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ABSTRACT: 

 

The Discrete Global Grid System (DGGS) is a new type of global spatial data model and is the extension of the plane grid on a 

sphere. The hexagon is usually used in the construction of DGGS for its advantageous geometric structure. The paper principally 

focuses on the issue of modeling and expression of vector data in the hexagon DGGS. The precision of vector data is the basis of 

data recording and data expression, and data with different precision fall into the grid cells of corresponding sizes, making the 

gridding data themselves contain the precision and scale information. The present method of data recording is reserved, as far as 

possible, in the data recording process, and only the geometric information of vectors is substituted by the one-dimension coding of 

grids. This approach is more simple and effective than the digital coordinate recording method. The gridding expression of vector 

data differs from the traditional technique, mainly due to the subdivision of the durative space by grids as well as the obedience of 

the subdivision special rules, among which the point expression should activate the corresponding grid cells in the light of the point 

coordinates. Linear expression should activate the corresponding grid cells of every coordinate as well as the connected grids 

between every two node cells, and area expression should express both the boundary and internal regions by virtue of grid cells. For 

spherical expression, vector data have to solve the cell filling problem, but also the extension from planum to sphere. This paper puts 

forward a reasonable sphere extension approach, in which the vector data expression on the spherical grids was accomplished by the 

dismantling of vector data on different extended areas and the multi-times transformation. Besides, the algorithm in connection with 

the vector data was verified through experiments for its effect and efficiency. Moreover, the distance and direction of vector data on 

the grids would change in the mapping process from planum to sphere girds, leading to an inaccurate spherical gridding expression. 

So, the effects on the rectilinear direction in grids of the hexagon from the planum-sphere mapping process was investigated, and 

accuracy control of the spherical expression was processed to make sure that the drawing error of the spherical grids for vector data 

should be limited within one cell. 

 

1. INTRODUCTION 

The Discrete Global Grid System (DGGS), a new type of global 

spatial data model, divides the Earth into uniform sized grids 

and multiple layers, forming a hierarchy of seamless, non-piled, 

multi-resolution grids (Goodchild 2000, Sahr 2005, Kidd 2005). 

It also adopts the address codes of grid cells to replace the 

traditional geographic coordinates previously used for data 

operations (Zhang et al. 2007, Vince and Zheng 2009, Tong et 

al. 2013). DGGS is the new extension of the plane grid model 

on spheres. In particular, the DGGS which is based on the 

polyhedron subdivision, developed in recent years, is of great 

interest to the field (Dutton 1999, Szalay et al. 2005, Sahr 

2011b, Peterson 2011). Among three regular geometric graphics 

(triangle, quadrangle and hexagon) which can subdivide the 

plane space, the hexagonal grid is the most compact and 

isotropic. It is the hexagonal grids excellent spatial attributes 

which make it very suitable for the modeling and processing of 

spatial data, and causes it to receive an increasing amount of 

attention (Middleton and Sivaswamy 2005, Sahr 2005, Sahr 

2011a). The study of this paper is, therefore, based on the 

hexagon DGGS. 

 

Modeling and expression are the essential issues of spatial data, 

with regard to processing and application, and any operation 

must be accomplished within some digital space. This research 

mainly studies the modeling and expression of vector data in the 

hexagon DGGS. Data models included two aspects of data 

recording and data expression, in which data recording referred 

to the way of the stored records in the computer, such as 

coordinates information, attribute information, topological 

information, etc.; and data expression referred to the display 

form of the output device of the computer. For instance, vector 

data recording is about discrete serial coordinates of points 

while vector data expression is about variable data entity of 

consecutive points, lines and areas, etc. 

 

2. CORRESPONDING GRID LAYERS AND DATA 

RECORDING WAYS OF VECTOR DATA 

Vector data is the form of a model in relation to a spatial entity; 

it abstracts the spatial entity in the real world into spatial targets 
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such as points, lines and areas, and those targets have certain 

spatial relationships. Vector differs from raster data in respect to 

the presence of points without sizes and the lines without width 

that are abstracted from entity by vector and this kind of 

abstracting is convenient for computer data storing and 

processing. However, points without sizes or lines without 

width factually do not exist in the real world. Thus, some 

researches showed that the expression of raster data and vector 

data in the real world is consistent: vector data is for the 

unlimited thinning grids; the grid size is for the error range of 

vector data, and this error range does not affect the spatial 

relation reasoning (Zhou et al. 2009, Zhao et al. 2007). This 

paper was accomplished based upon the vector data precision 

for data recording and data expression, and different data with 

different precision in the experiment was expressed with grids 

of different sizes. Then data fell into the corresponding grid 

cells, making the gridding expressing data contain precision 

information and scale information. 

 

Vector topographic map data is common among the spatial 

vector data. According to the present Chinese topographic map 

framing criterion, eight national series basic scale-topographic 

maps (1:5000, 1:10000, 1:25000, 1:50000, 1:100000, 1:250000, 

1:500000, 1:1000000) (Wang et al. 2006) and some other non-

basic scale topographic maps are authorized. And those 

standard vector data usually contain precision information. For 

example, the vector data of scale is 1:10000, the map scale 

precision (Tian 1995) is about 10000×0.0001=1m, while, the 

vector data of scale is 1:1000000, the precision of map scale is 

1000000×0.0001=100m. These precision information exist in 

any spatial data, and vector data that is produced by standards 

must have the precision assessment and explanation. For other 

vector data that really do not have the precision information, the 

digits of effective numbers on the coordinate can offer some 

help. In addition, the precision information of vector data can 

contribute to find suitable grids with corresponding sizes. 

