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ABSTRACT: 

 

A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor 

positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban 

life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance 

camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a 

replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor 

building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing 

additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi 

fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building 

modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a 

sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to 

explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we 

introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information 

and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the 

system’s capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected 

through pre-determined communication protocols.   

 

 

1. INTRODUCTION 

In recent years, 3D visualization tools such as Google Earth have 

become essential for street views and visualization of 3D city 

models. One can browse through cities and search for useful 

geospatial information in a web-based virtual environment from 

our desktop or mobile devices. However, these visualization tools 

provide a stationary virtual world which limits their use in 

applications where object dynamics is important. Cities are 

dynamic, living environments with various kinds of real-time 

information and moving objects (people and vehicles). To bring 

such dynamic information into these virtual globe platforms will 

give users a more immersive context to feel and interpret the real 

dynamic world. 

We are motivated to produce a “dynamic virtual 3D world” with 

emphasis on the indoor environment. This can be done by fusing 

sensors with 3D indoor building models, where various kinds of 

environment information and human positions can be integrated 

with 3D virtual world and connected with real-time, location-

based intelligence. In [3], the authors introduce methods for 

augmenting aerial visualizations of Erath with dynamic 

information obtained from videos. Different approaches are 

proposed to analyze videos of pedestrians and cars under 

differing conditions to extract dynamic information. The 

information are then modeled and projected to Aerial Earth Map 

(AEM) to render the related dynamics. The research shows 

promising results and demonstrates the feasibility of integrating 
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movements detected from videos and 3d virtual world. However, 

it just showed the integration of outdoor dynamic movements 

detected from videos. 

In this paper, we present an approach to integrate dynamic human 

position in an indoor space with real-time sensor information, for 

example temperature, in an integrated 3D indoor and outdoor 

virtual world to provide real-time, location-based intelligence. To 

achieve this goal, several technical problems need to be 

addressed. 

First, a web-based system that can provide visualization of the 

dynamic virtual 3D world needs to be designed and developed. 

The system should have these functions: real-time data 

acquisition on moving objects from WiFi-enabled devices, real-

time sensor data exchange, GIS data and real-time data 

management, and 3D dynamic data visualization.  

Second, we need to develop an approach to integrate indoor and 

outdoor data and information in 3D context. In [10], we proposed 

an integrated framework to reconstruct full 3D building models, 

based on which integrated 3D building indoor and facade models 

can be reconstructed using Terrestrial Laser Scanning (TLS) data 

and floor plans. Based on these models, further development 

needs to be done to create a 3D continuous indoor and outdoor 

GIS platform to support the whole system.  

Third, utilizing WiFi technologies for locating a person in an 

indoor environment is now feasible [1,5,9]. However, measuring 
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WiFi signals in indoor space can still prove to be a challenge.  

The inability of most signals to penetrate through objects result 

in attenuation of the signals. Additionally the multipath 

propagation of WiFi caused by reflection and refraction off 

objects can further complicate any attempts to locate a person [4].  

The final component to be considered is how to visualize real-

time information in a 3D virtual environment. Our primary 

interest is the visualization of real-time indoor positions of 

pedestrians as well as data collected from indoor sensors that 

provide valuable environment data such as room temperature.  

 

The rest of the paper is structured as follows: section 2 gives an 

overview of the system architecture and main functions; section 

3 describes the approaches to integrate and visualize sensor and 

indoor position data; section 4 describes our proposed method to 

integrate indoor and outdoor data and model based on 3D 

terrestrial laser scanning data and floor plans, and the creation of 

the dynamic seamless 3D GIS database; section 5 explains 

localization will be performed using WiFi; section 6 shows the 

test results of the prototype system; section 7 presents some 

comments and future works. 

 

2. SYSTEM ARCHITECTURE 

In order to achieve our goals, we developed a Web-based 

dynamic virtual 3D GIS system, which features the integration of 

indoor position information and real-time sensor information (i.e. 

temperature) with a seamless 3D indoor and outdoor GIS 

database. The system was built based on our U50 iCampus 

system, which is built in celebration of the 50th anniversary of 

York University, and later it was further refined under the title of 

3D Town. 3D virtual photorealistic building models and campus-

wide GIS database of the university’s Keele and Glendon 

campuses were created, which enables 3D interactive 

visualization, navigation and fly-about the campuses. The 3D 

building models and the GIS database were used as a basis for 

developing the dynamic virtual 3D GIS.  

