be positive definite,
otherwise there is at least one node with no incident non-zero
edges and the graph G cannot be connected. Furthermore, the
Laplace matrix D−W can be shown to be positive-semidefinite.
The smallest eigenvalue of the system (7) is λ = 0 and the cor-
responding eigenvector ỹ1 = 1/

√
N . This eigenvector clearly

corresponds to the (undesired) case that all nodes are associated
to the same subset, which is to be avoided according to the third
constraint. Therefore, rather the eigenvector of (7) corresponding
to the second-smallest eigenvalue has to be used.
It is easy to show that the first constraint is automatically fulfilled
by all other eigenvectors. On the other hand, solutions of (7) will
in general not fulfill the second constraint. Therefore the mini-
mization of the Ncut according to (6) under the given constraints
is not equivalent with the computation of the eigenvector which
belongs to the second smallest eigenvalue of the system (7). This
problem seems to be unsolved. (Shi and Malik 2000) proposed
the following pragmatic approach: Compute the eigenvector of
(7) corresponding to the second smallest eigenvalue. Select a
threshold t and associate the nodes with ỹi ≤ t to subset A and
the nodes with ỹi > t to subset B. This approach seems to be
sufficient and effective for all practical computations. Regarding
the numerical solution, (Shi and Malik 2000) proposed to solve
this transformed system by means of the Lanczos method, see e.g.
(Golub and Van Loan 2013).

3 EDGE WEIGHT FUNCTIONS FOR LASER POINT
CLOUDS

(Shi and Malik 2000) give examples for the segmentation of im-
ages. They use a weight function, which is a multiplicative com-
bination of a distance-depending part and a part comparing the
greyvalues of the pixels:

Wij = exp(− ||Fi−Fj ||2
σ2

I
)∗







exp(− ||Xi−Xj ||2
σ2

X
) if ||Xi −Xj || < r

0 otherwise
(10)

Here Fi, Fj denote the greyvalues of the pixels i, j. σI , σX

denote two scale factors, r a threshold for the consideration of the
weight Wij . Obviously the distance between two pixels directly
effects their ”similarity”.

While the above weight function for the segmentation of pan-
chromatic images appears “natural”, the choice of a weight func-
tion for the segmentation of laser point clouds is not so straight-
forward; it may depend upon the registration type (airborne, mo-
bile, single pulse, full waveform etc.), the targeted objects (forests,
buildings etc.), available additional information (colour enrich-
ment, local plane parameters) etc. Here we deal mostly with mo-
bile laser data of urban areas for the purpose of building mod-
elling. In this domain, segmentation is to separate different pla-
nar segments of building facades. Therefore the most impor-
tant criterion for the similarity of two points is the question if

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-81-2014 82



they are located on a common planar segment. By a plane fit-
ting in a preprocessing step the point cloud may be augmented
with local plane parameters as additional attributes. Of course
such plane parameters are meaningless for line-like or spatially
isotropic point distributions, e.g. along power lines or on a rough
vegetation surface. For such cases the eigenvalues of the covari-
ance matrices of the local point distributions represent valuable
information about the type and the spatial extension of the regis-
tered objects, upon which information a similarity measure may
be based, see e.g. (Gross and Thoennessen 2006), (Jutzi and
Gross 2009).

The experimental investigations for the present study were per-
formed in the framework of the free and open-source geographic
information system SAGA; for preprocessing steps the propri-
etary SAGA-based LiDAR software LIS was used. SAGA / LIS
provide modules for local plane-fitting, colour enrichment and for
the eigenvalue computation of covariance matrices of local point
distributions. If no colour information is available, intensity val-
ues of the laser reflections may be used. In our proposal for a
weight function for LiDAR point clouds we therefore assume that
for each point of the point cloud either local plane parameters or
eigenvalues of the local point distribution are available.