 

Taking the hexagon DGGS of an ideal icosahedron as example 

(the subdivision mode of hexagon is aperture 4 hexagonal class 

I (A4HCI) subdivision) (Kidd 2005, Zhang et al. 2007, Tong 

2010, Tong et al. 2013), the projection mode of DGGS is 

Snyder Equal-Area polyhedral projection (Snyder 1992), this 

projection is used most in the construction of hexagon DGGS 

(Sahr 2005, Vince and Zheng 2009, Zhang et al. 2007)). On the 

nth layer of DGGS with the A4HCI subdivision, there are 

45×22n-3+2 cells (formula (2)). In Table 1, it records the cells 

area (area on the sphere, equal-area projection) on the discrete 

grid whose subdivision layer is n, the cells average radius Dn 

(the radius of each cell’s equal-area spherical cap (Zhang et al. 

2007)) and the average curvature error hn (the approximation 

error between plane and sphere caused by Earth curvature in 

one cell (Zhao 2007)). The radius of Earth is 6371007.22347m. 

 

Suppose that the scale precision of the vector data point is 𝜌, 

(vector point is regarded as a circle of uncertainty, point 

precision is the diameter and the corresponding area is S𝜌): 
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     √    𝜌  √       (1) 

 

 

Corresponding data subdivision layer n=i. Where: the average 

area and average radius of the cell whose subdivision layer is i 

is considered from Table 1. 

 

E.g. For a vector topographic map of 1:500000, the scale 

precision 𝜌≈500000×0.0001=50m,                   

√     𝜌  √                       . Thus, the 

subdivision layer should be the 18th layer of DGGS. 

 

Layer Average Area(km
2
) 

Average 

Radius(km) 

Average Curvature 

Error(m) 

2 5544191.6145 1460.8081 169735.3625 

3 1409021.0733 736.4323 42705.668 

4 353720.9629 368.9814 10693.8838 

5 88522.3236 184.5867 2674.5702 

6 22136.3436 92.3054 668.7114 

7 5534.4462 46.1542 167.1821 

8 1383.6341 23.0773 41.7958 

9 345.9099 11.5387 10.449 

10 86.4776 5.7693 2.6122 

11 21.6194 2.8847 0.6531 

12 5.4048 1.4423 0.1633 

13 1.3512 0.7212 0.0408 

14 0.3378 0.3606 0.0102 

15 0.0845 0.1803 0.0026 

Layer Average Area(m
2
) 

Average 

Radius(m) 

Average Curvature 

Error(m) 

16 21112.6949 90.1459 0.000638 

17 5278.1737 45.0729 0.000159 

18 1319.5434 22.5365 0.000040 

19 329.8859 11.2682 0.000010 

20 82.4715 5.6341 0.000002 

21 20.6179 2.8171 0 

22 5.1545 1.4085 0 

23 1.2886 0.7043 0 

24 0.3222 0.3521 0 

25 0.0805 0.1761 0 

26 0.0201 0.088 0 

27 0.005 0.044 0 

28 0.0013 0.022 0 

29 0.0003 0.011 0 

 

Table 1. The average area, average radius and average curvature 

error of cells on A4HCI hexagon DGGS.  

 

Discussion about data models is divided into two aspects: data 

recording and data expression. Firstly, data recording is 

considered. Through the research and experiment, it can be seen 

that the point coordinate can be expressed by the cell coding of 

the corresponding grid subdivision layer under the spherical 

discrete grid framework. Analysis of the research showed that 

the grid coding HQBS (Hexagonal Quaternary Balanced 

Structure) method (single code element is {0, 1, 2, 3} (2Bit)) 

(Tong et al. 2013) is much smaller than the traditional method 

of geographic coordinate system pattern (x, y). For instance: 

 

         (1) Coding: 03-2010302010102 

      Layer: 13 Cell radius≈700m 

      Coding size: 4.25Bytes 

    Geographic coordinate size (32bits double type): 8Bytes 

         (2) Coding: 03-2010302010102020  

      Layer: 16 Cell radius≈90m 

      Coding size: 5Bytes 

    Geographic coordinate size (32bits double type): 8Bytes 

         (3) Coding: 03-20103020101020203020111 

      Layer: 23 Cell radius≈0.1m 

      Coding size: 6.75Bytes 

     Geographic coordinate size (64bits double type): 16Bytes 

         (4) Coding: 03-20103020101020203020111002203 

      Layer: 29 Cell radius≈0.01m 

      Coding size: 8.25Bytes 

     Geographic coordinate size (64bits double type): 16Bytes 
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From the above, it can be seen that the grid coding record and 

expression for the point coordinates is much more effective and 

simple than the digital coordinate pattern. In the concept model, 

one point coding not only offers the compressed format of a 

coordinate store for the mass data, which can realize the multi-

resolution operation and nearby operation of the data, but also 

achieves the distance measurement in the grids. Other systems 

definitely record the spherical coordinates of points while the 

grid coding system hides the point position into the grid coding. 

And the point-entity grid record is similar both in plane and 

sphere. 

 

There are three types of information in data record: geometric 

information, attribute information and topological information. 

The geometric information is the basic and essential spatial 

information for all the vector information, and it consists of 

point coordinates. The basic procedures of data record are: 1) 

substitution of coordinate points in the geometric information 

by cell coding serial; 2) attribute information reservation; 3) 

topological information reservation. 

 

Vector data record patterns on the discrete gird differ from the 

traditional one in the aspects of coordinate record only, and 

other aspects are all equivalent. The exception is the data 

expression, as grids subdivide the continuous space and in this 

way the data expression have to obey the spatial principles of 

subdivision. The following two sections discuss the data 

expression of the point, the line and the area models on the 

hexagon grids, and then expand it to the whole sphere. 

 

3. VECTOR EXPRESSIONS ON PLANAR GRIDS 

The point entity is defined as the simplest data type among the 

vector data; it consists of a single coordinate or latitude and 

longitude. In the discrete grid framework, the point expression 

is just the cell expression, and what should be done is to activate 

the corresponding cell according to the point coordinate 

precision. 

