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ABSTRACT: 
 
We focus on a region-based point clustering to extract a polygon from a massive point cloud. In the region-based clustering, 
RANSAC is a suitable approach for estimating surfaces. However, local workspace selection is required to improve a performance 
in a surface estimation from a massive point cloud. Moreover, the conventional RANSAC is hard to determine whether a point lies 
inside or outside a surface. In this paper, we propose a method for panoramic rendering-based polygon extraction from indoor 
mobile LiDAR data. Our aim was to improve region-based point cloud clustering in modeling after point cloud registration. First, we 
propose a point cloud clustering methodology for polygon extraction on a panoramic range image generated with point-based 
rendering from a massive point cloud. Next, we describe an experiment that was conducted to verify our methodology with an 
indoor mobile mapping system in an indoor environment. This experiment was wall-surface extraction using a rendered point cloud 
from some viewpoints over a wide indoor area. Finally, we confirmed that our proposed methodology could achieve polygon 
extraction through point cloud clustering from a complex indoor environment. 
 

1. INTRODUCTION 

Point-cloud clustering is an essential technique for modeling 
massive point clouds acquired with a terrestrial laser scanner or 
mobile laser scanner in an indoor environment, as shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Point cloud clustering: colored point cloud (left 
image) and clustered point cloud (right image) 
 
There are three clustering approaches in point-cloud clustering: 
model-based clustering (Boyko et al. 2011), edge-based 
clustering (Jiang et al. 1999), and region-based clustering 
(Vosselman et al. 2004). Model-based clustering requires CAD 
models to estimate simple objects or point clusters from the 
point cloud. In 3D industrial modeling, standardized objects, 
such as pipes and parts, are prepared as CAD models in 
advance. However, the CAD model preparation approach is 
unsuitable for modeling unknown objects. On the other hand, 
edge-based and region-based clustering are often used to model 
unknown objects (Tsai et al. 2010). These approaches also 
focus on geometrical knowledge (Pu, et al. 2009) and 2D 
geometrical restrictions, such as the depth from a platform 
(Zhou, et al. 2008) and discontinuous point extraction on each 
scanning plane from the mobile mapping system (Denis et al. 
2010) to extract simple boundaries and features in urban areas. 

Point-cloud data acquired in urban areas and indoor 
environments often include many complex features with unclear 
boundaries. Moreover, general 3D modeling using terrestrial 
and mobile data uses point-cloud data acquired from many 
viewpoints and view angles. Thus, for integrated point-cloud 
data taken by terrestrial or mobile LiDAR, the application of 
the abovementioned restrictions for extracting features is 
difficult. Additionally, viewpoints for range image rendering 
are limited to data-acquisition points. 
We focus on the region-based point clustering to extract a 
polygon from a massive point cloud. In region-based clustering, 
Random Sample Consensus (RANSAC) (Schnabel et al. 2007) 
is a suitable approach for estimating surfaces. However, local 
workspace selection is required to improve a performance in a 
surface estimation from a massive point cloud. Moreover, with 
conventional RANSAC, it is hard to determine whether a point 
lies inside or outside a surface.  
In this paper, we propose a method for panoramic rendering-
based polygon extraction from indoor mobile LiDAR data. Our 
aim is to improve region-based point-cloud clustering in indoor 
modeling. First, we propose a point-cloud clustering 
methodology for polygon extraction on a panoramic range 
image generated with point-based rendering from a massive 
point cloud. Next, we describe an experiment that was 
conducted to verify our methodology with an indoor mobile 
mapping system. Finally, we confirm that our proposed 
methodology can achieve polygon extraction through point-
cloud clustering from a complex indoor environment.  
 

2. METHODOLOGY 

Figure 2 shows our proposed methodology. It consists of: (1) 
viewpoint decision for point-based rendering; (2) point-based 
rendering; (3) normal vector clustering for surface estimation; 
(4) point-cloud interpolation using a rectangular template; and 
(5) point tracing. 
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Figure 2. The five components of processing flow 
 
2.1 Viewpoint decision for point-based rendering 

Viewpoints for point-based rendering are selected in point-
cloud data through two steps. In the first step, an orthobinary 
image is generated from the point cloud to represent a rough 
floor surface as a viewpoint candidate. In the next step, the 
orthoimage is eroded with morphology processing to generate a 
viewpoint candidate network. Intersections on the network are 
selected as the viewpoints for point-based rendering. 
 
