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ABSTRACT: 
 
Current generation geospatial applications primarily rely on location representations that were developed for the manipulation and 
display of planar maps of portions of the earth’s surface. The next generation of digital earth applications will require fundamentally 
new technological approaches to location representation. Improvements in the efficiency of the representation of vector location can 
result in substantial performance increases. We examine the advantages and limitations of the most common current approach: as 
tuples of fixed-width floating point representations of real numbers, and identify a list of desirable design features for an optimal 
replacement system. These include the use of explicitly discrete integer indexes, the use of an optimal quantification scheme, and the 
ability to represent point locations at multiple precisions, including the capability to exactly represent key point locations, and the 
ability to encode multi-precision quantizations. We describe a class of planar systems that meet these criteria, which we call Central 
Place Indexing (CPI) systems. We then extend these systems to the sphere to provide a class of optimal known fixed-width 
geospatial vector location representation systems we call CPI43 systems. 
 

1. INTRODUCTION 

A recent convergence of factors, including pervasive GPS-
located mobile computing devices, vast readily available 
quantities of global imagery and geo-referenced data, and 
consumer-level 3D cloud-based visualization and analysis 
platforms, has resulted in a rapidly accelerating demand for the 
computer processing of vast quantities of diverse and often 
distributed geospatial data — data for which a primary access 
key is a computer representation of location on the surface of 
the Earth. The current geospatial computing software 
infrastructure has been built over the past half-century upon the 
foundations laid-out by GIS researchers and advanced end 
users. These communities have defined the core semantics and 
operations of location abstract data types. These communities 
have also guided the development of the primary approaches 
currently used to represent geospatial location, based on 
location representations that were developed for the 
manipulation and display of planar maps of portions of the 
earth’s surface. But the next generation of geospatial 
applications will include advanced “digital earths” — 3D virtual 
globes that will allow a broad spectrum of users, including 
scientists, educators, businesses, and individuals, to 
interactively visualize, analyze, model, manipulate, and 
generate geospatial big data (Goodchild, 2010; Goodchild et al., 
2012; Yu & Gong, 2012). New approaches to geospatial 
computing will need to be developed to meet the needs of these 
next generation applications. Because data structures for the 
representation of location are so pervasive, even small 
improvements in efficiency or representational accuracy in 
these data structures can result in substantial performance 
increases in an overall system.  
 
Arguably the most fundamental of location types is point or 
vector location. The traditional geospatial data end-user 
approach to specifying point locations — both before and since 
the advent of geospatial computing — have been as a two- or 
three-tuples of real numbers, most commonly either geographic 
(latitude/longitude) coordinates, planar Cartesian coordinates in 
some map projection space, or Earth-Centered, Earth-Fixed 

reference frame coordinates. This approach gives users the 
optimal flexibility to perform arbitrary manipulations of these 
point locations by applying analytic geometry techniques to 
potentially exact real numbers. 
 
By far the most common representation of a real number — 
within geospatial applications as well as across all computing 
— is as a fixed-width floating point (FWFP) value; that is, 
using a fixed number of bits, with some of those bits encoding a 
mantissa and some encoding an exponent. This representation 
provides the end-user with an approximate surrogate for their 
familiar real numbers, to which can be applied computer 
implementations of familiar real number operations. This 
approach has been enabled and supported by the widespread 
development and availability of algorithms and hardware (such 
as floating point processors) designed to optimize the 
manipulation of vectors of FWFP values. The representation of 
point locations using tuples of FWFP values has proven 
sufficient to form the very substrate upon which current 
geospatial computing, with all its impressive achievements, has 
been constructed. But as powerful and convenient as this 
approach has been, certainly it would be difficult to argue that it 
is the most efficient representation possible for point locations, 
under most reasonable definitions of the term “efficient”. 
 