 

3.1 Linear vector expressions on the planar grid 

The line entity is described as a kind of chain entity consisting 

of a series of ordered coordinate values or latitude and longitude. 

The corresponding grid cell of every coordinate point is 

activated in the expression process, and every point should be 

connected with straight lines due to the serial attribute of the 

line entity. Therefore, for the line entity expression in the 

discrete grid space, the linkage cells of every two node cells 

should be activated by the linear filling method, forming 

continuous lines. This process is similar with the linear filling in 

the Raster Scanning Graphics (David 2002b). 

 

One cell is set as the origin of coordinate O, the Tilted 120
。

Coordinate System O-IJ is established (OI axis is to the level-

right, counter-clockwise for 120
。

for the OJ axis) (Middleton 

and Sivaswamy, 2005). Every two adjacent node cells coding of 

line entity is designed as G0 and GS, and the codes are converted 

into Titled 120
。

Coordinates G0= (I0, J0), GS= (IS, JS) according 

to the algorithm in bibliography (Tong 2010, Tong et al. 2013). 

Table 2 gives the linear vector filling algorithm on the planar 

hexagon grid. 

 

      : Input variables:            ; initializing variable:       (     ) 

and       (     ) ,        (     ) ，        (     ) ; 

initializing loop variable:    , the present activated cell 

coordinate          ; 

      :         : go to       ;     : {initializing variable         , 

go to       }; 

      :         : {initializing variable      , go to       };     : 

{initializing variable      , go to       }; 

      :        : {                : *      + ;     : {    

                 },      , activate cell (   ) , go to 

      ;};     : process is finished; 

      :        : {              : {      } ;     : {    

                 },      , activate cell (   ) , go to 

      ;};     : process is finished; 

      ：            : {       : *              + ;     : 

{                     } ,      , activate cell 

(     ), go to       ;};     : process is finished. 

 

Table 2. Linear vector filling algorithm on the planar hexagon 

girds.  

 

The linear generation algorithm between any two hexagon cells 

in Table 2 is the basis of linear entity expression algorithm in 

the discrete grid, and this algorithm can calculate the straight 

line filling-cell between any two cells; in this way, any linear 

entity can be ascertained by the connection of both sides of the 

fold lines. Through the analysis of this algorithm, it can be seen 

that every straight line generation of the linear entity is not 

related with one another, and it is a typical parallelization 

algorithm (Wilkinson and Allen 2005). Based upon the above 

discussion, any linear entity in the form of fold lines can be 

ascertained by the parallelized entity-filling algorithm, and cells 

of straight lines that are formed by any two nodes can be 

parallel processed. 

 

3.2 Area vector expressions in the planar grid 

Area entity is founded on the basis of linear entity; it is a kind of 

geometric polygon that consists of a serial of sealed-in 

boundary lines. Area entity as well as the boundary and internal 

regions is expressed in the discrete grid, and this expression 

method has the same precision and higher superiority on the 

spatial relation reasoning than that of the traditional method that 

merely consists of simple boundary lines of a serial of vertexes 

(Zhao et al. 2007).  

 

This research principally modified some problems in the 

arbitrary polygon and level boundary, and further expanded to 

the hexagon grid based upon the rectangle grid polygon-region 

edge flag filling algorithm (David 2002b), as well as designed 

the area vector filling algorithm of the planar hexagon grid. 

 

      : All the nodes of the edges of the polygon were input according to the 

edges sequence (     )   ,     -    , the range of the 
bounding box of the polygon was ascertained: 

        *  +         *  +         *  +         *  +, 
initializing all the elements of the variable array: 

                          , initializing loop variable    ; 

     : (1) Nodes confirmation.         : {initialize        , go to 

      };     : {   , go to       }; 

      :                   : *            +,           : 

            ;     :            ;                   : 
*            +,           :             ;     : 

           ; 

      :                 : {                      ,      };     : 

{    : {                      ,                         , 

     +;     : {                      ，     +}; 

      : (2) Contour line drawing.         : {invoke the algorithm in 

Table 2 (algorithm           , internal regions    and      were all 

added with:        :      ;     :                    

                    . Remove the “activate cell (   )”)};     : 

{   , go to       }; 
      : (3) Grid filling.        : {initializing variable            , 

   ,            : *        : activate cell (   );    

                    : {                                      
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 ,             ,      +;      +};     : Procedure was 

finished. 

 

Table 3. Area vector filling algorithm of the planar hexagon 

grids.  

 

Polygon boundaries in the hexagon grid adopted the Titled 120
。

Coordinate System recording, boundary points of polygons 

adopted counter-clockwise recording and internal and external 

regions of polygons obeyed the right-handed rule. 

 

4. VECTOR EXPRESSIONS ON THE DGGS 

4.1 Extension of planar grids on the sphere 

Extension ways of the planar hexagon grid to spherical surface 

are diverse, and this research adopted the extension pattern in 

the bibliography (Zhang et al. 2007, David et al. 2002a). 

A4HCI grids were arranged on the icosahedron surface (shown 

in Figure 1, subdivision layer n=3, subarea pattern 00~19, 20 

and 21 represent North Pole and South Pole respectively); 

Snyder projection was used for the planar grid mapping on the 

sphere. Then the cases of A4HCI grid on the icosahedron in 

Figure 1 were analyzed. And the total cells of the nth layer in the 

DGGS are: 

 

 

Sn = 5×(3×2n-2×3×2n-1)+2 = 45×22n-3+2                (2) 

 

 

00

01
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03

04
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07

08

09
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16
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21

I

J

I

J
𝑃  *00,03,04,07,08,11,12,15,16,19+ 

𝑃  {01,02,05,06,09,10,13,14,17,18}  
 

Figure 1. Arrangement Pattern of the A4HCI Grid on the 

Icosahedron, Subdivision n=3. 