2.2 Point-based rendering 

Point-cloud visualization has two issues. The first is the near-far 
problem caused by distance differences between the viewpoint 
and the scanned points. The second is the transparency effect 
caused by rendering hidden points among near-side points. 
These effects degrade the quality of a point-cloud visualization. 
Splat-based ray tracing (Linsen et al. 2007) is a methodology 
that generates a photorealistic curved surface on a panoramic 
view using normal vectors from point-cloud data. The long time 
period required for surface generation in the 3D work space is a 
problem. Furthermore, the curved-surface description is 
inefficient in representing urban and natural objects as 
Geographical Information System data. Thus, we have applied a 
point-based rendering application with a simpler filtering 
algorithm (Nakagawa 2013) to generate panoramic range 
images from a random-point cloud. The processing flow of 
point-based rendering is described in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Point-based rendering 
 

First, the point cloud is projected from 3D space to panorama 
space. This transformation simplifies viewpoint translation, 
filtering, and point-cloud browsing. The panorama space can be 
represented by a spherical, hemispherical, cylindrical, or cubic 
model. Here, the cylindrical model is described for wall 
modeling. The measured point data are projected onto a 
cylindrical surface, and can be represented as range data. The 
range data can preserve measured point data such as a depth, X, 
Y, Z, and some processed data in the panorama space in a 
multilayer style. Azimuth angles and relative heights from the 
viewpoint to the measured points can be calculated using 3D 
vectors generated from the view position and the measured 
points. When azimuth angles and relative heights are converted 
to column counts and row counts in the range data with 
adequate spatial angle resolution, a cylindrical panorama image 
can be generated from the point cloud. 
Second, the generated range image is filtered to generate 
missing points in the rendered result using distance values 
between the viewpoint and objects. Two types of filtering are 
performed in the point-based rendering. The first is a depth 
filtering with the overwriting of occluded points. The second is 
the generation of new points in the no-data spaces in the range 
image. New points are generated with the point tracking filter 
developed in this study. 
Moreover, a normal vector from each point is estimated in the 
range image. Normal vector estimation is often applied to 
extract features in point-cloud processing. Generally, three 
points are selected in the point cloud to generate a triangle 
patch for normal vector estimation. Mesh generation is the basic 
preprocessing step in this procedure. In 2D image processing, 
the Delaunay division is a popular algorithm. It can also be 
applied to 3D point-cloud processing with millions of points 
(Chevallier et al. 2011). However, using the Delaunay division, 
it is hard to generate triangle patches for more than hundreds of 
millions of points without a high-speed computing environment 
(Fabio 2003) (Böhm et al. 2006). Thus, we focused on our 
point-cloud rendering, which restricts visible point cloud data as 
a 2D image. A closed point detection and topology assignment 
can be processed as 2D image processing, as shown in the 
lower right image in Figure 2. 
The processing flow of normal vector estimation is described 
below. First, a point and its neighbors in the range image are 
selected. Second, triangulation is applied to these points as 
vertexes to generate faces. Then, the normal vector on each 
triangle is estimated using 3D coordinate values of each point. 
In this research, an average value of each normal vector is used 
as the normal vector of a point, because we used the point cloud 
taken from a laser scanner that presents difficulties for 
measuring edges and corners clearly. These procedures are 
iterated to estimate the normal vectors of all points. 
 