 

Figure 1. General system architecture for implementing dynamic 

3D virtual world. 

Figure 1 shows the general system architecture of our proposed 

system for implementing dynamic virtual 3D world. The system 

was designed with three functional layers: client layer, 

application layer, and data layer, which conforms to a multi-

tiered layered architecture typical of internet based GIS 

applications.  

We use Google Earth plug-in as the 3D display engine of the 

system, which allows users to navigate and explore geographic 

data on a 3D globe using a web browser. Using its JavaScript 

API, many system display functions like data loading, view and 

animation control can be implemented.  

In application layer, in addition to Web Server and PHP, which 

are common parts of most internet applications, there are four 

main parts: SensorML generator, dynamic KML server, indoor 

positioning algorithm, and data management module. 

2.1 SensorML Generator 

The OpenGIS Sensor Model Language Encoding Standard 

(SensorML) specifies models and XML encoding that provide a 

framework within which the geometric, dynamic, and 

observational characteristics of sensors and sensor systems can 

be defined [7]. However, there are many different sensor types 

and most of existing senor systems does not support SensorML. 

Therefore, in order to provide a unified data exchange interface 

between the system and different sensor systems, we developed 

a SensorML generator to encode all the dynamic information 

obtained from indoor position information obtained from real-

time WiFi data collection, and real-time sensors. We also made 

small modifications to the SensorML format so as to make it 

more suitable for our study. 

2.2 Dynamic KML Server 

In order to visualize dynamic or real-time data in Google Earth 

API, the data has to be described in KML format. Using PHP, we 

developed a dynamic KML server which can read in the XML 

sensor data encoded by SensorML generator and retrieve data 

from GIS database to deliver dynamic KML data to the client in 

a real-time request-response manner.   

2.3 Indoor Positioning Algorithm 

We developed an indoor positioning algorithm based on a hybrid 

deterministic and probabilistic approach. The first method is 

finding k-Nearest Neighbours (k-NN) for generalizing the 

possible estimated locations. Then a probabilistic algorithm 

based on Maximum a Posteriori (MAP) estimation is applied to 

probabilistically select the final location of the person. Using 

signal propagation model such as Log-distance Path Loss 

(LDPL) model, distances from the two nearest APs will be used 

to determine the location. The indoor position results are 

exported to SensorML generator to be converted into the unified 

XML format; and meanwhile, the results are also stored in the 

database by the data management module. 

2.4 Data Management Module 

The main function of the data management module is to store the 

dynamic movement tracking results and the real-time sensor 

information into the 3D dynamic GIS database, and update that 

information in a near real-time manner. 

In data layer, the main input datasets to the system are dynamic 

WiFi data collected for indoor positioning and real-time indoor 

sensor data. In our current system, the real-time sensor is mainly 

temperature sensor. It certainly can be extended to integrate other 

kinds of sensors. The reason that we consider indoor positioning 

data and real-time sensor separately is because the data 

processing approaches for them are different. The system is 
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designed to integrate dynamic information from real-time WiFi 

data to position moving objects, but in our prototype system, the 

demonstration was done using pre-recorded WiFi data for 

determining the indoor position. 

The core of the data layer is the seamless dynamic 3D indoor and 

outdoor GIS database. It not only store indoor and outdoor GIS 

data and 3D building models, it also stores the real-time data (i.e. 

real-time room temperatures) and dynamic information (i.e. 

trajectories of moving objects). The creation of indoor GIS and 

its integration with existing GIS and 3D building models are 

explained in section 3. Other than the existing 3D building 

models and existing data in KML or CityGML (which will 

require conversion into KML) formats can also be integrated in 

the system. 

3. INTEGRATE AND VISUALIZE SENSOR DATA 

The sensors used in this study are the Xbow MTS310 sensors.  

Each sensor node consists of a microphone circuit for acoustic 

measurements, a light sensor with maximum sensitivity at a 

wavelength of 690nm, a magnetometer, an accelerometer, and a 

temperature sensor.  However, only the temperature 

measurements will be used for this study as a mean to visualize 

the indoor room temperatures of the Petrie Science and 

Engineering (PSE) Building. Because the temperature of a room 

normally doesn't change very frequently, the update interval is 

set to 3mimutes.  