 

Global grid adopted the pattern of P + cell titled coordinate (I, 

J), also (P, I, J), triangle facet with different directions (the 

under triangle facet: P∈{00, 03, 04, 07, 08, 11, 12, 15,16, 19}; 

the up triangle facet: P∈{01, 02, 05, 06, 09, 10, 13, 14,17, 18}). 

The establishment of the coordinate is a little different, as 

shown in Figure 1. And this kind of cell coordinate record 

pattern of spherical grids can be transferred with HQBS coding 

designed by Tong (2010, 2013). 

 

There are two problems in the extension process from the planar 

grid to the sphere grid for vector data: 1) Fracture of the sphere 

extension is unavoidable, and how to decompose the vector data 

reasonably to different extended surfaces; 2) Deformation and 

twisting of cells, in the establishment process of the spherical 

discrete grid, is unavoidable. Straight lines on the planum would 

change into other types when they were on the sphere, and how 

to make vector data the real spherical gridding and satisfy the 

geometric accuracy, as well as the measurement requirements, 

will be another essential issue in the spherical grid expression. 

 

Point data is the simplest vector data and its expression pattern 

has no distinction from the planar grid expression. What should 

be done is to substitute the spherical coordinates or latitude and 

longitude coordinates with spherical grid cells that satisfy data 

precision. The key problem is the linear data and area data 

expression. 

 

4.2 Cross-area issue of linear vector data 

Every node of the linear vector data that is expressed in the 

spherical grid is similar with a point entity. And we can get the 

corresponding cell coordinate of the node 𝑃    (𝑃       ) 
when the precision of the subdivision grid is satisfied and 

ascertained. The linear vector data usually consists of tie lines 

of many nodes, and the cross-area case will not be processed 

when the node cell (𝑃       )  and (𝑃             )  satisfy 

𝑃  𝑃   . In that case, the linear entity would be regarded as 

one in the plane if factors in question 2 are omitted. 

 

The cross issue between (𝑃       )  and (𝑃             )  is 

considered when two adjacent nodes satisfy 𝑃  𝑃   . Triangle 

facet 𝑃  in which (𝑃       ) lied was taken as the center, and was 

divided into up and down triangle facets according to the 

arrangement pattern in Figure 1. Icosahedron was unfolded in 

the light of the pattern in Figure 2 (this pattern can make the 

distance between the center area and other triangle facets the 

shortest) for the cross issue. The following took 𝑃  is down 

triangle facets as an example for detailed explanation, the up 

triangle facet is similar with that and will be omitted. 
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Figure 2. Case of unfolded icosahedron, up and down triangle 

facets was taken as the center. (a) Down triangle facet 00 was 

taken as the center, icosahedron was unfolded; (b) Up triangle 

facet 02 was taken as the center, icosahedron was unfolded. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W2, 2013
ISPRS WebMGS 2013 & DMGIS 2013, 11 – 12 November 2013, Xuzhou, Jiangsu, China

Topics: Global Spatial Grid & Cloud-based Services

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W2-15-2013

18



 

 

Figure 2(a) showed that the straight lines connected from any 

point in 00 area to other areas would not pass through the 

fractured zone, which was distinct from the unfolding pattern in 

Figure 1. And in this case, planum grid filling patterns can be 

considered directly for the vector expression. The key issue is 

the transformation between the record pattern of the triangle 

facet coordinate and the record pattern of the uniform 

coordinate, and operations of translation and rotation were 

involved in the transformation process. Table 4 gave the 

translation parameters (     )    and rotation parameters   . 

For the case in which subdivision layer    , translation 

parameter was changed into (     )         (     )   . 

However, the rotation parameter did not change. 

 

Facet No.                

Translation (   ) (   ) (    ) (    ) (   ) 
Rotation                

Facet No.                

Translation (   ) (    ) (    ) (   ) (   ) 
Rotation                      

Facet No.                

Translation (    ) (    ) (    ) (   ) (     ) 

Rotation                      

Facet No.                

Translation (     ) (    ) (   ) (     ) (     ) 
Rotation                   

 

Table 4. Subdivision layer n=2, 00 area was taken as the center 

for the icosahedron unfolding, the translation parameters 
(     )    and rotation parameters    from the local coordinate 

system on the triangle facet to the global coordinate system on 

the icosahedron unfolding area. 

 

Transformation from the local coordinate system (𝑃    ) on the 

triangle facet to the global coordinate system (   )  on the 

icosahedron unfolding area in which 00 area was taken to be the 

center as following: 

 

 

[
 
 
]  [

           

          
]  [

 
 
]
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]
   

          (3) 

 

 

Inverse transformation: 
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]
 

 [
          

           
]  ([

 
 
]  [

  
  

]
   

)          (4) 

 

 

The end-result relationship of the cells in the global coordinate 

system and the triangle facet should be judged for a proper 

triangle facet P, and was used in formula (4). 

 

The attribute of the Titled Coordinate System could ascertain 

the triangle facet in which the cell lied by virtue of the relative 

relationship between the cell and three boundaries. Figure 2(a) 

indicated that the effective straight lines within the triangle facet 

were 13 with 3 patterns. They are: 

 

 

{
 
 

 
                                      

                                     

        
                                   

                          

  (5) 

 

 

The range line in formula (5) can effectively illustrate the 

relationship between the triangle facet and cells on the extended 

facet of icosahedron. Besides, the open and close intervals were 

also taken into consideration. Formula (6) gave the grid (shown 

in Figure 2(a)) of any layer n and the judgment of the end-result 

for cell (   ) in the triangle facet, and value of the open and 

close attribute parameters was shown in Table 5. 

 

Facet No.                               