The time has come to decouple the operational semantics of 
location representation from the internal address representation, 
and to ask the question: given current computing capabilities, 
what is the optimal fixed-width representation of point location? 
To attempt to answer this question we must ask a series of 
fundamental questions about the relationship between the real 
numbers and FWFP representations of them. We must 
determine the key semantics of point location that must be 
captured by any location representation, and understand the 
advantages and limitations of capturing them in a FWFP point 
representation. We argue that desirable features of a vector 
representation system include explicitly discrete hierarchical 
integer indexes, quantization on an optimal multi-precision 
hexagonal lattice, the ability to exactly describe key point 
locations, and the ability to encode multi-precision 
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quantizations. We describe a class of planar systems that meet 
these criteria, which we call Central Place Indexing systems. 
Finally, we extend these systems to the sphere to provide a class 
of optimal known fixed-width geospatial vector location 
representation systems. 
 
2. THE LIMITATIONS OF FIXED-WIDTH FLOATING 

POINT VECTOR LOCATION REPRESENTATIONS 

FWFP representations will continue to be important to end users 
for the foreseeable future. But we must distinguish between the 
values that our program presents to end users — such as 
decimal numbers, with a specific precision — and the internal 
representation of those numbers as discrete binary values with 
some indeterminate precision. The decimal number that the end 
user sees is not the actual location key value, but is generated 
from that internal key representation, with the assistance of 
metadata (such as the number of base 10 significant digits in the 
value) when it is available. This fact alone means that a FWFP 
representation will result in representational rounding errors for 
an infinite number of decimal values. For example, an analyst 
who wants to work with a latitude value of exactly 7.55° will 
find that that number has an infinite binary representation, and 
thus the actual decimal number stored will be 7.54999...°. The 
FWFP representational conversion processing may be supported 
by hardware and thus be very efficient; indeed, in general the 
widespread availability of floating point hardware has 
traditionally given FWFP representations an immediate 
efficiency advantage over other potential representations for a 
wide range of operations. But given the speed and ease with 
which new processor circuitry now goes from algorithm 
definition to implementation, even this hardware advantage has 
ceased to be a real obstacle to introducing new representations. 
We may encode our point location key value using the most 
efficient internal representation, and then generate or store other 
point location representations (such as decimal 
latitude/longitude) as needed. For efficiency, that conversion 
can itself be encoded in hardware. 
 
Modern GPS-equipped mobile computing devices exemplify 
the requirements of advanced real-time geospatial processing in 
a resource-constrained environment. My Apple iOS device 
reports to me that I am currently at latitude/longitude 
coordinates (42.18614334, -122.697120) with an accuracy of 
+/-10 meters; that is, the reported location lies at the center of a 
circle with a “radius of uncertainty” (Apple Inc., 2010) of 10 
meters. The documention for Android devices (Android Open 
Source Project, 2013) gives more detail, indicating that a 
reported accuracy is “the radius of 68% confidence.” In neither 
system is any information given about the precision or number 
of significant digits in the latitude/longitude FWFP 
representation itself. In fact, the very concepts of accuracy and 
precision have such varied practical definitions that it is difficult 
to make definitive statements about their meaning in any given 
technological system. In classical measurement theory accuracy 
indicates how close a measurement is to the actual location 
value, while precision indicates how close together the values of 
repeated measurements of the same position are. But these 
definitions do not always apply in practice; for example, the 
ISO 5725 standard (ISO, 2012) defines experimental accuracy 
as the combination of both “trueness” and “precision”. And 
when referring to FWFP representations the term precision 
normally (e.g., IEEE Computer Society, 2008) refers to the 
number of significant digits that are preserved by the 
representation. Since the precision applies individually to each 
component of a 2-tuple FWFP representation, the resulting 
region of uncertainty is square, rather than circular, as it is in the 

standard expression of location accuracy. But from the 
standpoint of location representation, terms like accuracy, 
precision, and resolution all refer to the degree to which a 
particular location address reduces our uncertainty concerning a 
point location value. An ideal vector location representation 
would implicitly correspond to a region on the surface of the 
earth in which the point lies, with the area of that region 
proportional to the degree of location uncertainty, and 
applications should be able to identify that region without 
resorting to meta-data. An ideal representation system would 
also be capable of providing multiple representations of the 
same location, each corresponding to a different degree of 
location uncertainty. To avoid confusion, in the remainder of 
this paper we will use the term precision to indicate the degree 
to which a particular location representation reduces the 
uncertainty associated with that location position. 
 