In addition to the Xbow sensors for monitoring the indoor 

temperature, the York University Weather Station has also been 

connected with the dynamic sensor database allowing near real-

time update on the campus temperature. The weather station is 

programmed to update once every 5 minutes.  The weather 

station collects a wide range of meteorological data such as wind 

velocity, air temperature, relative humidity, precipitation, air 

pressure, etc., from which only the temperature was used in the 

prototype system. 

KML Network link is an effective way to make dynamic KML, 

which can automatically update the linked KML data at a given 

interval. When used together with a dynamic KML server which 

can retrieve data from any database or real-time data sources, 

real-time data extraction and visualization can be achieved. The 

main procedures are: 

1. The user loads a KML file which includes a network link to a 

PHP script, which is part of the dynamic KML server.  

2. The PHP script gets the request and read the XML 

temperature sensor data generated by SensorML generator.  

3. Meantime, the PHP script retrieves room polygon data from 

the 3D dynamic GIS database. In the polygon data, each room 

polygon has an attribute ‘SensorID’ which indicates the 

sensor deployed in it and an attribute of the height of the room. 

4. According to the height attributes, the PHP automatically 

generates a 3D cube for each room. 

5. According to the sensor IDs and the corresponding 

temperature read from the XML data, the PHP script find the 

temperature for each room cube and assign a color 

corresponding to this temperature.  

6. The PHP script then generates KML code representing these 

colorized room cubes the deliver the generated KML data to 

the Google Earth plug-in for visualization. 

7. For visualization of outdoor temperature, the temperature of 

the campus is represented as a large colored-dome covering 

the vicinity of the campus.  When viewed from the ground 

level of the virtual campus model, the dome replaces the 

virtual sky and thus users can easily identify the temperature 

of the campus.  

In order to keep the Sensor XML data up-to-date, the SensorML 

generator keeps querying and reading real-time temperatures 

from the indoor room sensor databases and the outdoor weather 

station FTP server every certain interval, which can be set 

according to specific cases. 

3.1 Integrate and Visualize Moving Objects 

After the people have been localized in the indoor space, the 

projected 3D world coordinates can be obtained. Information are 

then formatted in SensorML format and also stored in the 3D 

dynamic GIS database. The XML file will be read and parsed by 

the client JavaScript codes. People can then be visualized using a 

2D or 3D sprite for anonymous visualization and to protect their 

privacy. Figure 2 detailed the overall process from real-time WiFi 

data collection to indoor position estimation to output data 

formatting for visualization and rendering on Google Earth. 

 

Figure 2. Overview of the process from indoor position 

estimation to visualization of the indoor positioning data. 

4. INTEGRATIION OF INDOOR WITH OUTDOOR 

For a dynamic virtual 3D world, it is essentially a continuous 3D 

space through outdoor world to indoor environment. Also, in 

order for the users to be able to interact with their environment, 

accurate location and immersive virtual reality information are 

crucial. In contrast, as the most important data source to provide 

3D virtual environment, 3D building models created using 

current state-of-the-art approaches lack indoor geometric, 

topologic and semantic information. Researches that address 

navigation in both outdoors and indoors are limited. 

Consequently, there is a gap between indoor and outdoor, which 

has hindered technologies such as mobile augmented reality 

(MAR) from delivering its promise. The gap can be bridged by 

the integration of GIS and CAD. On the one hand, 3D Terrestrial 

Laser Scanning (TLS) data and 2D floor plans are integrated to 

reconstruct integrated 3D indoor and facade models with both 

geometric and semantic information; on the other hand, 

architectural drawings and GIS database are integrated to create 

a seamless outdoor and indoor navigation database. 

4.1 Integration of TLS Data and Floor Plans 

Using line template matching, a maximum sequential similarity 

based algorithm was developed for the co-registration between 

TLS point clouds and 2D floor plans. First, floor exterior walls 

line segments are extracted from floor plans. Then a planar 

surface growing algorithm is used to segment the original TLS 
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point clouds. The planar information (width, height and the 

normal direction) obtained during the segmentation process is 

used to classify the point clouds and the ground points can be 

distinguished and the noisy non-facade points are removed. A 

sweep plane is used to cut the extracted facade points into a series 

of small bands of points with constant height of 0.2 meter from 

bottom to top. Then TLS wall line segments at every 0.2 height 

level can be obtained. 