  0 1 1 0 0 0 1 0 0 1 

  0 -1 -1 0 0 1 -1 -1 0 0 

  -1 0 0 -1 -1 -1 0 0 -1 1 

Facet No.                               

  1 -1 0 0 1 1 0 -1 1 0 

  -1 0 0 -1 -1 0 0 0 -1 0 

  0 0 -1 1 0 0 -1 -1 0 -1 

 

Table 5. 00 area was taken as the center for the icosahedron 

unfolding, the value of the open and close attribute parameters 

      

 

 

(   )                               {

            
             
        

(   )                            {

    
         

    
         

      
   

     

    (6) 

 

 

Cells that do not belong to any triangle facet are North Pole and 

South Pole cells. And coordinates of the Titled Coordinate 

System of North Pole and South Pole are (       ) 
(             )

 respectively when the grid layer    . 

 

An arrangement of the 13 effective straight lines can reduce the 

calculation complexity in the judgment process in cases where 

the cell was in the triangle facet. This can avoid checking the 20 

triangle facets one by one. 

 

Next the drawing of straight lines between node cells (𝑃       ) 

and (𝑃             )  was considered. When 𝑃    , the 

technique outlined above satisfied the requirements; when 

𝑃     but still was the down triangle facet, it needed to 

consider the extension pattern in Figure 2(a) about the 

relationship between other triangle facets and the center facets 

𝑃 . The adjacent facet number in the three directions on 

arbitrary triangle facet of icosahedron extended surface was 

given as Table 6. 

 

Facet No.                               

1                               

2                               

3                               

Facet No.                               

1                               

2                               

3                               

 

Table 6. 00 area was taken as the center for the icosahedron 

unfolding, the adjacent facet number in the three directions on 

arbitrary triangle facet 
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Where: For down triangle facet: vector (      )(      )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
 was 1 

direction, (      )(      )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   was 2 directions, (      )(      )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
 

was 3 directions; for up triangle facet:  (      )(      )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
 was 1 

direction, (      )(      )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   was 2 directions, (      )(      )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
 

was 3 directions. 

 

The shortest distance between arbitrary two triangle facets can 

be found by virtue of the adjacent facet information in the Table 

6. Tong (2010) gave the algorithm of the shortest distance 

between arbitrary two triangle facet 𝑃  and 𝑃  of icosahedron 

based on the Dijkstra algorithm (Kenneth 2003). Table 7 was 

deduced by the algorithm and it showed the shortest distance 

from 00 facet to all the triangle facets expressed by directions 1, 

2, 3. 

 

Facet No.                            

Minimum  

route 

1 3 3 3 1 3 3 3 1 

  1 2 2 2 1 2 2 

     3 3 3 1 

       2  

         

Facet No.                            

Minimum  
route 

3 3 2 1 2 2 2 1 2 

2 1 3 3 3 1 3 3  

3 3 2 1 2 2    

2 1 3       

3         

 

Table 7. The shortest distance from 00 facet to all the triangle 

facets. 

 

The shortest distance of arbitrary down triangle facets to other 

triangle facets can be matched with proper routes in Table 7, 

and in this way, 𝑃  can match along with certain kind of triangle 

facet on the unfolding 00 facet. And then, all the coordinate 

transformations from (𝑃       )  to (𝑃             )  can be 

accomplished by the algorithm in formula (3) and (4). 

 

Table 8 showed the basic procedures of the algorithm 

generation for arbitrary linear entity 𝑃    𝑃     𝑃    on the 

icosahedron surface, among which 𝑃     the nth spherical grid 

   . 

 

      : Loop variable        , the straight lines generation from 
(𝑃       ) to (𝑃             ), go to       ; 

      :    𝑃  𝑃   : {invoke algorithm in Table 2};     : {the shortest path 

(𝑃  𝑃     𝑃      𝑃   ) of 𝑃  𝑃    was calculated by virtue of 

minimum path algorithm based on the adjacent triangle facet 

relationship in Table 6, and match along with routes in Table 7, 

𝑃     𝑃    𝑃       𝑃      𝑃       𝑃    𝑃   
  was got 

based upon the adjacent relationship in Table 6, go to       }; 

      : Convert (𝑃              ) to the global coordinate system (formula 

(3)) where the center was 𝑃 , and generate straight lines by the 

algorithm in Table 2, end-result situations of points on the straight 

lines were considered according to formula (6), transform points 
on the global coordinate system to the partial coordinate system in 

the light of end-result relationship by formula (4), go to       ; 

      : Convert (𝑃        )  (𝑃       ) ,       by the corresponding 

relationship of triangle facets in       . 

 

Table 8. The algorithm generation for arbitrary linear entity on 

the icosahedron surface. 

 

Floating-point arithmetic was not involved in the whole process 

but the integer arithmetic, and the arithmetic efficiency can be 

ensured. Similarly, the line entity generation on the icosahedron 

was likewise the typical parallel algorithm, among which the 

straight line generation between arbitrary two nodes 𝑃  and 

𝑃   was completely independent with high efficiency by 

parallel algorithms. 

 

4.3 Cross-facet issue of area vector data 

Linear data expression is the fundamental issue for the area 

vector data expression on the sphere grids. Nodes confirmation 

and contour line drawing of the area-filling algorithm, shown in 

Table 3, had no significant distinction no matter whether in the 

planum grid or on the icosahedron surface; the only difference 

was the last procedure of the line grid filling process. The core 

of the cross-facet issue is that the planum grid can extend 

without limitation while the icosahedron surface is closed, and 

the unfolding of icosahedron is limited regions with fractures, 

which would bring about some difficulties with regards to 

filling. Theoretically, the less the fractured zones are, the higher 

the area-filling efficiency is. Thus, the unfolding pattern of 

icosahedron was involved. This research adopted the unfolding 

pattern in Figure 2, which can reduce the fracture calculation 

time in the filling process, shown an example in Figure 3. 

