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ABSTRACT: 
 
Stereo vision and LIDAR continue to dominate standoff 3D measurement techniques in photogrammetry although the two 
techniques are normally used in competition. Stereo matching algorithms generate dense 3D data, but perform poorly on low-texture 
image features. LIDAR measurements are accurate, but imaging requires scanning and produces sparse point clouds. Clearly the two 
techniques are complementary, but recent attempts to improve stereo matching performance on low-texture surfaces using data 
fusion have focused on the use of time-of-flight cameras, with comparatively little work involving LIDAR.  

A low-level data fusion method is shown, involving a scanning LIDAR system and a stereo camera pair. By directly imaging the 
LIDAR laser spot during a scan, unique stereo correspondences are obtained. These correspondences are used to seed a region-
growing stereo matcher until the whole image is matched. The iterative nature of the acquisition process minimises the number of 
LIDAR points needed. This method also enables simple calibration of stereo cameras without the need for targets and trivial co-
registration between the stereo and LIDAR point clouds. Examples of this data fusion technique are provided for a variety of scenes. 

1. INTRODUCTION 

Stereovision and LIDAR remain the two most commonly used 
methods for 3D reconstruction. Stereo camera systems can 
provide dense 3D information, but image matching is a 
computationally complex problem and reconstruction coverage 
and accuracy suffer if the image does not have sufficient 
texture. LIDAR derived ranges are accurate and are not 
significantly dependent on surface texture, albeit they are 
dependent on avoiding specular reflection angles for certain 
types of shiny surfaces, but in most systems the laser must be 
scanned to build up a 3D image.  
 
This paper proposes a novel method for integrating LIDAR 
ranges into a region growing stereo matching algorithm, 
proposed initially by (Muller and Anthony, 1987). In particular, 
the image of the LIDAR spot on the scene is used to provide 
unambiguous seed points in regions where there is low texture. 
 
1.1 Data fusion with stereo systems 

In recent years, there has been a large amount of research into 
integrating additional sources of range information into stereo 
matching algorithms. Stereo data fusion algorithms generally 
attempt to solve the problem of ambiguous matches arising 
from homogenous or repetitive texture. Obvious candidate 
techniques for data fusion are those that actively sense the 
scene. 
 
Most research has focused on the use of Time of Flight Cameras 
(ToFCs) (Lange and Seitz, 2001), (Foix et al., 2011), which are 
now available commercially at low cost (e.g. Microsoft Kinect 
for Xbox One). ToFCs offer active illumination and dense 3D 
imaging data in real-time. However, the usable range of a 
couple of metres depends on the modulation frequency of the 
illumination and performance outdoors, due to the use of near 
infrared illumination, is not guaranteed. ToFC range data tends 
to be relatively noisy with accuracy in the millimetre scale. The 

use-cases for these systems are dominated by robotics, where 
real-time imaging is desirable for navigation and mapping. 
 
Broadly, there are two classes of fusion algorithm:  
 
A priori methods using ToFCs have been used with most of the 
common state-of-the-art stereo matching algorithms including 
dynamic programming (DP) (Gudmundsson et al., 2008), graph 
cuts (Hahne and Alexa, 2008); (Song et al, 2011), belief 
propagation (Jiejie Zhu et al., 2011) and semi-global matching 
(SGM) (Fischer et al., 2011). ToF range data is used to 
overcome the limitations of stereo in homogenous image 
regions while stereo range data is retained near depth 
discontinuities. First, a range interval is obtained for every pixel 
in the ToF system. This range interval is then mapped to each 
pixel in the stereo system and used as a constraint on the 
matching algorithm, either limiting the disparity search space or 
as an adjusted matching cost function.  
 
A posteriori methods combine two (or more) complete range 
images, ideally producing an image that is better than any of the 
inputs alone.  (Kuhnert and Stommel, 2006) merge ToF data 
with results from winner-take-all (WTA) and simulated 
annealing stereo. ToF data is retained in homogenous regions 
where stereo fails and is also used to detect blunders in the 
disparity map. (Beder et al., 2007) use an approach based on 
patchlets (Murray and Little, 2005), rectangular surface 
elements defined at every pixel in the disparity image. In both 
cases the fused data are an improvement over stereo or ToF 
alone, but results are limited by the low resolution of the ToF 
cameras. 
 