We propose the following weight function between two LiDAR
points i, j:

Wij =











































W Dist
ij [cP W N

ij ∗W O
ij + c

(1)
RGBW RGB

ij ]

if both points have valid plane parameters

W Dist
ij [cEW E

ij + c
(2)
RGBW RGB

ij ]

if none of the points has valid plane parameters

0 otherwise
(11)

Here cP , c(1)
RGB , c(2)

RGB , cE are user-selected constant coefficients,
the weight contributions W m

ij , m ∈ {N, O, RGB, E} are ex-
plained in the following. This weight function obviously implies
that points with valid plane parameters and points without such
parameters are always grouped into disjoint segments. The con-
stant coefficients are normalized according to

cP + c
(1)
RGB = 1, c

(2)
RGB + cE = 1 (12)

Those coefficients control the relative impact of the weight con-
tributions W N

ij ∗W O
ij , W RGB

ij or W E
ij , W RGB

ij , respectively. As
all weight contributions W m

ij , m ∈ {N, O, RGB, E} vary be-
tween 0 and 1, the range of Wij is therefore also [0, 1].

3–1 Distance-dependent Weight Contribution

For the distance-dependent weight contribution W Dist
ij we pro-

pose an exponential decay similar as in (10):

W Dist
ij :=















exp

[

− s2
ij

(c̺(i)c̺(j) + α2
d)σ2

d

]

if sij < r

0 otherwise
(13)

Here sij := ||Xi −Xj || denotes the Euclidean distance between
the points i, j; σ2

d is a dimensionless scale factor. Apart from σ2
d

we introduce a point-dependent scale factor c̺: The local point
density of mobile laser data may vary considerably depending on
the distance of the scanner to the targeted surface and the inci-
dence angle of the laser rays. That means, these variations may

be characteristic for the measuring process rather than for the tar-
geted object and do not necessarily correspond to properties of
the material surface. If they are not compensated, the Normalized
Cut principle favours cuts along surfaces where the local point
density is low, because there are relatively few connections to be
cut, so the corresponding cut(A,B) is relatively small.

3–2 Similarity Measures based on Plane Parameters, RGB
values and Eigenvalues of the Covariance Matrix

The terms W N
ij , W O

ij in (11) are to quantify how well the plane
parameters of the points i, j are compatible and how close each
of the points is located to the local plane of the other point. We
use the common implicit plane representation

< N,X > −d = 0 (14)

where N denotes the unit normal vector of the plane and d its dis-
tance of from the origin. The weight contribution W N

ij measures
the similarity between the normal vectors of the points i, j:

W N
ij = exp

[

−||Ni −Nj ||2
σ2

N

]

(15)

This measure is not sufficient for the comparison of planes, as
parallel planes with an offset cannot be distinguished by (15). An
analogous expression for the similarity of the distance d is not
invariant against translational motions of the coordinate system.
We therefore prefer to use the distances of a point from the best
fitting plane of the other point instead:

W O
ij = exp

[

− (< Ni,Xj > −di)
2 + (< Nj ,Xi > −dj)

2

σ2
O

]

(16)
σ2

N , σ2
O are global scale factors. The similarity contributions

(15), (16) are not redundant. Simple geometric configurations can
be cited for which one of these measures reaches its maximum
while the other remains small. For a good coincidence of the two
local planes we require high values for both criteria; therefore
their contributions are combined in a multiplicative way.

For the comparison of the RGB values and the eigenvalues of the
covariance matrices we propose simple Euclidean distances:

W RGB
ij = exp



−
∑

l∈{R,G,B}
(F

(l)
i −F

(l)
j )2

σ2
RGB





W E
ij = exp



−
3∑

l=1
(λ

(l)
i −λ

(l)
j )2

σ2
E





(17)

F
(R)
i , F

(G)
i , F

(B)
i denote the greyvalues of point i in the red,

green and blue channel, λ
(1)
i , λ

(2)
i , λ

(3)
i the eigenvalues of the

covariance matrix of the point distribution in the vicinity of point
i. σ2

RGB , σ2
E are global scale factors.