Both floor plan wall and floor plan wall line segments are 

reconnected using virtual lines and decomposed into small 

matching units with local transformation invariant features and 

represented using a line matrix. The adapted normalized cross-

correlation function is employed to measure the similarity 

between the line sequence matrices (Equation 1).  
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Where:  n = number of  columns of T, F 

 4 = number of rows of T, F 

 Tij = value from matrix T at row i, column j  

 T  = average of all digital numbers in T 

 Fij =  value from matrix F at row i, column j  

 F  = average of all digital numbers in F 

A group matching algorithm is applied to simultaneously 

determine final matching results across floor plans and estimate 

translation and relative orientation vectors between floor plans 

and TLS station. The floor plans are then georeferenced and 

registered to the TLS point clouds. 

4.2 Integration of 3D Building Modeling With GIS 

Database 

After registration, the horizontal extents and locations of façade 

features like windows and doors are known. Then a sweep line 

based method is used to find the façade feature outlines and 

vertical locations. Based on the detected facade feature locations, 

3D façade model and indoor model are reconstructed 

simultaneously and integrated into one model. Figure 3 shows an 

example of the reconstructed integrated 3D indoor and facade 

model. 

 

Figure 3. An example of reconstructed integrated 3D building 

model 

From floor plans and other administrative databases, indoor GIS 

can be created and then integrated with existing outdoor GIS to 

establish a continuous indoor and outdoor GIS system. The GIS 

system can then be extended to 3D by integrating the 3D building 

models. First, room polygons are extracted from the floor plans 

of the PSE building on Keele campus. Then, attributes, like 

building name, floor number, room number, room owner, room 

type, etc., are created. The values of these attributes can be 

extracted from floor plans and administrative database. The 

dynamic and real-time information like room temperature can 

also be added to this database. All the information are imported 

to a PostgreSQL/PostGIS database and thus, an indoor building 

virtual model is established. Because the floor plans were already 

georeferenced as explained in section 4.1, then the indoor GIS 

data and existing outdoor GIS data can be seamlessly integrated.  

After building the seamless indoor and outdoor GIS database, the 

3D integrated building models are also stored in it, which are 

represented and stored using polygons and multipatches. Then, 

in the end a seamless dynamic 3D GIS database were established.  

5. INDOOR POSITION ESTIMATION 

The procedure for WiFi-based indoor position estimation is 

detailed in this section. The indoor position estimation in this 

study considers result obtained from a sequential two-steps 

method. First, a deterministic k-NN method using Manhattan 

distance estimation was applied to provide a preliminary 

generalization of the person’s location from within a WiFi 

fingerprint database for the building. This generalization will 

limit the possible positions of the WiFi user to four locations that 

are predefined in the database. Then the MAP estimation method 

will select the most likely position out of the four selected 

locations by comparing the difference in distance between each 

estimated location to a pair of known access point locations. The 

smaller the difference in distance, the higher the likelihood of an 

accurate estimated position. Distance is obtained by converting 

received signal strength from nearby access points (AP). The 

purpose of using this hybrid approach is to increase the 

effectiveness of a coarsely sampled fingerprint map either due to 

practical urgency needs for deployment or due to a lack of APs 

to provide a dense enough WiFi coverage to meet an acceptable 

indoor positioning precision threshold for a certain application. 

5.1 Distance Estimation from WiFi Signal Strength 

The Log-Distance Path Loss (LDPL) model is a radio signal 

propagation model used to estimate path loss of a signal.  By 

using a mathematical model of indoor signal propagation, it can 

help reduce the dependency on empirical data of the indoor 

localization algorithm [8].  The model is used to solve the 

distance d (see Equation 2), between a person at an unknown 

position and the AP location [2].  

                                 logd10n +S=S 1m                                (2) 

Where:  S = signal path loss between AP and receiver 

S1m = signal path loss at 1 meter away from AP 

d = distance in meter between receiver and AP 

n = path loss exponent of the environment 

5.2 Manhattan Distance Estimation 

K-nearest neighbour (k-NN) classification is a simple machine 

learning algorithm that classifies objects based on distance and/or 

similarity measure.  With data points positioned in an input space, 

the objective of k-NN is to determine which training data are 

close to it.  The function of k-NN is to approximate the data 

points, the WiFi signal strength measurements in our context, to 

the closest samples, the pre-recorded data stored in the fingerprint 

database.  It accomplishes this by computing the distance to each 

data point in the training set using distance estimation methods 

such as Manhattan distance estimation. 