Any representation of the real numbers on a digital computer is 
necessarily finite and discrete, while the real numbers 
themselves are infinite in extension, continuous, and infinitely 
divisible. Consequently, performing even the most fundamental 
operations on these representations has the potential to 
introduce and/or propagate rounding error. For example, two 
FWFP location representations are usually considered “equal” if 
the distance between them is less than some relatively small 
number. This makes it impossible to distinguish between two 
addresses which represent point locations that are distinct, yet 
very close, and two addresses which are intended to indicate the 
same location but which differ due to rounding error. This 
problem is compounded, when, as described above, the 
representations do not clearly encode their precision. In 
geospatial applications the result of a location equality test may 
well have significant semantic implications; it might, for 
instance, be an important decision point in determining the 
application’s future execution path. And while it is often 
possible to bound the rounding error due to a single calculation 
or even an entire single application execution, complex 
geospatial computing applications often involve interactions 
between multiple programs and data sets, often with location 
representations with varying precisions. In such situations it can 
be very difficult, if not impossible, to bound the cumulative 
round-off error present in the final system results, which may 
themselves serve as inputs into additional geospatial processing. 
 
FWFP vector location representations are no more “exact” than 
explicitly discrete raster integer coordinates; in both cases the 
infinite number of point locations on the earth’s surface are 
mapped to a finite number of location addresses, each of which 
forms an equivalence class with respect to geospatial location. 
Given a fixed-width n-bit location representation we can 
represent at most 2n distinct points. All other points are 
represented by mapping them to the nearest of these fixed 
points. The question of the optimal arrangement of these fixed 
points can be framed as a point quantization problem on the real 
number plane, and there are multiple formulations for 
comparing the efficiency of these arrangements. We can 
determine which arrangement has the smallest average 
quantization error. Or we can treat each fixed point as the center 
of a circular region and find the arrangement which covers the 
plane with the least overlap, or the arrangement with no overlap 
but with the least uncovered area. The provably optimal solution 
to all of these formulations is to arrange the fixed points as the 
center points of a hexagonal lattice (Rogers, 1964; Conway & 
Sloane, 2010).  While it is difficult to extend this reasoning 
analytically to the sphere, studies by mathematicians (Saff & 
Kuijlaars, 1997) and GIS researchers (Kimerling, et al., 1999) 
both conclude that a hexagonal distribution has the highest 
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degree of geometric regularity. On the plane a hexagonal 
distribution is the best known for estimating continuous spatial 
functions using kriging (Olea, 1984), and such a distribution is 
13.4% more efficient than a square distribution of equivalent 
precision at sampling circularly bandlimited signals (Petersen & 
Middleton, 1962). 
 
Not all location values are the result of a measurement. Some 
locations correspond to an exact known point, and real numbers 
are capable of specifying such points with infinite precision, 
which we refer to as an exact representation. For example, the 
north pole is at exactly 90° north latitude. There is no 
uncertainty associated with that value, and adding additional 
digits to the representation of that value — be it 90.0° or 
90.000000000° — cannot further reduce that uncertainty, and in 
fact can create confusion as to the implied precision of the 
representation. Unfortunately FWFP location representations 
are incapable of representing positions exactly. Exact 
representations can be reasoned with symbolically and exactly 
using synthetic geometry, and arithmetic calculations can be 
performed with them using efficient and exact integer 
operations, with no rounding error. And systems that are 
incapable of exactly representing locations necessarily introduce 
error when performing transformations between representation 
systems, since the exact relationship between inexactly 
represented system origins cannot be specified.  
 