4 SEGMENTATION REQUIREMENTS AND
SHORTCOMINGS OF NORMALIZED CUT

The Ncut minimization condition together with the afore-mentioned
weight function entails some implications, which may be consid-
ered as drawbacks, depending on the particular application:

1. Slim-shaped objects tend to be cut at their narrowest sec-
tion. As the weights decrease with increasing distance of the
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(a) RGB colour-enriched point cloud of a facade
with windows

(b) Ncut segmentation of the point cloud.
Colours indicate the segment affiliation of
the points

Figure 1: Ncut of a facade

nodes, at the narrowest section there are relatively few edges
or connections to be cut. This implies a relatively small cut
value, while the associations assoc(A,V), assoc(B,V) in
the denominator of (3) might be big, e.g. because there are a
lot of connections among the members of one and the same
subset A or B. So the resulting Ncut value tends to be small.
For some applications the property seems to be adequate in-
deed as e.g. for single tree detection from laser point clouds,
see (Reitberger 2010). Here the distribution of the laser
points in space essentially reflects the tree contours or sil-
houettes. On the other hand, in the case of terrestrial laser
point clouds the local point density is somewhat random and
dependent on the distance to the scanner, and it will often be
undesirable to cut slim-shaped point sets at their narrowest
section as the subsets may anyway form a continuous object.

2. In a recursive application of the Normalized Cut, there may
appear smaller Ncut values on a deeper level of the recursion
than on higher levels. If the Ncut of the higher level exceeds
the selected threshold, the smaller Ncuts in the deeper levels
are never reached.

3. An addition of “remote” nodes, i.e. nodes which are far from
the expected cut line or surface, may change the Ncut value,
as assoc(A,V), assoc(B,V) possibly change, whereas
cut(A,B) may remain unaltered. The threshold for the ac-
ceptance of a cut therefore appears arbitrary or at least hard
to interpret.

For the purpose of segmentation of mobile laser scanning data,
we encountered in particular the first implication as a severe draw-
back. Figure (1) shows an example where the points of a building
facade have been segmented by Normalized Cut. Obviously one
of the windows is not “resolved”, on the other hand the facade is
decomposed into several pieces; the borders between these pieces
are mostly short lines, where only few connections had to be cut.
See e.g. the upper border of the light green facade segment, which
is short as it extends between two windows. This cut between the
two windows is undesired, the more so as both resulting subsets
exhibit very similar plane parameters and spectral properties.
We propose therefore a modified minimization criterion, which
avoids the afore-mentioned drawbacks.

5 DISTANCE-WEIGHTED CUT

5–1 Target Function of DWCut

As in (10) we assume again that the weights Wij are of the form

Wij = W Distance
ij ·W Similarity

ij , (18)

i.e. that they consist of a distance-dependent factor and a factor
taking into account similarity measures like similarity of plane
parameters, RGB values etc. In contrast to the foregoing sec-
tions, here the term “similarity” does not include the distance be-
tween the relevant nodes any more. Let us further assume that
the graph G is totally connected with respect to the edge weight
coefficients Wij .
We propose an alternative target function, which we call – in
the same way as the corresponding minimization problem – the
Distance-weighted Cut (DWCut):

DWCut (A,B) :=
cut(A,B)

cutD(A,B)
(19)

Here cutD(A,B) denotes the cut which results if only the distance-
depending part of the weights is taken into account. Using (18),
DWCut can be written as

DWCut (A,B) :=

∑

i∈A

∑

j∈B

W Distance
ij ·W Similarity

ij

∑

i∈A

∑

j∈B

W Distance
ij

(20)

DWCut can be represented in terms of the indicator vector x:

DWCut (A,B) =
xT (D−W)x

xT (DD −WD)x
=

xT G̃x

xT H̃x
(21)

where WD,DD denote the matrices of the coefficients W Distance
ij ,

DDistance
ij . Furthermore we use the abbreviations G̃ := D−W,

H̃ := DD −WD .