 

There are two filling patterns for the polygons of the 

icosahedron surface: 

1) Partition method. Deleave the polygon regions to every 

triangle facet. The scanning filling algorithm can process 

smoothly because the triangle facet of icosahedron can be 

unfolded into planum. However, the nodes that need to be 

calculated are excessive. 

2) Filling method. Fill the fractured zones of the 

icosahedron unfolding surface into closed zones as well as 

complementary hexagon cells for the direct polygon filling. And 

finally remove the fictitious cells of the fractured zones in the 

polygon regions, which form the polygon filling regions that 

only exist on the icosahedron surface, shown in Figure 4. 
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Figure 3. Fracture times comparison of the same area object 

between two different unfolding patterns. (a) Fracture 

processing operation for 8 times; (b) Fracture processing 

operation for 4 times. 
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Filling cell on the 
icosahedron surface

Unfilling cell in blank zone

Real boundary of polygon zone
 

Fictitious filling cell in the fractured zone 
of unfolding icosahedron

Fictitious boundary of polygon zone
 

Figure 4. Polygon filling effect of the icosahedron surface. (a) 

Polygon filing by filling method; (b) Final filling project 

without fictitious cells. 

 

Filling method can save the cross-facet calculation time as 

much as is possible, yet it doesn’t mean that the cross-facet 

calculation is unnecessary. Take Figure 4(a) for example, on 

four occasions the cross-facet calculation is still required. 

 

In the following we can see the solution to the cross-facet issue. 

Suppose that 00 facet is the center of the polygon region (Figure 

2(a)),   direction of the 𝑃  facet is the facet 𝑃   , and   direction 

of the 𝑃    facet is the facet 𝑃 : 

 

 

{
 ) 𝑃      𝑃                                                  
 ) 𝑃      𝑃                                                                 

 

(7) 

 

Cross-facet issues would be omitted when the first case in the 

above was satisfied and it would be processed when the second 

case was satisfied. The crossing point of the line segment 𝑃 𝑃    

and triangle boundary was calculated. One manner of 

confirmation is to compute the crossing point coordinate of 

𝑃 𝑃    and the borderlines of triangle facet, and then ascertain 

the grid cell coding by this coordinate, inserting the new cell 

into 𝑃    and 𝑃       as a new node prior to the calculation. 

 

The basic procedures for the generation algorithm of arbitrary 

area entity   𝑃    𝑃     𝑃    𝑃    of the icosahedron 

surface are given in the Table 9. 

 

Step1: Calculate the triangle facet 𝑃    
in which the gravity of the area entity 

  lied based on its vector boundary, and unfold the icosahedron in 

which the 𝑃    was the center; 

Step2: Transform all nodes 𝑃    
into the global coordinate system where 

𝑃    was the center (the same as the algorithm in Table 8), judge 

whether there is fracture between 𝑃  
and 𝑃    according to formula 

(7). If so, go to Step3; if not, go to step 4; 

Step3: Calculate the crossing point of 𝑃 𝑃    and fractured lines: transform 

points on 𝑃    
to the global coordinate system in which the 𝑃  facet 

was the center, then calculate the crossing point of 𝑃 𝑃    and lines 
in formula(5), then transform to the global coordinate system in 

which 𝑃    was the centre, and insert those two points (one point is 

in the 𝑃  facet, another is in the 𝑃    facet) into 𝑃  and 𝑃   , go to 

Step 4; 

Step4:  Fill regions by the method of Table 3, and transform the global 

coordinate system into area partial coordinate by formula(4), and the 

process of deleting the fictitious cells is in the transform process 

from global coordinate transformation to partial coordinate 

transformation. 

 

Table 9. Generation algorithm of the area entity of the 

icosahedron surface 

 

4.4 The Accuracy Control in the Process of Vector Data 

Drawing in the Hexagon DGGS 

The generation of DGGS based on a polyhedron involves the 

method of the polyhedron replacing the sphere, and there are 

relative errors when the plane replaces the curve. The grid on 

the polyhedron surface is accurate on direction and distance, but 

it will not be equal everywhere in the process of polyhedron 

mapping to a sphere. This leads to the direction and length of 

the spherical grid changing, and the greater the distance, the 

wider the gap. 

 

Therefore, in the process of the grid expressing vector line data, 

the distance of any two adjacent nodes should not be too large. 

It needs to be confined to a certain range, which can guarantee 

the accuracy of data expression. For the large-spanned adjacent 

nodes in spherical vector data, some control nodes need to be 

interpolated to subdivide spherical line segments into many 

local lines, meeting grid expressing accuracy, in order to 

achieve an accurate vector data expression and provide a 

reliable basis for data measurement on a grid. 

 

Consider the situation on one triangular facet of the spherical 

ideal icosahedron, the subdivision structures of A4HCI are 

represented respectively by a, b and c the three line directions 

according to the order of grid arrangement (Figure 5). The 

arbitrary discrete line displayed by the filling mode on the 

hexagon grid consists of lines in these three directions. Thus it 

is the important, in terms of the line distortion on a spherical 

grid, to analyse the line distortion in three directions. 
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Figure 5. Three directions of lines arranged by hexagon grids on 

icosahedron triangular facet. 

 

The following is to evaluate the line distortion by using 

numerical interpolation. The specific process is as follows: 

1) Select separately isometric xi,jyi,j lines at a, b and c, the 

three directions of plane triangle, which i =1,2,…, j=a, b, c; The 

endpoints of the line segments all fall at the edges of the triangle;  

2) Interpolate a series of control points P1, P2,…, Pk in the 

line segment xi,jyi,j, then convert P1~Pk into spherical points Ps
1, 

Ps
2,…, Ps

k through projection transformation; 

3) Transform the endpoints of the line segment into 

spherical points Xi,j and Yi,j by projection transformation, 

forming the spherical great circle arc         
̂  ; 
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4) Calculate the spherical distance         between each 

spherical point PS
m, m=1~k and great circle arc         

̂ , calculate 

respectively           and      
̅̅ ̅̅ ̅̅  by using the formula(8). 