FWFP representations use a traditional radix-based positional 
number system. While the digits in such a representation imply 
multiple scales, the representation of any particular number 
encodes only a quantization at a single precision. For example, 
the number 99.67 quantized at whole unit precision is 100, 
quantized at a precision of 1/10th unit it is 99.7. Truncating the 
digits of such a representation does not yield a valid coarser 
precision quantization; we must round instead. And it is always 
possible that the leading digits of a finer precision quantization 
will differ from those of an existing coarser precision 
quantization. This means that we cannot communicate such 
representations progressively, one digit at-a-time, when 
increasing precision is warranted. One representational system 
that can encode a full multi-precision quantization is balanced 
ternary (Lalanne, L., 1840; Knuth, 2011). This is a radix-3 
system, but rather than using the traditional digits 0, 1, and 2, 
balanced ternary arranges the digits symmetrically about the 
origin by using the “trits” (ternary digits) -1, 0, and 1. In this 
system rounding and truncating are the same operation, so that 
each digit encodes a quantization at a particular precision, 
making each such representation a true multi-precision 
quantizer. The system has other useful properties; in particular 
the sign of a number is given by its most significant nonzero 
trit, and the operation of negating a number can be performed 
by interchanging -1’s with 1’s, and vice-versa. Moreover, radix-
3 is arguably the optimal radix for representational efficiency 
(Hayes, 2001). Despite some initial use of balanced ternary in 
computing, it has fallen out of favor due to the affinity of radix-
2 representations with modern 2-state digital computers. 
 
Tuples of FWFP values encode vector location; that is, both 
proximity and direction information can be derived from these 
values using relatively simple operations, and they support 
vector operations such as translation and scaling (with the above 
caveat that these operations are only approximations of the 
corresponding exact real number coordinate system operations). 
 
Our discussion of the limitations of FWFP location 
representation has yielded a list of desirable design features for 
an optimal replacement system. The system should use 

explicitly discrete integer indexes, that do not imply an illusory 
and unobtainable congruence with the real numbers. It should 
use an optimal hexagonal lattice as the basis for its location 
equivalence classes. It should be capable of representing 
locations at multiple precisions, including the capability to 
exactly represent key point locations. The system should allow 
for the encoding of multi-precision quantizations. And, finally, 
it must efficiently support common vector operations.   
 

3. CENTRAL PLACE INDEXING SYSTEMS 

3.1 Definition on the Plane 

Research in multi-precision hexagonal lattices has focused on 
the three central place apertures (Dacey, 1965; Christaller, 
1966), or ratios of cell area between each precision and the next 
coarser precision. These are apertures 3, 4, and 7, which are 
illustrated in figure 1. In the case of aperture 3, each finer 
precision grid can be constructed by uniform scaling by 1/√3 
and rotating about the origin by 30° either clockwise or 
counterclockwise. Under aperture 4, finer precision grids are 
constructed by scaling by a factor of 1/√4 (or 1/2), with no 
rotation required. And for aperture 7 each finer precision grid 
can be constructed by scaling by 1/√7 and rotating about the 
origin by asin(√(3/28)) degrees (approximately 19.1°) either 
clockwise or counterclockwise. 

 

 
 

Figure 1. Multi-precision hexagonal grids of aperture 3, 4, and 7 
respectively. 

 
The most useful linear spatial indexes for hexagonal cells can be 
constructed using hierarchical prefix codes, where each digit in 
the index corresponds to a location at a single precision relative 
to a hierarchical parent’s index. Such an indexing implicitly 
defines both a locality-preserving total ordering of the cells and 
a pyramid data structure, and enables the development of 
efficient hierarchical algorithms, making it ideal for use as a 
primary location spatial database key. The canonical example of 
a hierarchical prefix code is the square quadtree (Gargantini, 
1982), where a square is recursively sub-divided into 4 smaller 
squares, each of which is assigned an index consisting of the 
parent square’s index concatenated with one of the digits 1, 2, 3, 
or 4. Hierarchical prefix location codes naturally encode both 
direction and precision, without the need for metadata, and 
provide an implicit algorithm for feature generalization via 
index truncation (Dutton, 1999). An arithmetic can be defined 
on these indexes using very efficient per-digit table lookups 
(Bell & Holroyd, 1991).  
 