According to (20) the distance-weighted cut can be interpreted as
a weighted average of the similarity measure over the cut edges
ij, where the similarity measure is given by W Similarity

ij and the
weight by W Distance

ij . If a distance-depending weight function
analogous to (10) is used and the distance threshold r is selected
sufficiently small, the distance-depending weight will be zero for
most of the edges; only sufficiently short edges are then taken
into account. DWCut is particularly easy to interpret, if we con-
tent ourselves with the following form of the distance-depending
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weights:

W Distance
ij =

{

1 if ||Xi −Xj || < r

0 otherwise

}

(22)

In this case, DWCut simply equals the mean similarity measure
over the cut edges (where only the edges with a length smaller
than r are taken into account).

It is easy to prove that the drawbacks of the Ncut, which we have
pointed out in section 4, are all avoided by DWCut. However, just
like the solution of Normalized Cut, the solution of DWCut is not
necessarily unique.

The distance-weighted cut has to be regularized, because oth-
erwise its value would be undefined if all nodes are associated
to the same set, i.e. if one of the sets A, B is empty. In this
case the indicator vector x is x = ±1, but (D − W)1 = 0,
(DD −WD)1 = 0, so that both numerator and denominator of
the target function (21) vanish.
Regularization of the denominator with a matrix R according to
H := DD −WD +R leads to the modified minimization prob-
lem

DWCut (A,B) =
xT G̃x

xT Hx

!
= Minimum

under the constraints

a) xi ∈ {1,−1} ∀i ∈ {1 . . . N}
b) The elements of x must not be all the same.

(23)

Neglecting constraint a), (23) leads to the following generalized
eigenvalue problem:

G̃x = λ̃Hx (24)

Two different regularization matrices suggest themselves:

a) R = x1x
T
1 , with x1 := 1/

√
N .

b) R = I.

It can be shown that for both regularizations the eigenvalues λ̃k

and eigenvectors xk, k = 2 . . . N of the problem (24) are not
impaired, i.e.

Hxk = H̃xk (25)

5–2 Numerical Computation of the Distance-Weighted Cut

For the solution of the problem (23), we follow the approach of
(Shi and Malik 2000) for the Normalized Cut: We initially ne-
glect constraint a) of (23). As the smallest eigenvalue λ̃1 of (23)
corresponds to the eigenvector x1 = 1/

√
N , i.e. to a decomposi-

tion where all nodes go into one of the subsets A or B, we search
the eigenvector corresponding to the second smallest eigenvalue.
Then we select a threshold t and associate the nodes with xi ≤ t
to subset A and the nodes with xi > t to subset B.

(24) is a slightly more complicated eigenvalue problem than (7),
as the matrix H on the right hand side is not diagonal, in contrast
to the matrix D in (7). Therefore a transformation to a standard
eigenvalue problem requires a higher numerical effort.
It is in general easier to find the smallest eigenvector than the
second smallest. Therefore we prefer to shift the eigenvalue λ̃1 =
0 to a higher value. This can be achieved by a modification of the
matrix G̃ according to

G := G̃ + x1x
T
1 (26)

It can be proved that x1,xk with k = 2 . . . N are also eigenvec-
tors of the modified problem

Gx = λHx (27)

with λ1 = 1, λk = λ̃k; instead of computing the second small-
est eigenvalue of the system (24) and its corresponding eigenvec-
tor, we may equivalently compute the smallest eigenvalue of the
system (27) and its eigenvector.

For the solution of the system (27) or the computation of its
eigenvector corresponding to the smallest eigenvalue, respectively,
we apply a variant of the Arnoldi algorithm which was proposed
by (Golub and Ye 2002).

5–3 Preprocessing Steps

In a first step local plane parameters for all points of the point
cloud are calculated. Then the distance weights W Dist

ij and the
similarity weights W Similarity

ij are computed as described in sec-
tion (3) and stored in a sparse matrix format. A convenient and
efficient format is the compressed-column representation (CCR)
of a sparse matrix, see e.g. (Golub and Van Loan 2013) p. 598
ff.