Manhattan distance estimation is to determine the closeness of 

the data points to the sample data as described in equation (3).  In 
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this method, the distance between two points is computed in 

signal space.  The points can be represented by the real-time WiFi 

signal strength measurement of a person and the signal strength 

pre-recorded in the WiFi fingerprint database.  According to [6], 

if the database contain M fingerprints and has a set of locations 

define as L = {l1, l2, l3, ..., lk}, then to calculate the location 

represented by a set of received signal strengths (RSSI1, RSSI2, 

…, RSSIn), we can define the problem as follow: 

For each l ϵ 1,…,M calculate the minimum distance 𝑑̂𝑀𝑎𝑛 

between (𝑅𝑆𝑆𝐼1
𝑙 , 𝑅𝑆𝑆𝐼2

𝑙 , ..., 𝑅𝑆𝑆𝐼𝑚
𝑙  ) and (𝑅𝑆𝑆𝐼1

𝑢, 𝑅𝑆𝑆𝐼2
𝑢, …, 

𝑅𝑆𝑆𝐼𝑛
𝑢) 

Where: l denotes a location 

u denotes a user location 

n denotes no. measurements available at location u 

𝑅𝑆𝑆𝐼𝑖
𝑙 is the signal strength in database from i-th AP 

𝑅𝑆𝑆𝐼𝑖
𝑢 is the observed signal strength  

𝑙4𝑀𝑎𝑛
 is a set of four locations closest to the person 

                         𝑑̂𝑀𝑎𝑛 = ∑ |𝑅𝑆𝑆𝐼𝑖
𝑙𝑛

𝑖=1  −  𝑅𝑆𝑆𝐼𝑖
𝑢|                      (3) 

                        𝑙4𝑀𝑎𝑛 =  arg  kmin
𝑘=4; 𝑙4ϵ𝐿

 (𝑑̂𝑀𝑎𝑛)             (4) 

Upon calculating the minimum distances for all locations in the 

fingerprint database, equation (4) will be used to infer the top four 

locations based on their 𝑑̂𝑀𝑎𝑛. 

5.3 Maximum a Posteriori Estimation 

This study proposes the use of priori information derived from 

the k-NN algorithm to determine a person’s location.  Each of the 

four nearest locations to the person determined from the k-NN 

method, in conjunction with distances interpolated from RSSI via 

LDPL model, can be used to generate conditionally independent 

probability density functions (pdf) to estimate the most probable 

location to represent the person’s indoor position. One primary 

argument for using a probabilistic method for location inference 

is that the results, presented as a probability, are often a better 

indication of the level of confidence in the location estimation 

algorithm.  These probabilistic location estimation methods store 

information about the WiFi signal strength distributions in a 

fingerprint map and use probabilistic inference algorithm to 

compute the most probable position. The following figure 

illustrates the notations to be used in the MAP estimation 

procedure under a simplistic scenario, an open corridor. It is 

assumed that two APs can be detected at any given time. 

 

 

Figure 4. Considering the physical distance between a person and 

AP (denoted as D) to the WiFi distance and AP (denoted as UD). 

The APs where the user is measuring the strongest signals from 

are depicted as APj and APk in Figure 4. The red circles are the 

locations predefined in the fingerprint database, denoted as li 

where i = 1..4 in equation (5), selected by Manhattan distance 

estimation.  Dij and Dik, represent the physical distances from li to 

the two APs.  Dij and Dik can be directly obtained from the 

database using the coordinates of the APs and locations. Under a 

corridor scenario, the total distance covered by Dij and Dik should 

always be the same for a given corridor. The person who wishes 

to identify their closest position with respect to the predefined 

locations in the fingerprint database within the building, will be 

required to provide two signal values measured from APj and 

APk.  The two dashed lines in lower Figure 4 represent the user’s 

distances, UDj and UDk, connecting the person’s position to the 

two APs.  These distances are obtained by interpolating the 

measured WiFi signal values (Sj and Sk) from the person through 

the LDPL model.  Mathematically Figure 4 is represented below 

in equation (5). 

       

  𝐿̂  = argmax 𝑃
𝑙

(𝑙4𝑀𝑎𝑛
= 𝑙𝑖|𝑆𝑗 , 𝑆𝑘) 

     =  argmax
𝑙

 )()|()|( iikij lPlSPlSP 

)()( kSPjSP 
                   (5) 

Then the measured signal strengths will be converted into 

distance through the LDPL model.  Thus Sj and Sk will be 

converted into UDj and UDk respectively. In order to calculate the 

posterior probability, the UDj and UDk are assumed to be 

normally distributed. Therefore, the final equation will be 

represented in equation (6). 

