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ABSTRACT: 
A spatial data management and analysis frame is required for global problem application. Global Discrete Grid (GDG) has seamless, 
excellent hierarchy characteristics. GDG has been used for spatial data management, indexing and cartographic generalization. 
However, most GDGs are unequal-area. To extend GDG application ranges in spatial modelling and statistical analysis, the method 
for constructing hierarchical and equal-area GDG is discussed in this paper. The detail steps to build GDG based on inscribe 
polyhedron is presented. The method of transferring polyhedron surface grids onto sphere surface is described. The ratio of max, 
min length of grid edges and grid angle is acquired. Length ratio converges to1.7 and angle ratio converges to 3.0. The result 
indicates that there exists difference in length and grid angle and the ratios of them are convergent. 
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1. 0BINTROUDUCTION 

With the development of requirement of global problems 
research, multi-scale spatial data is used to analyse global 
problems, such as global tide simulation, atmospheric 
modelling and global resources management etc[Titz etc 2004; 
Bartholdi & Glodsman 2003; Dutton 1999, 2000; Goodchild 
1991].  So a data frame is required to store spatial data and is 
also considered as basic cells for global problem analysis. 
Hierarchical characters provide much convenience in multi-
scale spatial data management because hierarchy data frame 
and multi-scale structure have homogeneity characteristics 
[Kiester & Sahr 2008; Kolar 2004]. Equal-area is another 
important character in spatial sampling, statistics analysis. 
Therefore, to construct hierarchical equal-area global grid is 
very significant for global problem application.  

There are many models for global problem analysis. But 
projection transformation is considered as the base of most of 
these models. Traditionally, the sphere (ellipsoid) surface is 
divided into a number of regions to decrease distortion during 
projecting process and spatial analysis operation of each region 
is carried out. It is obvious that projection and topology errors 
are inevitable because sphere surface belongs to manifold 
surface, which is different with plane Euclidean space 
[Kimerling etc1999; Ming & Zhuang 2009; Ming etc 2011]. 
Direction, length and area metric methods are different in two 
spaces and the results of computing direction, length, area 
cannot preserve uniformity synchronously.  So, a structure-
Global Discrete Grid (GDG), which is infinite subdivision 
tessellation on spherical surface and could be used to simulate 
global scale phenomena if the subdivision is repeated, is 
introduced in geographic science. GDG is approximate 
alternative to manage global scale spatial data.  

The theories and methods to construct GDG have been studied 
widely[Gregory etc 2008; Ma etc 2009; Leopardi 2006; Oldham 
etc 2012; Rosca & Plonka 2011; Sahr 2003, 2008; Savric etc 
2011; Schneider & Klein 2007; Yuan etc 2010; Vine & Zhang 
2009; White 2000]. There are two main way to subdivide 

sphere/ellipsoid surface for constructing GDG. The first one is 
to subdivide sphere/ellipsoid surface into tessellation directly, 
such as Longitude/latitude grid, constant “area” gird, Seong’s 
equal-area grid, Song’s small circle grid, degenerate quadtree 
grid, etc[Bjoke 2003, 2004; Seong 2005; Song etc 2000; Zhao 
etc 2009]. Longitude/latitude grid is one of simplest GDG. 
Traditionally, equal-interval subdivision scheme is selected to 
build longitude/latitude gird. This kind of grid has been used in 
many fields, such as GTOPO30 data management, image data 
index, etc. But the sizes of equal-interval degree 
longitude/latitude grids are very different from the equator to 
the poles and the grids near the poles need to be disposed 
individually. To decrease area distortion, variable-interval 
scheme is approached for constant “area” grid[Bjoke 2003, 
2004]. In this scheme, small degree interval is used near the 
equator and large degree interval is implemented near the poles.  
But area distortion of this kind grid is not completely eliminated 
and this leads to poor preformation in statistical analysis. To 
overcome this deficiency, equal-area grids are introduced in 
some field, such as Seong,s grid and Song’s grid etc[Seong 
2005; Song etc 2000; Leopardi 2006; Rosca & Plonka 2011]. 
Seong’s grid can be constructed by measuring equal distance 
along meridian and parallel direction separately[Seong 2005]. 
Although most of Seong’s girds are equal-area, area of the last 
cell of each row is not equal with others. What is more, it is 
very difficult to carry out neighbour query in Seong’s scheme 
because there is no simple and clear neighbour relation among 
grids. In other words, ignoring neighbour relation to obtain 
equal-area character as a reward is not perfect. Another equal-
area subdivision scheme is given by Song[Song etc 2000]. In 
this method, each cell is spherical triangle and two vertexes of 
each cell are connected by using sphere small arcs. Heavy 
computation is needed during the process of creating those grids 
because edges of cells are not geodesic. Besides these schemes, 
degenerate quadtree grid(DQG) is implemented for DEM 
visualization by Zhao[Zhao etc 2009]. In this method, sphere 
surface is subdivided according to quadtree principles firstly; 
then two cells near the pole are merged into one cell; the same 
subdivision processes are repeated and DQG grid is approached. 
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DQG provides excellent hierarchy but poor performance in 
equal-area character. From discussion above, we can find that 
there is not simple subdivision scheme for constructing 
hierarchical and equal-area grid on sphere/ellipsoid surface 
directly.  