When we introduced the target function of DWCut in section
(5–1), we assumed that the graph is totally connected with re-
spect to the distance-depending edge weights W Dist

ij , otherwise
there were, apart from x1, further eigenvectors of the generalized
eigenvalue problem (24), for which the Rayleigh quotient in (23)
was indeterminate. Therefore we have to decompose the graph
into subgraphs that are totally connected. Each subgraph is rep-
resented by a list of points; the list is initialized with an arbitrary
point which has not been associated to a subgraph so far. Suc-
cessively all neighboring points of the points in the list are added
(with the term “neighboring point” here we denote a point, whose
edge with the current point features a nonzero weight).

In the following step each subgraph is recursively subdivided by
DWCut into smaller segments, until the segments fall below a
certain size or until the DWCut exceeds the selected threshold.
The proposed solution method by (Golub and Ye 2002) yields
local minima of the target function instead of the global mini-
mum; the result may depend on the initial approximation of the
indicator vector. It is therefore important to start from several
initial approximations which have to be carefully selected. Ap-
propriate approximations can be found by an algorithm similar to
the one just described for the determination of subgraphs, while
here a higher similarity than zero is required; the sets of nodes
connected with this “minimal similarity” can be considered as
approximate partitions.

6 A HYBRID SEGMENTATION METHOD:
COMBINING DWCUT AND AGGREGATION

While DWCut is a promising segmentation method with pleasant
properties, there are drawbacks. One drawback is the slow perfor-
mance and high memory consumption (which however does not
considerably exceed the requirements of Normalized Cut). An-
other disadvantage consists in partly insufficient partitionings of
laser point clouds due to “unsharp” plane parameters. Consider
the laser profile of a protrusion in figure 2. Let the offset d be-
tween the left and the right plane be just sufficiently big to resolve
the planes, i.e. to decompose the points on the two planes into two
different segments. In order to determine the plane parameters of
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Figure 2: Blurred plane parameters cause insufficient partitioning
(see text for explanation)

an arbitrary laser point, the neighbouring points within a sphere
of a certain radius are selected; a plane is fitted to those points by
an adjustment . As e.g. the spheres around the points B and C in
the figure already contain points of the orthogonal connection be-
tween the planes, the local normal vectors of the points B and C
are deflected to the right. Accordingly the plane offset between B
and C appears much smaller than the true value d, and therefore
the decomposition of the point set fails: The plane parameters
appear “blurred” across the edge of the protrusion, and the edge
weight between the points B and C appears higher than it should
be. Therefore a cut between B and C may be rejected.
This kind of blurring appears quite frequently and may seriously
deteriorate the results of the segmentation; it is not a peculiar-
ity of DWCut, but may appear with other graph cut methods as
well, if weight contributions of the form (15) and (16) are ap-
plied. Since the drawback is rather due to the plane fitting than
due to graph cut itself, it is hard to avoid without a preceding seg-
mentation: If the affiliation of the points to planar segments is
already known in the beginning, the plane fitting to an arbirtrary
point could rely on the points within the same plane only. But the
segmentation on its own is based on the plane parameters, so the
snake bites its tail.

As a way out of this dilemma, we propose to compute the plane
parameters as described, but perform a thinning of the point cloud
before the subsequent segmentation. The thinning should be done
in such a way, that in each voxel the point with the highest pla-
narity is retained. In the following we call the retained points also
“seed points”. In figure 2 most probably not the points B and C,
but e.g. the points A and D would be retained, as the spheres
around these points contain only neighbouring points which are
situated on the related planes, therefore the planarity will be high
and the plane parameters are not affected by “outliers”. Then
the thinned point cloud is segmented by DWCut. The cut which
separates the points A and D will probably be accepted, because
the plane parameters of these two points are sufficiently differ-
ent. Finally the residual points are aggregated to the seed points.
As an aggregation criterion the similarity measures analogous
to (16) and (17) can be used for the weight contributions W O

ij ,
W RGB

ij and W E
ij . However, in the case of W O

ij we recommend
an asymmetric criterion: Only the plane parameters of the seed
point should be taken into account, as the plane parameters of the
residual point are not as reliable. That means, W O

ij is essentially
based on the distance between the local seed point plane and the
residual point. In this way also such points can be aggregated
to a planar segment, which do not have valid plane parameters
themselves.