 

 

                  (       )       
̅̅ ̅̅ ̅̅  

 

 
∑ (       )

 
     (8) 

 

 

          and      
̅̅ ̅̅ ̅̅  can evaluate objectively the distortion 

situation that is caused by a projection system to a plane line. 

The two values can indicate the size of the line distortion caused 

by projection. Since the two values can also evaluate the line 

expression on the global grid,      
̅̅ ̅̅ ̅̅  describing the average 

departure degree between line xi,jyi,j and spherical great circle 

arc; and           
describes the maximum departure degree. For 

the DGGS of any layer n, if the average radius Dn of the cell is 

superior to the maximum departure degree           
in all three 

directions, there will not exist any error (or the error is less than 

one cell) to generate the line due to the plane grid mode on the 

discrete global grid (in one triangular plane) of this layer. 
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Figure 6. The mode of calculating the spherical line distortion 

by using projection method 

 

The           and      
̅̅ ̅̅ ̅̅

 
in Figure 7 are produced through Snyder 

projection. It’s possible to consider only the situation of 

direction a, as the Snyder projection is symmetric to the three 

medial axes of the triangular facet. 

 

 
 

Figure 7. The average value      
̅̅ ̅̅ ̅̅  and maximum value 

         of the distance between projection points at each line 

and spherical great circle arc by using Snyder projection. 

 

From the Snyder projection transformation in Figure 7, the 

maximum distortion error of the lines produced in one 

triangular plane is 290.529km, and the average distortion error 

is 189.801km. Compared with the average radius of cells in 

Table 1, the conservative approach is that the vector data 

directly generates the line without interpolation in the 4th layer 

of the discrete grid, and the eclectic approach is that the vector 

data directly generates the line without interpolation in the 5th 

layer of the discrete grid. 

 

In one triangular facet of the n=4 layer grid, it can meet the 

requirement of direct line generation. In this layer of the grid, 

the longest line is not more than 3×24-2=12 cells (A4HCI grid is 

arranged closely on the icosahedron, with the maximum cell 

number in one direction on each triangular facet (Zhang et al. 

2007, Tong 2010, Tong et al. 2013)). In one triangular facet of 

the n=5 layer grid, the longest arranged cell is 3×25-2=24. Since 

the line projection distortion will never change, the aperture of 

the A4HCI grid structure is 4, and the average radius is half of 

the 4th layer. The line that is expressed accurately in the 5th layer 

will be no more than 24/2=12 cells (using one of the arranging 

modes at a, b and c the three directions, Figure 5 is the result of 

the line arranging 13 cells in the a direction). In the same way, 

for the grid at the nth layer, there are 3×2n-2 arranging cells 

whose cell radius average is the 1/2n-4=24-n of the 4th layer in 

one triangular facet, then the longest line than can be expressed 

in the nth layer grid is not more than 3×2n-2×24-n=12 cells (use 

one of the arranging modes in the a, b and c the three directions).  

 

The above strategy refers to the most conservative line 

generation method under the constraint of the maximum 

projection distortion. In fact, the grid layer to which the average 

error of line projection corresponds can generate an accurate 

grid line. The average distortion error will be not more than the 

5th layer if the Snyder projection transformation is adopted. 

According to the above analysis, it can be assumed that the line 

can be expressed accurately by the cells which are not more 

than 3×25-2=24 on the nth grid. 

 

From the results in Table 1, when the subdivision layer n is 

more than 10, it can be thought that the subdivision of the grid 

will not be generated by projection but through the plane cell 

direct subdivision for the average curvature error. This is taken 

from the Earth’s spherical curvature, which is less than 2.6122m. 

Therefore, when the two nodes of vector data both fall in the 

same cell of a discrete grid, the error taken from the Earth’s 

curvature will not be considered when the grid line is generated 

directly. To sum up, if the spherical distance of any two points 

S1, S2 in one triangular facet of spherical icosahedrons is ds, the 

grid line generation between two points will obey the following 

rules: 

1) When the grid subdivision layer is n≤5, it should 

directly generate grid lines regarding the triangular facet as a 

plane; 

2) When grid subdivision layer n>5 and the distance 

between two endpoints of a line is ds>2×D10=11.5386km, the 

judging rules and methods of node interpolation are such that: 

when ds/2Dn>24, ds= ds/2; divide the spherical great circle arc 

    ̂ into two equal parts, calculate the midpoint and interpolate 

new nodes; repeat this step until ds/2Dn≤24, then end the 

interpolation nodes; 

3) When the distance ds between two endpoints of a line is 

ds≤2×D10=11.5386km, the line is in the nth (n>10) layer of one 

cell; as a plane grid, it can directly conduct grid line generation. 

 

According to the above rules, only if ds/2×Dn>24 in condition 2, 

is grid interpolation required in the process of line generation to 

ensure that the error of the vector line is limited in one cell of 

the current layer. The vector data used are usually formed by 

broken lines among several nodes. Not all the distances of any 

two nodes can satisfy the interpolation requirements of 

condition 2, so it is unnecessary to interpolate one by one. 

 

5. EXPERIMENT AND ANALYSIS 

The vector data filling effect and its efficiency with respect to 

the global discrete grid was processed by virtue of the following 
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spatial data: vector boundary data of the global mainland, 1875 

area entities (633485 point coordinates), data amount of 

9.90MB; Chinese county level administrative regions vector 

data, 3408 area entities (1123947 point coordinates), data 

amount of 17.3MB; Zhengzhou region vector data, include 5229 

area entities, 806 line entities and 224 point entities, data 

amount of 16.2MB. 