   𝐿̂ = argmax
𝑙

 𝑃(𝑙4𝑀𝑎𝑛 = 𝑙𝑖|𝑈𝐷𝑗 , 𝑈𝐷𝑘)  

      = argmax
     𝑙

 𝑁(𝑈𝐷𝑗; 𝐷𝑖𝑗 , 𝜎𝐷𝑖𝑗

2 ) ∙ 𝑁(𝑈𝐷𝑘; 𝐷𝑖𝑘, 𝜎𝐷𝑖𝑘

2 ) ∙ 𝑃(𝑙𝑖)    (6) 

N is the normal distribution of UDj and UDk away from APj and 

APk with calibrated standard deviations 𝜎𝐷𝑖𝑗

2  and 𝜎𝐷𝑖𝑘

2 for each AP 

and mean physical distance values of Dij and Dik respectively. It 

is modelled so that the distances at location li and user location u 

to each of the two APs are independent of one another.  Equation 

(6) is considered as finding the maximum posterior probability 

out of the four location candidates selected using Manhattan 

distance estimation method by computing the likelihood of the 

distances D and UD representing the same location in the 

fingerprint database.  

 
Figure 5. Likelihood function measuring the degree of closest 

between D and UD. 

Figure 5 demonstrates one instance where the physical distance, 

D (red line) and the user’s distance, UD (green line) have 

approximately 90% probability of being the same location. Since 

we consider the two likelihood functions separately between a 

location to each of the two APs, the end result will be affected 

independently by these two functions. With the lack of 

dependency of the two functions, the final result will be more 

reliable. Therefore the final location can be identified by 

considering the probability of the two likelihood functions (one 

from each AP to the location) and the prior probability term. 
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The calculation of the standard deviations 𝜎𝐷𝑖𝑗

2  and 𝜎𝐷𝑖𝑘

2 are 

important as it represent the deviation of Dij and Dik caused by 

uncertainties such as conversion from signal strength to distance 

via LDPL model and the fluctuation of signal strength itself.  Due 

to the nature of interacting with two independent APs and 

subsequently forming two independent user distance pdfs, it is 

mandatory to have unique standard deviations to characterize the 

uncertainty of user distance for each AP. Standard deviations of 

the likelihood functions can be derived from the measured 

distance discrepancy between D and UD (see Figure 6). 

 
Figure 6. Distance discrepancy measured between the physical 

distance (D) and the user measured signal distance (UD). 

6. SYSTEM TEST RESULTS 

We developed a prototype 3D virtual world system for 

implementing dynamic information based on the above sections. 

Figure 7 shows the interface of the system. The interface is a 3D 

virtual campus with several colourized flashing circles indicates 

the areas having dynamic information. Users can go to the spots 

to see what is happening by clicking the circles.  

 

Figure 7. 3D virtual world system interface. 

 

Figure 8. Indoor positioning based on WiFi technique. Detected 

person can be visualized using simple 3D avatar. 

Figure 8 shows the test result of indoor positioning using WiFi-

based hybrid technique. The person can be detected using the 

method presented in section 5 and visualized using simple 3D 

avatar for anonymity. Additional information can be obtained 

from the indoor GIS such as room temperature of the nearest 

room. Table 1 presents some of the preliminary indoor 

positioning results measured from floor 1 to 3 of the Petrie 

Science and Engineering building at York University. The results 

are represented by the probability of correctly locating a person 

to the nearest location in the fingerprint database. 

Table 1. Indoor positioning results represented by the probability 

of correctly locating a person to the nearest location in the 

fingerprint database.  

Floor 
Positioning Accuracy 

(k-NN) 

Positioning Accuracy 

(MAP) 

1 0.745 0.865 

2 0.719 0.909 

3 0.745 0.845 

7. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a web-based system developed 

based on Google Earth plug-in that brings dynamic indoor 

positioning information and real-time sensors into an integrated 

3D indoor and outdoor virtual world. By integrating TLS data, 

architectural plans, and existing GIS, a dynamic 3D seamless 

indoor and outdoor GIS database was built, which acts as the core 

database to support the system. The system has a flexible and 

scalable architecture that is open for new developments and 

applications.  
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