One approach to constructing hierarchical prefix codes on 
hexagonal grids is to note that, for each aperture in figure 1, 
every cell at a given precision has a corresponding cell centered 
upon it at the next finer precision. The finer precision centroid 
cell, along with the six cells that surround it, can be considered 
potential indexing children of the coarser precision centroid 
parent. This is illustrated in figure 2. We call these seven finer 
precision cells the Central Place Indexing (CPI) children of the 
next coarser precision centroid cell. The aperture 7 case has 
traditionally been indexed using Generalized Balanced Ternary 
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(GBT) (Gibson & Lucas, 1982), which generalizes one-
dimensional balanced ternary addressing to the three natural 
axes of a hexagon grid. As illustrated in figure 3, in any seven-
hex unit the central hex is designated digit 0. The digits 1 
through 6 are arranged so that, if the digits are stored as 3-bit 
binary values, digits on opposite sides of the central hex are 
binary complements of each other, allowing negation to be 
performed efficiently using the binary complement operation. 
Depending upon the application, the remaining unused 
possibility per 3-bit digit, octal digit 7, can be used to represent 
the aggregate group of seven child cells associated with the 
indexed cell (Gibson & Lucas, 1982), to efficiently indicate that 
the maximum known precision has been reached, or to indicate 
that all higher precision digits are zero, efficiently 
communicating with a finite number of digits that the index 
exactly represents the center point of the cell with infinite 
precision (Sahr, 2008; Sahr, 2011). Common vector operations, 
such as addition and scaling, have been defined on GBT using 
very efficient per-digit table lookups.  

 

 
 

Figure 2. Central place children under all possible central place 
apertures: (a) aperture 3 with counterclockwise rotation; (b) 

aperture 3 with clockwise rotation; (c) Aperture 4; (d) aperture 7 
with counterclockwise rotation; (e) aperture 7 with clockwise 

rotation. 
 

 
 

Figure 3. CPI digit assignment at successive precisions, defined 
relative to the i-axis at that precision. 

 
Since CPI children of a particular cell in aperture 3 and 4 
systems also form a 7-hex unit, just as in the aperture 7 case, we 
can also apply the GBT indexing arrangement to create 
hierarchical indexing schemes for aperture 3 (Sahr, 2008; Sahr, 
2011) and 4 systems. While this approach can be applied to grid 
systems with a single aperture, the introduction of a uniform 

indexing system for all apertures allows us to construct grid 
sequences with mixed apertures as well. We call this approach 
to uniform indexing for pure and/or mixed aperture multi-
precision hexagon systems Central Place Indexing (CPI) (Sahr, 
2010). A CPI system specification consists of the following: 
 
 1. a connected set of precision 0 cells, referred to as the 
system’s base tiles, and 
 2. a sequence of apertures 3, 4, and/or 7 that define the 
topology of each finer precision in the system. In the case of 
apertures 3 and 7 directions of rotation must also be specified. 
 
Individual applications can design CPI system specifications 
that provide precisions that are most useful to that application. 
Note that finer precision girds are geometrically produced using 
only uniform scaling and rotation about the origin. Therefore, 
given any two (or more) CPI system specifications defined on 
the same set of base tiles, a higher precision grid that 
participates in both hierarchies can always be constructed, with 
a total number of precisions no greater than the sum of the 
number of precisions in each of the two disparate systems, 
providing a common denominator CPI system that allows the 
performance of exact calculations involving indexes from any 
two or more CPI systems, though care must be taken to track 
the precision of results involving operands that are not exactly 
represented. 
 
We have begun defining common operations on planar CPI 
systems. Implemented algorithms (Sahr, 2010) include forward 
and inverse quantization from/to cartesian coordinates, and CPI 
index equality, addition/translation, subtraction, and metric 
distance operations. Operations on CPI indexes are defined 
using per-digit table lookups, which are exact, efficient, and 
often composable. 
 