The aggregation benefits from the preceding segmentation of the
thinned point cloud: Without that segmentation a complicated
merging procedure would be necessary, which was to combine

planar seed point segments with similar plane parameters. In
the proposed workflow the merging is unnecessary, as the seed
points themselves are already grouped by the segmentation. On
the other hand, due to the preceding thinning, the segmentation
proves to be easier and more reliable: Thanks to the relative high
planarity of the points of the thinned point cloud the segmentation
is more robust. Furthermore the computational effort of DWCut
is, by the reduction of the number of points, greatly reduced.

7 EXPERIMENTAL INVESTIGATIONS

As pointed out in section 3, we propose to define the similarity
between two laser points with valid local plane parameters as a
combined measure of the distances between the points in nor-
mal vector space, RGB space and the mutual distances between
one point and the local plane of the other point. The success of
the algorithm is obviously dependent on how the parameters of
the similarity function are defined; these parameters essentially
control the decay of the similarity measure with increasing dis-
agreement in one of the mentioned criteria and also the relative
impact of the individual constituents. Furthermore the distance-
dependent weight, which defines the relative impact of an edge
similarity within the averaged cut, is of crucial importance. In
general, choosing a relaxed value for a similarity criterion may
group together semantically unrelated objects, while the choice
of a strict value may produce undesired cuts. This trade-off is im-
portant to realize and the choice of the parameters must be well
guided by the nature of the application.
In the following we give some results of the Distance-weighted
Cut algorithm, which also illustrate the influence of the similarity
and weight parameters on the resulting segmentation.

Figure 3: Segmentation result for the point cloud of figure 1 by
DWCut

Figure 1 was to demonstrate the crucial drawback of the Normal-
ized Cut, which gave reason to a modification of the target func-
tion. Figure 3 now shows the segmentation of the same point
cloud by DWCut. Apart from some segments with very few
points, which may be considered as outliers, the facade appears
as one segment; in particular the undesired cuts of figure 1 along
the facade are avoided. We would like to emphasize that this im-
provement was not achieved by a mere suppression of cuts by a
tightening of the stop criterion of the algorithm, but rather by
the modified target function. This becomes evident by the fact
that now all windows are “resolved”. As in the case of the Nor-
malized Cut, the points on the facade and on the window panes
have valid plane parameters, while the points on the embrasures
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mostly do not as the embrasures are too narrow: the plane off-
set between the facade and the window panes amounts to ca. 30
cm. Sometimes facade points and points on the window panes
are very close to each other; this implies that the distinction be-
tween the window segments and the facade segment is achieved
by regular cuts and not by a separation of unconnected subgraphs.
The cuts between facade and window panes were mostly effected
by the constituent W O

ij in the similarity function. The example
demonstrates that the proposed similarity function is appropriate
to distinguish different planar segments. Although the “blurring”
of the plane parameters as described in figure 2 actually appeared
in the embrasures of the windows, for this example it did not af-
fect the result, the more so as we selected a small neighbourhood
radius in the computation of the local plane parameters. However,
as we shall see, such blurring effects can not always be avoided.
Very small segments (size < 5 points) seldom signify anything
of importance in the point cloud. We therefore applied a merg-
ing algorithm as a post-processing step in order to incorporate
the small segments into bigger ones. The merging algorithm may
choose to assign points of the small segments to bigger segments
by checking which neighbouring segment’s local plane is closest
to the point. If no neighbouring segment features a valid plane,
the segment belonging to the closest neighbour wins the point.
Figure 4 shows the result after the merging step.