2.3 Normal vector clustering for surface estimation 

Normal vectors of all points are grouped to detect regions in a 
range image as a point-cloud classification. The accuracy of 
point-cloud classification can be improved with several 
approaches such as the Mincut (Golovinskiy et al. 2009), 
Markov network-based (Shapovalov et al. 2011), and fuzzy-
based (Biosca et al. 2008) algorithms. However, in this study, 
we improved the accuracy with point-cloud interpolation and 
point tracking. Thus, we applied multilevel slicing as a simple 
algorithm to classify normal vectors.  
Moreover, building knowledge is used as a restriction in the 
normal vector and point-cloud classification. In general, walls 
in a room and building consist of parallel and orthogonal planes. 
Thus, four clusters in a horizontal direction are enough to detect 
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walls in a general indoor environment. Although cylindrical 
surfaces are divided into some clusters, these surfaces can be 
reconstructed using surface merging. The processing flow of 
normal vector clustering with restrictions is described below. 
First, stronger peaks are extracted from a histogram of normal 
vectors. More than one strong peak is required to detect seed 
points in each approximate 90° change in horizontal direction. 
Next, boundaries of clusters are generated from the peaks of the 
histograms. Then, the normal vectors and point clouds are 
grouped into four clusters. Finally, initial 3D surfaces are 
estimated from the grouped normal vectors and point cloud. 
This classification detected boundaries of point clusters with the 
same normal vectors. The point-cloud clustering methodology 
for extracting the intersection of planes as ridge lines requires 
appropriate initial values such as curvature, fitting accuracy and 
distances to closed points (Kitamura et al. 2010). However, our 
approach can extract boundaries from a point cloud without 
these parameters. 
 
2.4 Point-cloud interpolation with a rectangular template 

Estimated 3D initial surfaces are refined in a point-cloud 
interpolation procedure. In general, it is difficult to trace the 
boundaries of the initial surfaces because of holes and jaggy 
boundaries. Therefore, point-cloud interpolation is applied as a 
refinement of the initial surfaces in this procedure. 
When flat and cylindrical surfaces are projected into a range 
image based on a cylindrical model, these surfaces are 
represented as rectangles with the following two restrictions. 
The first restriction is that points have the same X- and Y-
coordinate values along the y-direction in the range image. The 
second restriction is that the points have the same Z-coordinate 
values along the x-direction in the range image. Based on these 
restrictions, point interpolation is applied along the x- and y-
directions in the range image, as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Point-cloud interpolation with a rectangular template 
in a range image 
 
The point interpolation is as follows. First, a rectangular 
template is fitted to projected points in a range image. Next, 
missing points are detected in the rectangular template. Finally, 
the missing points are interpolated using neighboring points. 
When other objects exist in a rectangular template, the 
overlapped area is excluded from point interpolation. 
 
2.5 Point tracing 

Boundaries of features can be estimated from the refined 
surfaces in a range. Moreover, 3D polygons can be extracted 
with topology estimation using these boundaries in the range 

image. In this procedure, a point tracing is required to connect 
points in 3D space along the boundary, as shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Point tracing 
 
In general, least squares fitting and polynomial fitting are 
applied to extract straight and curved lines from points. When 
the point cloud includes noise, RANSAC is a suitable approach 
to estimate a feature. However, these approaches require a 
decision whether straight lines or curved lines are to be 
extracted before the fitting procedure. In this paper, we wish to 
extract polygons with a combination of straight and curved 
lines. Thus, we propose point tracing based on the region-
growing approach to extract complex geometry as follows. First, 
a topology of points is estimated in a range image. When a 
polyline or polygon is drawn in a range image, continuous 3D 
points can be extracted. Next, a position for the next point is 
checked after a seed-point selection. In this step, the position is 
checked to find whether a possible next point exists or not 
within a candidate area for point tracing. The candidate area is 
determined using a vector from the previous point. When a 
point exists within the candidate area, it is connected to the 
previous point. Otherwise, the point is assumed to be an outlier, 
and the position of the point is rectified to a suitable position 
using the vector from the previous point. These steps are then 
iterated until the geometry is closed. Finally, 3D points are 
connected to represent a smooth 3D polygon. 
 