Another method has also been used widely by subdividing 
auxiliary object surface into cell and mapping cells onto 
sphere/ellipsoid surface[White 2000; Dutton 2000; Goodchild 
etc 1991].  Traditionally, tetrahedron, hexahedron, octahedron, 
dodecahedron, icosahedrons and truncated polyhedron are 
selected as auxiliary objects[White 2000;Kiester & Sahr 2008]. 
The discrepancy of auxiliary object and sphere surface is not 
big. Therefore, those GDGs have also been used in many fields. 
Different auxiliary objects have different shape face, such as 
triangle, square, pentagon, hexagon, etc. Each face of auxiliary 
objects is subdivided into four or nine hierarchical cells and 
those cells are transferred onto sphere surface in different 
way[White 2000; Rosca & Plonka 2011; Sahr 2003]. 
Snyder(1992) gives a projection method to transfer cells of 
polyhedron surface onto the globes while equal-area 
characteristic of each cells is preserved. An optimization 
method about Snyder equal-area projection is presented by 
Harrison[2011, 2012].  

Although equal-area and hierarchical GDGs have been studied, 
there is no perfect subdivision scheme to acquire equal-area, 
hierarchical cells on ellipsoid surface. Therefore, the methods to 
subdivide equal-area cell on sphere surface is discussed and the 
way to extend sphere to ellipsoid is tried to be discussed in this 
paper.  

2. 1BEQUAL-AREA SUBDIVISION  

2.1 3Bthe principle of constructing equal-area grid 

Subdivision scheme base on inscribed polyhedron provides 
approximate shape cells, which have excellent hierarchy 
characteristic and simple neighbour relation. Octahedron is one 
of inscribed polyhedron used widely by many researchers. 
Octahedron is the only inscribed polyhedron, which can be 
compressed and embed into an ellipsoid, shown as figure1. 
Therefore, octahedron is selected as subdivision polyhedron in 
this paper. In figure1, vertexes A and B are opposite pair 
vertexes of octahedron. To embed octahedron into ellipsoid, the 
distance of vertexes A and B is decreased. When the distance of 
AB is equal to twice length of ellipsoid short axis, compression 
octahedron can be embed into ellipsoid. Each face of 
compression octahedron is isosceles triangle and hierarchical 
subdivision scheme can be carried out.  

    
Figure 1 Compression octahedron 

To acquire equal-area cell in inscribe polyhedron subdivision 
scheme, two steps should be done. Firstly, equal-area cell on 
polyhedron face should be acquired. Secondly, the method 
transferring cell on polyhedron surface onto sphere/ellipsoid 
surface should be approached. Acquiring equal-area cell on 
polyhedron surface is implemented by connecting midpoints of 

equilateral triangle or isosceles triangle edges. Commonly, 
equal area projection can be used for transferring polyhedron 
cells onto sphere/ellipsoid surface. In this paper, two equal area 
projection methods, azimuthal equal area projection and Snyder 
projection, are used for getting equal-area cells.  
  