 

The grid layer n= 9~15, and two different kinds of vector data 

were loaded respectively. Line filling and area filling were 

processed with the same vector entity in the experiment and the 

calculation time was got in Table 10, among which the line-

filling cell number refer to the activated cell numbers in the 

filling process; the area-filling cell number refers to the 

activated cell number in the filling process. Figure 8 showed a 

comparison between the activated cell number and activated 

efficiency in the filing process with vector data of different 

layers and types. Figure 9 showed the effects of partial 

experiments. Analysis of Figure 10 showed the following: 

1) The needed activated cell number increased with a 

stable rate when the grid layers increased, no matter whether the 

area-filling or the line-filing was adopted; 

2) Seen from vector data, with the same coordinate points, 

the efficiency of area-filing is higher than that of line-filling. 

The reason being that every activated cell needed to adopt the 

line scanning algorithm for a calculation in the line entity filling 

process; while activated cells adopted row scanning algorithm, 

only the endpoints of every row were scanned, and cells in the 

middle were filled directly; 

3) The experiments found that the bigger the expression 

range is, the less the filling numbers in unit time, and the lower 

the efficiency. That is because the cross-facet calculation time 

increased when the range became bigger, so the efficiency 

became lower too. Besides, only 5 triangle facets were crossed 

in the vector data of China, while 20 triangles facets were 

crossed in the global range. 

 

Experimental Environment: ThinkPad T61, CPU Intel(R) 

Core(TM)2 Duo, 0.98GB Memory, Windows XP Operating 

System, Visual C++ 2008. 

 

 Vector boundary in the global mainland 

lay

er 

Liner filing 

cell No. 

Time(ms) 
Area filling 

cell No. 

Time(ms) 

Total 

time 
cells/ms 

Total 

time 
cells/ms 

9 96806 56 1779 411793 160 2573 

10 221443 125 1770 1651882 646 2575 

11 510575 289 1763 6569058 2546 2568 

12 1184196 682 1736 26535265 10348 2562 

13 2689847 1546 1739 105483896 41109 2563 

14 6076418 3489 1741 423526019 165067 2561 

15 13815339 7947 1738 1708956559 665994 2560 

Vector boundary in county-level administrative regions 

lay

er 

Liner filing 

cell No. 

Time(ms) 
Area filling 

cell No. 

Time(ms) 

Total 

time 
cells/ms 

Total 

time 
cells/ms 

9 9301 2 4650 26173 4 6543 

10 21337 5 3879 104991 19 5526 

11 49077 13 3775 417520 77 5422 
12 113048 31 3647 1686544 314 5371 

13 260548 72 3644 6704409 1249 5368 

14 600656 155 3640 26918723 5013 5370 

15 1384895 380 3644 108618897 20231 5369 

 

Table 10. Efficiency comparisons of line filling and area filling 

of vector data 

 

 
(a) 

 
(b) 

Figure 8. Activated cell number and activation efficiency of 

vector data of different layers and types in the display process 

of DGGS. (a) Comparison of activated cell number; (b) 

Comparison of activated cell efficiency. 

 

 
(a) 

 
(b) 
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(c) 

Figure 9. Display effects of different types of vector data in the 

hexagonal DGGS. 

 

6. CONCLUSION 

The Discrete Global Grid System (DGGS), a new type of global 

spatial data model, divides the Earth into uniform sized grids 

and multiple layers, forming a hierarchy of seamless, non-piled, 

multi-resolution grids. In the modeling and expression of DGGS 

data, the vector data is difficult, because there are vital 

differences. One difference is that the grid is discretely formed 

in space but the vector is continuous. Thus the relation of 

essential differentiation leads to the difficulty of the overlapping 

display of vector and grid; and the ability of grid isomorphism 

using spatial data cannot be exerted.  

 

The paper principly focus on the issue of modeling and 

expression of vector data in the hexagon DGGS. The precision 

of vector data is the basis of data recording and data expression, 

and different data with different precision are illustrated by 

grids of different sizes of expression. Data with different 

precision fall into the corresponding grid cells, making the 

gridding data themselves contain the precision and scale 

information. The present method of data recording is reserved, 

as far as possible, in the data recording process, and only the 

geometric information of vectors is substituted by the one-

dimension coding of grids. This approach is more simple and 

effective than the digital coordinate recording method. 

 

The gridding expression of vector data differs from the 

traditional technique, mainly due to the subdivision of the 

durative space by grids as well as the obedience of the 

subdivision special rules, among which the point expression 

should activate the corresponding grid cells in the light of the 

point coordinates. Linear expression should activate the 

corresponding grid cells of every coordinate as well as the 

connected grids between every two node cells, and area 

expression should express both the boundary and internal 

regions by virtue of grid cells. For spherical expression, vector 

data have to solve the cell filling problem, but also the extension 

from planum to sphere. As a result, this paper puts forward a 

reasonable sphere extension approach, in which the vector data 

expression on the spherical grids was accomplished by the 

dismantling of vector data on different extended areas and the 

multi-times transformation. Besides, the algorithm in 

connection with the vector data was verified through 

experiments for its effect and efficiency.  

 

Moreover, the distance and direction of vector data on the grids 

would change in the mapping process from planum to sphere 

girds, leading to an inaccurate spherical gridding expression. So, 

the effects on the rectilinear direction in grids of the hexagon 

from the planum-sphere mapping process was investigated, and 

accuracy control of the spherical expression was processed to 

make sure that the drawing error of the spherical grids for 

vector data should be limited within one cell. And finally, this 

research may pave the way for establishing a theoretical basis 

on the high-accuracy demonstration of gridding vector data and 

the establishment of grid space measurement. 
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