3.2 Encoding Multi-Precision Quantization 

Note that non-centroid CPI children under apertures 3 and 4 
have multiple potential addressing parents. A unique 
hierarchical prefix code can be assigned to each cell at each 
precision by recursively aggregating the finer precision cells 
into groups of 3 or 4 cells (for apertures 3 and 4 respectively) 
that tile the plane, and consistently assigning digits at each 
precision, using a digit base determined by the aperture (Burt, 
1980; Bell & Holroyd, 1991). White et al. (1992) noted that the 
aperture need not be consistent across all precisions; they 
developed a computer program that generates multi-precision 
grids using an aggregation tiling unit approach that allows for 
mixed-aperture sequences of grid precisions, thus providing 
finer control over the choice of grid precision and inter-cell 
spacing. CPI allows us to define and uniformly index 
aggregation schemes involving one or more tiling units (e.g., 
Sahr, 2008; Sahr, 2011). 
 
Unique cell indexes are useful for many applications, such as 
raster location representation. But when used to encode vector 
location this approach encodes only a single precision 
quantization. A true multi-precision quantization can be 
performed in aperture 3 and/or 4 grids by performing a point 
quantization at each precision, as illustrated in figure 4. 
However, note that because the CPI children of an aperture 7 
cell do not form a cover of that parent cell, it is not possible to 
encode an aperture 7 multi-precision quantization using a CPI 
approach. 
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Figure 4(a). Point locations P1 and P2 lie in different coarser 
precision cells (with indexes A and B respectively), but in the 
same cell at the next finer aperture 3 precision. Assuming a 

clockwise aperture 3 change in precision the points would have 
multi-precision quantization indexes of A6 and B3 respectively. 

 

 
 

Figure 4(b). Point locations P1 and P2 lie in different coarser 
precision cells (with indexes A and B respectively), but in the 

same cell at the next finer aperture 4 precision. The points 
would have multi-precision quantization indexes of A4 and B3 

respectively. 
 
3.3 Self Describing Systems 

Each of the central place apertures has a particular semantic 
expressiveness. Under all three central place apertures a CPI 
child is always introduced with the same center as the parent 
(but with higher precision). In the case of aperture 3, CPI 
children are also introduced centered on each of the parent cell’s 
vertices. If we take the utility digit 7 to indicate exact 
representation, then in an aperture 3 grid a coarse precision cell 
with index A has a center point that is exactly A7, and vertices 
that are exactly A17, A27, ..., and A67. An aperture 4 grid 
likewise allows the exact description of each of the cell edge 
midpoints, while aperture 7 grids allow for sub-frequency 
addressing of cell interior points. 
 
Given the finest precision grid in a CPI system, the addition of 
two finer precisions of apertures 3 and 4 (in either order) creates 
a system that can exactly represent all center points, vertices, 
and edge midpoints in that grid. Adding an additional aperture 7 
grid allows for the sub-frequency addressing of the internal 
region of each cell. This is illustrated in Figure 5. We call any 
grid that includes these additional precisions a 347-suffix 
system. 

 

 
 

Figure 5. The addition of an aperture 3 grid precision in (a) 
allows each coarser precision cell vertex to be exactly 

represented. Assuming the central coarse precision cell has 
index A, it’s vertices are exactly A17, A27, ..., and A67. The 

addition of an aperture 4 grid in (b) likewise allows the exact 
representation of each of the cell edge midpoints. Adding a final 
aperture 7 grid in (c) allows for sub-frequency addressing of cell 

interior points. 