2.2 4BOblique azimuthal equal-area projection 

Oblique azimuthal equal-area projection is selected for 
transferring polyhedron cells onto sphere/ellipsoid surface 
because plane is considered as auxiliary object in this projection 
process. Octahedron should be proportionately enlarged to 
make polyhedron surface area being equal to sphere/ellipsoid 
area at first. Then, put octahedron into sphere, shown as figure 
2. As octahedron is symmetrical object, one face of octahedron 
is selected to show the process of subdivision and coordinate 
construction on octahedron surface. Shown as figure 2, four 
son-triangles are acquired by connecting midpoint of triangle 
edges. Gravity center of triangle (one octahedron face) is 
selected as origin of a plane coordinate system. The coordinates 
of each vertex of son-triangle can be acquired. After that, two  
transferring steps (transferring plane coordinates into sphere 
coordinate; transferring sphere coordinate into geodetic 
coordinates) are needed to transfer plane coordinate (x, y) on 
octahedron surface to geodetic coordinate (λ, ϕ). This process 
can be implemented according to formula 1 and 2.  
 

 
Figure2 The process of coordinate transformation  

 
Plane coordinate to sphere coordinate: 

R
yx

Z

x
x
y

2
arcsin2

)0(arctan
22 +

=

≠=α
                                              (1) 

Where R is sphere radius; (x, y) is plane coordinates; α, Z is 
sphere coordinates. 
Sphere coordinates to geodetic coordinate: 

αϕϕ
αλλ

αϕϕϕ

cossinsincos
sinsin)tan(

cossincoscossinsin

00
0

00

ZZsos
Z

ZZ

−
=−

+=
(2) 

Where λ, ϕ is geodetic coordinates; λ0, ϕ0 is projection center  
geodetic coordinates. 
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(a) 

 
(b) 

Figure 3 visualization of azimuthal projection 
 

To learn the result of azimuthal projection, visualization of 
projected grids is implemented based on the platform of world 
wind, shown as figure 3. Figure 3.a shows the grids near the 
equation. Figure 3.b shows the grids near the pole from vertical 
view. We can find that there exists gaps and overlapping in 
matching regions of different polygon faces. It is obvious that 
oblique azimuthal equal-area projection is not perfect selection 
to transfer polyhedron cells onto sphere surface.  
 
2.3 5BSnyder Projection 

Snyder gives an equal-area projection method and relative 
transferring formulas(3-17), which can be used for transferring 
polyhedron cells onto sphere surface [Snyder 1992]. In this 
method, three conditions should be fulfilled. Firstly, surface 
area of polyhedron is equal to sphere’s one; secondly, if 
azimuths α is known, area of spherical triangle SΔABD is equal 
to plane triangle SΔA′B′D′ area, shown as figure 4; thirdly,  
differential equations in equal-area transformation process is 
always correct and the area ratio  of non-projection and 
projected polygon is equal to 1.  Spherical triangle area can be 
calculated according to formula 3 and 4 based on spherical 
excess area calculation principle. Plane triangle area is 
computed according to formula 5-8.  

   
Figure 4 Spherical right triangle and right tirangle(Snyder 1992) 

4/)( 2 ππ =×−++=Δ GRHGaS ABD         (3) 

  )coscoscossin(sincos 1 G
R
gGH αα −•= −    (4) 

δsin
2
1 ''''

''' ××=
Δ

DABAS
DBA

                            (5) 

2tan =
R
g

                                                                (6) 

RR

BADA
R
gRBA

•=

−−
•=

•=

π

θδπ
θ

9
3

)sin(
sin

tan

'

''''

'''

                               (7) 

6/πθ =                                                                         (8) 
 

