Implicit Surface Modeling from Imprecise Point Clouds
Keywords: Implicit Surface, General Lasso, Sparse Approximation
Abstract. In applying optical methods for automated 3D indoor modelling, the 3D reconstruction of objects and surfaces is very sensitive to both lighting conditions and the observed surface properties, which ultimately compromise the utility of the acquired 3D point clouds. This paper presents a robust scene reconstruction method which is predicated upon the observation that most objects contain only a small set of primitives. The approach combines sparse approximation techniques from the compressive sensing domain with surface rendering approaches from computer graphics. The amalgamation of these techniques allows a scene to be represented by a small set of geometric primitives and to generate perceptually appealing results. The resulting scene surface models are defined as implicit functions and may be processed using conventional rendering algorithms such as marching cubes, to deliver polygonal models of arbitrary resolution. It will also be shown that 3D point clouds with outliers, strong noise and varying sampling density can be reliably processed without manual intervention.