 
Inspecting the geometry for each central place aperture 
illustrated in figure 1 we note that, in each case, the center 
point, vertices, and edge midpoints of a precision i cell all 
correspond to either a center point, vertex, or edge midpoint of 
cells at the next finer precision i+1. Thus any precision r grid, 
where r > i+1, that exactly represents the precision i+1 cell 
center points, vertices, and edge midpoints will also exactly 
represent those of the precision i grid, regardless of the aperture. 
By induction we can conclude that the addition of an aperture 3 
and 4 grid added to the maximum resolution of a CPI system 
will exactly represent the cell center points, vertices, and edge 
midpoints of cells at every precision in that system, allowing 
users to manipulate the geometry of the entire system using 
exact integer CPI calculations. We say that such a reference 
system is self describing, because it can exactly represent its 
own geometry.  
 

4. CONSTRUCTING AN OPTIMAL CPI DISCRETE 
GLOBAL GRID SYSTEM FOR VECTOR LOCATION 

Discrete global grid (DGG) systems (Sahr et al., 2003) are 
multi-resolution regular partitions of the earth’s surface into 
cells, often based on recursive partitions of the spherical 
platonic solids. We can extend planar CPI systems to the sphere 
to create a DGG system by tiling the spherical version of a 
regular polyhedra with CPI base tiles. The icosahedron is often 
chosen as the base polyhedra for DGGs because it has the 
smallest faces amongst the spherical platonic solids, which 
tends to minimize distortions in the system. When extending a 
CPI system to a spherical icosahedron special handling is 
required for tiles centered on the twelve icosahedral vertices, 
since these tiles will be pentagons at all precisions. For each 
pentagonal tile this can be accomplished by deleting one-
seventh of the sub-hierarchy generated in the hexagon case, as 
described for the pure aperture 3 case in Sahr, 2008. That is, for 
a pentagonal base tile with address A all sub-cells are indexed as 
per a hexagonal base tile except that sub-cells with sub-indexes 
of the form AZd are not generated, where Z is a string of 0 or 
more zeroes and d is the sub-digit sequence (1, 2, 3, 4, 5, or 6) 
chosen for deletion. All hierarchical descendants of these 
deleted sub-cells are likewise not indexed. We should note that 
it has been claimed by some (e.g., Vince & Zheng, 2009) that a 
spherical mapping of the aperture 7 case is not possible; 
however application of our sub-digit deletion technique works 
for all three central place apertures, 3, 4, and 7 (see figure 6). 
 

 
 

Figure 6. A portion of a precision 2 aperture 7 DGG system on 
an icosahedron constructed using sub-digit deletion. 

 
We now apply our analysis above to construct an optimal 
known icosahedral DGG system (Sahr et al., 2003) for vector 
representation. First we align our base spherical icosahedron so 
that an icosahedral edge lies along the prime meridian and the 
north pole lies on the midpoint of that edge. As illustrated in 
figure 7 this yields an underlying grid geometry that is 
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symmetrical about both the equator and the prime meridian, 
ensuring that static data sets and dynamic simulations that use 
this system do not display inherent asymmetries between the 
traditional earth octants. 

 

 
 

Figure 7. Base system spherical icosahedron oriented for octant 
symmetry. 

 
We note that the north and south poles — as well as the 
intersection of the equator with the prime and anti-meridians — 
have exact representations in important real number reference 
frames (e.g., latitude/longitude, and the Earth-Centered, Earth-
Fixed coordinate system) and are key point locations for many 
purposes. We therefore choose an aperture 4 grid for the first 
precision (see figure 8) so that our system can represent all of 
these important points exactly at any grid precision. 

 

 
 

Figure 8. Cell boundaries for the aperture 4 first grid precision. 
Note the cell centered on the North Pole. 

 
The vertices of the spherical icosahedron, along with the points 
at the center of each of the spherical icosahedral faces, form the 
vertices of the 120 icosahedral Least Common Denominator 
triangles (Fuller, 1975), any one of which can be used to 
reconstruct the entire icosahedron via symmetrical reflection; 
the introduction of these face center points captures the full 
icosahedral symmetries. We therefore choose aperture 3 for the 
second grid precision, which allows us to exactly represent 
these points (see figure 9). This yields 122 cells (110 hexagons 
and 12 pentagons), with an inter-point spacing of approximately 
2,036 km. We choose these cells as the set of base tiles for our 
grid system and designate the resulting class of CPI DGG 
systems CPI43 systems. 