1.2 Data fusion of stereo with LIDAR 

Comparatively little work has involved LIDAR at close range. 
(Romero et al., 2004) use a 2D scanning LIDAR to seed the 
disparity map in a trinocular stereo system. Initial disparity 
estimates are calculated using LIDAR ranges which are then 
propagated through the image based on a set of rules that 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015 
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-4-W5-107-2015

 
107



 

consider image texture and horizontal and vertical pixel 
correspondences. Results from a standard stereo matcher are not 
provided, but the LIDAR does improve matching performance 
in homogenous image regions. 

(Badino et al., 2011) follow an approach largely similar to that 
used with ToFCs. A 3D scanning LIDAR is used to generate a 
minimum and maximum range map for the scene. This is then 
used to constrain WTA and DP stereo matchers. The presented 
scenes are all outdoors and the fused data contains significantly 
fewer blunders than stereo matching alone. 

The technique presented in this paper departs from previous 
work. Using a visible LIDAR scanner, it is possible to perform 
data fusion at a lower level by imaging the LIDAR spot as it 
scans through the scene. 
 

2. 3D IMAGING SYSTEM 

The imaging system used for this research consisted of a stereo 
camera pair and a single point LIDAR mounted on a gimbal 
platform, see Figure 1. 
 

 
Figure 1 Custom 3D imaging system including scanning 
LIDAR and stereo camera pair. 
 
2.1 Stereo system 

The stereo system comprised two Imaging Source 
DMK23UM01 monochrome cameras with a resolution of 
1280x960px, fitted with 8mm focal length lenses set to f/4. A 
custom stereo bar was built using a rail (Thorlabs XT95SP) 
with each camera mounted on a manual rotation stage (Thorlabs 
RP01) and carriage (Thorlabs XT95P11). 
 
2.2 LIDAR and mount 

The LIDAR used was a Dimetix FLS-C10 with a specified 
accuracy of ±1mm, repeatable to ±0.3mm on natural surfaces up 
to a distance of 65m. This sensor uses a visible (650nm) laser 
beam and can operate at up to 20Hz in its highest resolution 
mode. The LIDAR is mounted on a Newmark GM-12 gimbal 
mount with a specified resolution of 300µrad and a repeatability 
of 20µrad. 
 
2.3 System geometry and model 

The stereo system was modelled using the conventional pinhole 
camera model including radial and tangential lens distortion 

(Hartley and Zisserman, 200). Camera intrinsic and stereo 
calibration was performed using the OpenCV (Bradski, 2000) 
library implementation of (Zhang, 2000) employing a planar 
chessboard target. This calibration is then used to epipolar 
rectify the images prior to stereo reconstruction. Calibration 
results are shown in Table 1.  
 

Calibration Parameter Left Camera Right Camera 
Focal length (mm) 8.378 8.387 
Principal Point (mm)  (2.459, 1.803) (2.443, 1.780) 
Rectified Position (m) (0.0,0.0,0.0) (0.463, 0, 0) 
Reprojection Err. (px) 0.104 0.103 

Table 1 Calculated stereo camera calibration parameters 
 
The geometric model for the LIDAR allows for systematic 
translational and rotational offsets, similar to (Muhammad and 
Lacroix, 2010). Five parameters are required: two for 
translational offsets orthogonal to the laser beam axis, two for 
rotational offsets with respect to the reported position of the 
mount and a distance offset. This geometry is shown in Figure 
2. 
 

 
Figure 2 System geometry. A: relationship between stereo 
cameras and LIDAR for a single world point. B: side view of 
LIDAR. C: overhead view of LIDAR. Systematic angular 
offsets are not shown. 
 
The model parameters are: 
 
𝑟!  – LIDAR measured range 
𝜙!  – Reported elevation 
𝜃!  – Reported azimuth 
𝑑𝑟 – Systematic range error 
ℎ!"" – Horizontal translation orthogonal to laser beam 
𝑣!"" – Vertical translation orthogonal to laser beam 
𝑑! – Systematic elevation offset 
𝑑! – Systematic azimuth offset 
𝑥! , 𝑦! , 𝑧!  – LIDAR world coordinates 

 
The conversion to Cartesian coordinates is as follows: 
 
 
       𝑟 = 𝑟! + 𝑑𝑟 (1)  

𝜙 =   𝜙! + 𝑑𝜙  
𝜃 =   𝜃! + 𝑑𝜃  
𝑟!" = 𝑟 cos𝜙 − 𝑣!"" sin𝜙  
𝑥! = 𝑟!"  𝑟 sin 𝜃 − ℎ!"" cos 𝜃  
𝑦! = 𝑟 sin𝜙 + 𝑣!"" cos𝜙  
𝑧! = 𝑟!" cos 𝜃 + ℎ!"" sin 𝜃 
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Note the use of a right hand coordinate system consistent with 
stereo imaging conventions – the z-axis represents depth, 
directed into the scene. Without loss of generality, the world 
origin is chosen to be the centre of projection in the left camera. 
 