3. EXPERIMENT 

We used the Trimble Indoor Mobile Mapping System (TIMMS) 
integrated with an inertial measurement unit (IMU), a wheel 
encoder, a LiDAR system (TX5, Trimble), and an 
omnidirectional camera (Ladybug 5, Point Grey) (see Figure 6). 
We acquired a 880-million color point cloud with TIMMS (see 
Figure 7) in our university. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. TIMMS 
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Figure 7. Acquired point cloud 
 
An entrance foyer consisting of a large room (21.6 m × 21.6 m 
width) in our university were selected as our study area (see 
Figure 8). The study area consisted of flat and cylindrical walls, 
square and cylindrical pillars, a grilled ceiling, doors with glass, 
and windows. These objects were representative flat and 
cylindrical surfaces.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Study area 
 
In the experiment, we used a 450-million color point cloud from 
our dataset. Figure 9 shows a part of point cloud rendering 
results from a viewpoint in the foyer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Rendered point cloud 
 

4. RESULTS 

In our experiment, 72 points were extracted as viewpoint 
candidates for point-based rendering, as shown in Figure 10. 
The point cloud taken from TIMMS was rendered from these 
viewpoints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Viewpoint candidates 
 
Figure 11 shows results after point-based rendering and point 
clustering from a viewpoint. Figure 11 includes a depth image, 
a depth image, normal vectors, and initial labeled surfaces 
(overlay of depth edge and labeled surfaces).  
Each vertical axis shows height direction and each horizontal 
axis shows direction. Intensity values in the depth image 
indicate the depth from the viewpoint. Moreover, intensity 
values in the normal vectors and labeled surfaces indicate the 
horizontal direction of the point cloud. In addition, color values 
in the initial surfaces indicate labels of surfaces. In this 
experiment, spatial resolution was set as 0.2° in the horizontal 
direction and 2 cm in the height direction. 
Figure 12 shows a rendered point cloud from a viewpoint in 3D 
space. The left image shows the input point cloud and the right 
image shows a result after polygon extraction. Processing time 
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for the panoramic image conversion and polygon extraction was 
several minutes in total for each viewpoint using an Intel core 
i7 2.80 GHz processor with MATLAB (single thread). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Results after point-based rendering and point 
clustering 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Point cloud and polygon extraction result 
 

5. DISCUSSION 

Parts of the results of polygon extraction from the point cloud 
are shown in Figure 13. This figure includes examples of 
general building features, such as a flat wall and a cylindrical 
wall. Each row shows a result of point-cloud visualization and 
extracted polygon (boundaries). We have confirmed that point-
cloud interpolation in a range image achieved spike noise 
filtering and geometry smoothing. Moreover, we have 
confirmed that noise such as the pedestrian was also 
successfully filtered from the point cloud. 
Figure 14 shows integrated results for polygon extraction from 
72 viewpoints. Our approach extracted 980 polygons from the 
point cloud fully automatically. As shown in Figure 14, some 
polygons that were extracted were failures. Our investigation 
showed that these failures were caused by LiDAR measurement 
noise, such as light reflection errors and moving object 
measurement. Although noise was almost eliminated, the 
remained noise in the range image affected the point-cloud 
interpolation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Parts of results of polygon extraction from point 
cloud 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Integrated results in polygon extraction from 72 
viewpoints 
 
Moreover, the extraction of some features from the point cloud 
also failed, as shown in Figure 15. These failures were also 
affected by occluded areas and LiDAR measurement noise.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Failures in polygon extraction 
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6. SUMMARY 

We have proposed a method for panoramic rendering-based 
polygon extraction from indoor mobile LiDAR data. Our aim 
was to improve region-based point cloud cluster modeling after 
point-cloud registration. First, we have proposed a point-cloud 
clustering methodology for polygon extraction on a panoramic 
range image generated with point-based rendering from a 
massive point cloud. Our proposed methodology consisted of 
the viewpoint decision for point-based rendering, the point-
based rendering, the normal vector clustering for surface 
estimation, the point-cloud interpolation with a rectangular 
template, and point tracing. Next, we described an experiment 
that was conducted to verify our methodology with an indoor 
mobile mapping system (TIMMS) in an indoor environment 
that included flat and cylindrical surfaces. In this experiment, 
we extracted wall -surfaces using a rendered point cloud from 
72 viewpoints over a wide indoor area. Finally, we confirmed 
that our proposed methodology could achieve polygon 
extraction through point-cloud clustering from a complex 
indoor environment. 
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