 
 

 
 

Figure 9. Two views of the CPI43 System base tile cell 
boundaries, generated on a spherical icosahedron using a grid 

sequence of one aperture 4 followed by one aperture 3 grid 
precision. 

 
We assign numeric values of 0 and 121 to the north and south 
pole-centered base tiles respectively, and assign values to the 
other 120 tiles so that they increase as they move south, roughly 
encoding relative latitude position in the base tile values. We 
note that the 122 base tile values can be stored uniquely using 7 
bits, one short of an 8-bit byte. We use the low-order bit of that 
byte to indicate whether an address uses a 7 digit to indicate 
infinite precision (a value of 0), or the termination of a finite 
precision representation (a value of 1). The remaining bit values 
in an index encode digits in a particular CPI hierarchy centered 
on that base tile, with three bits per precision. Thus the north 
pole, for example, is encoded with infinite precision in all 
CPI43 systems as the 11-bit index 000000001112, independent 
of the aperture sequence chosen for higher precision grids in a 
particular CPI43 system instance. 
 
Subsequent apertures in our grid sequence can now be chosen 
based on the needs of a particular application. An aperture 
sequence containing only additional aperture 3 and/or 4 grids 
will generate indexes that are true multi-precision vector 
location encodings at all grid precisions. In order to describe a 
point location at approximately 1-meter precision a CPI43 
system consisting only of additional aperture 3 grids would 
require 26 additional precisions beyond the base tile (assuming 
the location is not exactly represented at a coarser precision), or 
a total index size of 86 bits, while using only aperture 4 
additional grids would require 21 additional precisions, for a 
total index size of 71 bits. 
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We can reduce the number of bits required to represent a 
location by introducing aperture 7 grids into our CPI sequence. 
Using only aperture 7 additional grids we can achieve 1-meter 
precision with 15 additional precisions beyond the base tile, for 
a total index size of 53 bits. Amongst the three apertures, 
aperture 7 grids also do the best job of maintaining the 
hexagonal topology of a base tile, so it would make sense to 
introduce aperture 7 grids at the coarsest precisions, introducing 
finer-grained aperture 4 and/or 3 precisions only when the 
desired spatial frequency regime is achieved. Note that doing so 
does mean that the resulting indices are only true multi-
precision quantifiers within the finest (aperture 3 and/or 4) 
precisions of the system. 
 
Finally, we should emphasize that the same planar CPI system 
advantages described above accrue to spherical CPI43 systems. 
Specifically, we can always exactly represent all system cell 
center points, vertices, edge midpoints, and cell interiors by the 
addition of a 347-suffix system. And since all CPI43 systems 
share the same set of base tiles, we can also always introduce a 
common denominator CPI system that will allow us to perform 
exact calculations involving indexes from any two or more 
CPI43 systems. 
 
5. CONCLUSIONS AND DIRECTIONS FOR FURTHER 

RESEARCH 

A systematic evaluation of the design requirements and 
alternatives for the fixed-width representation of point location, 
based purely on the criteria of representational and operational 
efficiency, and semantic fidelity, leads to the conclusion that the 
optimal known solution is a representation based on multi-
precision mixed aperture hexagonal grids with a hierarchical 
integer indexing, and the most efficient known encoding for 
such systems is CPI. An examination of geometric 
considerations further led us to develop a specific class of 
spherical CPI systems, CPI43 systems. These systems meet our 
primary design criteria of multi-precision hexagonal point 
distribution, exact representation of key locations, and encoding 
of multi-precision quantization, as well as being self describing. 
We have successfully implemented key CPI operations on the 
plane and CPI43 grid generation on the sphere in prototype 
software. However, a more thorough quantitative evaluation of 
the efficiencies (and possible limitations) of such systems will 
require the definition and implementation of a more 
comprehensive set of vector CPI43 operations on the sphere. 
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