2.4 Cross-Calibration 

The use of a visible laser allows for simple intrinsic and 
extrinsic calibration of the LIDAR. The LIDAR is scanned in a 
raster fashion across a scene. At each orientation, a stereo pair is 
synchronously acquired and the location of the laser spot in the 
epipolar-rectified images is determined using a maximum filter. 
A short exposure time of 1/5000s is used to ensure that the 
image of the spot is not saturated. Thus two point clouds are 
produced: one from the LIDAR ranges and one from the stereo 
reconstruction of the LIDAR laser spot. 
 
Assuming a good stereo calibration, the LIDAR intrinsic and 
extrinsic parameters with respect to the stereo system may be 
determined using least squares minimisation. The error to be 
minimised was chosen to be the Euclidean distance between 
corresponding points in the stereo point cloud and the LIDAR 
point cloud. For a stereo reconstructed point 𝑃!,! and 
corresponding LIDAR point 𝑃!,!, the minimisation function is: 
 
 
      min!,!,! ||(𝑅𝑃!,! + 𝑇) − 𝑃!,!||!  (2)  
 
 
Where 𝑅 and 𝑇 are a rotation and translation matrix bringing the 
LIDAR point cloud onto the stereo point cloud and 𝜖 represents 
the LIDAR intrinsic parameters. 
 
It is expected, for the system described here, that the intrinsic 
parameters are close to zero. Initially, 𝑅 and 𝑇 are estimated 
using a rigid body transformation between the two point clouds 
since there is a one-one correspondence between them. After 
transformation, any points with a large distance error (further 
from the mean by more than two standard deviations) are 
discarded. This effectively removes most spurious 
correspondences, for example LIDAR points which are 
occluded in one image. With these points removed, the rotation 
and translation are estimated again to get initial values for the 
minimisation. The LIDAR intrinsic parameters are initialised to 
be zero. The rotation offsets 𝑑𝜃 and 𝑑𝜙 were both fixed to be 
zero for better parameter convergence. 
 

 
Figure 3 Epipolar-rectified left image of calibration scene, 
locations of calibration points are plotted. 
 

The calibration scene (Figure 3) was chosen to be a wall corner 
to avoid coplanar calibration points. There is no particular 
requirement for the target to be planar, however. 
 
Calibration Parameter Value 
Translation, T (mm) (-214.10, 287.55, 225.17) 
Rotation, R (deg) (-1.83, 0.29, 0.013) 
Distance offset, 𝑑𝑟 (mm) 21.21 
Horizontal offset, ℎ!"" (mm) 1.05 
Vertical offset, 𝑣!"" (mm) 15.02 
Table 2 Calculated LIDAR intrinsic and extrinsic parameters. 
 
Calibration parameters are given in Table 2. Co-registered 
LIDAR and stereo points are shown in Figure 4 from an 
overhead perspective. The LIDAR points are visibly more 
tightly clustered than the stereo points. The registration error 
between the two point clouds is shown in Figure 5.  
 

 
Figure 4 Overhead view of calibration points from each 
measurement system. 
 

 
Figure 5 Registration error between LIDAR and Stereo point 
clouds. 

 
The registration error was found to be (1.21±1.11mm). Some 
error is likely due to uncertainties in determining the laser spot 
location; further work will investigate ways to improve this.  
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3. DATA FUSION ALGORITHM 

The proposed algorithm operates at a lower level of fusion than 
prior work. It aims to directly address the issue of poor stereo 
matching performance in low texture regions. 
 
3.1 GOTCHA stereo matcher 

The stereo matcher used is based on the Gruen-Otto-Chau 
Adaptive Least Squares Correlation (GOTCHA) algorithm, 
(Otto and Chau, 1989). The actual GOTCHA used here is based 
on (Shin and Muller, 2012)  which is a 5th generation version of 
the original. GOTCHA is a region growing stereo matcher 
taking as input a stereo pair and a list of initial, proposed 
correspondences or tiepoints. These tiepoints are either selected 
manually or are automatically generated using a feature detector 
such as SIFT (Lowe, 2004). 
 