 
Figure 5 Snyder projection on octahedron surface 

 
To transfer octahedron surface equal-area cell onto sphere 
surface, back projection process of Snyder projection is 
implemented. The detailed process is shown as figure 6.  Firstly, 
plane coordinates is set up, shown as figure 2. Then, values of ρ 
and δ are calculated according to coordinates (x, y) and formula 
9. Next, SΔABD is computed by using formula 10. After that, 
sphere coordinate α and Z is acquired based on formula 11-17. 
Transferring result shows as figure 8. Figure 8.a shows the grids 
near the equation. Figure 8.b shows the result of Snyder 
projection near the pole from vertical view. 
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Figure 6 The flow chart of Snyder back projection 
 

 
(a) 

 
(b) 

Figure 8 visualization of Snyder projection grids 
Grids based on octahedron and Snyder projection provides 
equal-area and hierarchy characteristic. But it is clean that 
length and angle distortion is inevitable for equal-area 
projection. To evaluate uniformity of grid, the ratios of 
max/min length and angle are used in this paper. After each 
subdivision, all sphere triangles edge lengths and triangle angles 
are computed and the ratios of max/min value are acquired. The 
relations of ratios and subdivision levels are shown as figure 9 
and 10. In figure 9, the result indicates that the ratio of max/min 
edge length is 1.7, when the subdivision level is equal to 10. 
From figure 10, the ratio of max and min angles converges to 
3.0.  

 
Figure 9 The ratio of max and mix edge length 

Set up coordinate 

Compute ρ and δ according 
to formula 9 

Adjusting  δ range, let δ in  
[0, π/2-θ] 

Compute SΔABD according to 
formula10 

Compute α according to 
formula11 to 14 

Compute Z according to 
formula15 to 17 

Adjusting   αrange 

end
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Figure 10 the ratio of max and min triangle angles 

 
2.4 6BDiscussion  

Most of equal-area subdivision schemes are based on sphere 
surface. But reference ellipsoid surface is reference basis of 
most spatial data. What is more, the difference of sphere and 
ellipsoid cannot be neglected in some spatial analysis, such as 
spatial sampling, statics analysis etc.  Compared with ellipsoid 
surface, sphere surface is homogenization, smooth, regularity 
and direction, length, area calculations are easy. Existing GDG 
subdivision and calculation models on sphere surface is not fit 
for ellipsoid models. For example, if Snyder projection is used 
to reference ellipsoid surface, corresponding projection and 
calculation formulas are invalid. Therefore, hierarchy and 
equal-area ellipsoid GDG should be discussed.  
 
To acquire practical ellipsoid GDG based on polyhedron, some 
conditions should be fulfilled.  Firstly, there is no gap or 
overlapping area at matching edges of different faces of 
polyhedron. Secondly, GDG should provide excellent hierarchy, 
equal-area characteristic. Thirdly, preferably GDG edge 
coincides with ellipsoid characteristic line, such as geodesic, 
longitude and latitude etc[Shi etc 2001, 2006]. Finally, to set up 
direction, length, area calculation equation is very important.  
So practical GDG system should be fulfilled four conditions 
synchronously above. Existing GDG models do not meet 
conditions above and research works of ellipsoid GDG system 
should be continued.  
 

3. 2BCONCLUSION  

For global problem analysis, a data frame is required to store 
multi-scale spatial data and to be considered as analysis cells in 
spatial sampling and statistical analysis. To fulfil global 
statistical analysis requirements, hierarchy and equal-area GDG 
system is discussed. Octahedron is selected as the base for 
constructing GDG. Azimuthal equal-area projection and Snyder 
projection are used for transferring polyhedron surface cells 
onto sphere surface. Compared with azimuthal equal-area 
projection method, GDG system with Snyder projection is 
seamless, hierarchy and equal-area. Length and angle distortion 
is analysed in the worst cases. The ratios of max, mix length 
and angle are acquired. Length ratio converges to1.7 and angle 
ratio converges to 3.0. The result indicates that there exists 
difference in length and grid angle and the ratios of them are 
convergent. Unfortunately, existing equal-area and hierarchical 
GDG system is fit for sphere surface and relative methods 
cannot be transplanted to ellipsoid surface. So some advices 
about ellipsoid equal-area GDG are given at last in this paper.   
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