Figure 4: Segmentation result by DWCut for the point cloud of
figure 3 after merging of small segments

Figure 5: Colour-enriched point cloud containing a building edge

Figure 5 depicts a more complicated point cloud; most impor-
tant objective is to see if the algorithms are able to reproduce the
sharp building edge. Obviously with DWCut this failed as can be

Figure 6: Segmentation result for the point cloud of figure 5 with
DWCut

seen in figure 6, region (4): Along the edge there are two (un-
desired) elongated segments available. These segments appear
since the local plane parameters, in particular the normal vectors,
are “blurred” for the points near the edge. The neighbourhood of
an arbitrary point close to the building edge may contain a consid-
erable number of points of the adjacent facade, particularly if the
chosen radius of the neighbourhood is relatively big. Therefore
the edge is blurred in such a way that the normal vector is chang-
ing gradually and this may give rise to additional segments. It
might even occur that the plane fitting fails and the points do not
feature valid plane parameters. These effects can be mitigated or
even avoided, if for each point only a very small neighbourhood
is employed for the computation of the plane parameters. The
downside of this strategy is that the computed plane parameters
are unreliable and unstable. This becomes apparent in region (1)
of figure 6. Here the laser scan lines have a big distance to each
other – bigger than the selected neighbourhood radius. There-
fore the plane parameters in that region are mostly computed with
points of one scan line at a time, which yields insignificant nor-
mal vectors and therefore the apparent superfluous segment on
the ground. The superfluous segment in region (3) of figure 6 is
also for similar reasons.

Figure 7: Segmentation result for the point cloud of figure 5 with
DWCut, tuned parameters

In region (2) a proper segment of the facade itself is encountered.
Actually there is a slight protrusion, starting from the height of
the segment in (2) till the ground, on both faces of the facade. (5)
shows a segment on the border between facade and protrusion.
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For our application, we wished to suppress the protrusion, so the
segment in (2) was undesired. For this purpose we relaxed the σ2

N

parameter for the similarity of the normal vectors (0.08 to 0.75)
and the corresponding σ2

d for the distance-depending weight (0.8
to 1.2); the impact of the RGB similarity was reduced to 0 in or-
der to avoid the effect of shadows etc. in the segmentation. In
order to avoid the segments in (4) and to obtain a sharp build-
ing edge, the plane parameters where computed from a smaller
neighbourhood. Relaxing the distance parameter σ2

d allows for
a bigger neighbourhood, which is often helpful in bridging over
wide scan lines.
Figure 7 shows the improved result. It is apparent that the pro-
trusion segments have disappeared. As expected, the superfluous
ground segments are still available. Also the problems on the
building edge are still visible, though somewhat mitigated.

A considerable improvement is made by means of the hybrid
algorithm according to section 6: The point cloud is thinned
based on the best planarity among the points in a voxel. The
thinned point cloud is segmented using DWCut and subsequently
an aggregation is carried out, where the segmented points of the
thinned point cloud act as seed points; each aggregated point in-
herits the segment affiliation of the seed point to which it is ag-
gregated.

Figure 8: Segmentation result for the point cloud of figure 5 with
hybrid algorithm

Figure 8 shows the segmentation result of the hybrid algorithm.
Here the undesired segments of the building edge have disap-
peared; the edge is represented quite sharp. The ground is, apart
from the stair at the left and some single points at the right, rep-
resented by one segment. The big protrusion on the right face
has been grouped into one segment, although it has two distinct
planar facets. This is due to the fact, that the thinning procedure
failed to locate a point with considerable planarity on the missing
facet.

Finally, figure 9 shows the segmentation result by the hybrid method
applied to the complete facade. Although some problems remain,
the result confirms the potential of the proposed algorithms.
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Figure 9: Segmentation result for a complete building facade with
the hybrid algorithm
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