This method has proved to be accurate and robust, for example 
when applied to spacecraft (Day and Muller, 1989); (Thornhill 
et al., 1993); close-range industrial  (Muller and Anthony, 
1987); (Anthony, Deacon and Muller 1988); close-range 
medical (Deacon et al., 1991) and Martian rover imagery (Shin 
and Muller, 2012).  
 
The algorithm uses Adaptive Least Squares Correlation (ALSC) 
(Gruen, 1985) to refine and determine correspondences to sub-
pixel accuracy, providing a disparity estimate and a confidence 
score. If a tiepoint is successfully matched, its neighbouring 
pixels are added to a priority queue, sorted by match 
confidence. ALSC is performed on the neighbours of the 
highest confidence tiepoint and any matches are added to the 
tiepoint queue. The process iterates until the queue is empty. 
Thus the disparity is grown from the initial seed points, 
preferentially matching from the regions with highest 
confidence. 
 
3.2 Proposed algorithm 

Normally the initial seed points are generated using SIFT 
keypoint matching. This approach excels in regions of high 
image texture, but results are poor in low texture regions where 
there tend to be multiple keypoints with similar descriptors. 
 
Since the LIDAR spot is visible in both images, it can provide 
unique stereo correspondences. Instead of using a feature 
detector like SIFT, the laser spot locations are used directly as 
unambiguous seed points for GOTCHA. Imaging matching is 
performed using GOTCHA and gaps in the disparity map may 
be filled using LIDAR data. 
 
This approach has several advantages over previous work. 
Compared to methods that use ToFCs, the LIDAR has higher 
accuracy and can be aimed with finer resolution. By using a 
visible LIDAR, cross calibration between the two coordinate 
systems becomes straightforward; this is particularly useful for 
gap filling, as the two point clouds are easily co-registered. 
Compared to other data fusion techniques, this method requires 
relatively few points from the LIDAR. 
 

4. RESULTS 

A demonstration scene of a white-painted laboratory brick wall 
was chosen to be representative of the challenges involved with 
imaging indoor scenes. The left camera view is shown in Figure 
6. The four kiln bricks were included to provide regions of high 
texture, in contrast to the wooden panel. 

 

 
Figure 6 Example scene to be reconstructed. Left stereo image, 
epipolar rectified. 
 

 
Figure 7 Matched SIFT keypoints, left stereo image, epipolar 
rectified. 
Figure 7 shows the matched SIFT keypoints for the stereo pair. 
As expected, there are very few keypoints located on the panel 
implying a very low texture region. Figure 8 shows the result 
from GOTCHA using these SIFT keypoints. Match 
performance is good on the kiln bricks, reasonable on the 
painted brick wall and poor on the flat wooden panel. 
 

 
Figure 8 Disparity map using SIFT keypoints as seeds for 
GOTCHA stereo matching. 
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Figure 9 Disparity map using 30000 random LIDAR points as 
seeds for GOTCHA stereo matching. 
 
The match results are clearly correlated with the location of the 
initial tiepoints. In particular the panel provides little texture for 
the matcher to grow into. 
 
Figure 9 shows the same scene, but with 30000 randomly 
selected LIDAR points used as seeds. There is a 26.5% increase 
in the number of matched pixels and improvement is visible 
throughout the image. Performance is still degraded in low 
texture regions, such as the panel and between bricks, where 
there are isolated matched pixels from which the disparity could 
not be grown. These regions would be suitable for gap filling by 
scanning the LIDAR. 
 

5. CONCLUSIONS AND FUTURE WORK 

A novel data fusion algorithm has been presented, incorporating 
data from a visible scanning LIDAR into a region growing 
stereo matcher to produce denser disparity maps without loss of 
accuracy. This is achieved by using the image of the LIDAR 
laser spot to generate unambiguous seed points for the 
GOTCHA stereo matcher. Imaging the LIDAR spot also allows 
for straightforward target-less calibration of the LIDAR system 
and registration between the stereo and LIDAR point clouds. 
 
Future work will look into improving cross calibration, in 
particular the possibility of calibrating camera intrinsic 
parameters using the LIDAR alone. Additionally, smarter 
methods of scanning the scene, based on pre-selecting areas of 
low image texture could focus the number of LIDAR points 
required for dense reconstruction on these areas where they will 
have the most impact. 
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