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ABSTRACT: 

The existing civil structures must be maintained in order to ensure their expected lifelong serviceability. Careful rehabilitation and 

maintenance planning plays a significant role in that effort. Recently, construction information modelling (CIM) techniques, such as 

product models, are increasingly being used to facilitate structure maintenance. Using this methodology, laser scanning systems can 

provide point cloud data that are used to produce highly accurate and dense representations of civil structures. However, while 

numerous methods for creating a single surface exist, part decomposition is required in order to create product models consisting of 

more than one part. This research aims at the development of a surface reconstruction system that utilizes point cloud data efficiently 

in order to create complete product models. The research proposes using the application of local shape matching to the input point 

clouds in order to define a set of representative parts. These representative parts are then polygonized and copied to locations where 

the same types of parts exist. The results of our experiments show that the proposed method can efficiently create product models 

using input point cloud data. 

 

1. INTRODUCTION 

In Japan, many civil structures were built 40 or 50 years ago 

and are now approaching the end of their estimated service lives. 

Hence, the maintenance of existing civil structures is important. 

However, for economic reasons, it would be difficult to replace 

all of them, and the relevant authorities are now investigating 

ways to prolong structural serviceability. 

  

The use of information technology (IT) is efficient for the 

maintenance of civil structures. This is because, unlike 

conventional approaches depend on two-dimensional (2D) 

drawings, it provides better data aggression and management 

opportunities. In particular, product models are easy to 

understand and to use for managing maintenance information. 

For example, they can provide visualization for managing 

defects such as cracks and corrosions. Indeed, several 

construction companies have begun using product data not only 

during construction, but also for maintenance. This 

methodology is known as Construction Information Modelling 

(CIM) (Yabuki, 2012) inspired by Building Information 

Modeling (BIM) (Lee et al., 2006). 

 

However applying CIM techniques to existing infrastructures 

can be difficult. The primary issue is to find methods to create 

appropriate product models. Since the structures were 

constructed many decades ago, applicable product models do 

not exist, and manual modelling involves significant time and 

cost expenditures. 

 

Another option to create product models is the use of laser 

scanning technology, which can give us “as-built” models of the 

civil structures in the form of point cloud data. These geometric 

models, or polygon data, can be computed from point clouds 

using surface reconstruction algorithms (See a survey done by 

Berger et al., 2014). However, these methods usually create a 

single surface from the point cloud data. Thus, additional part 

decomposition is required. Although methods that can be used 

to decompose point cloud data already exist (such as, Adan et 

al., 2013), they have specific and require inefficient 

preparations such as machine learning. 

 

In this paper, we propose a method for creating product models 

from the point cloud data of existing civil structure. The 

primary idea is to use shape matching technology (Attene et al., 

2010) to decompose the input data into parts. This is due to the 

fact that the civil structures are often composed of similar 

element types that are repeated. Similar parts are then 

recognized as equivalent objects and they are represented by a 

single instance. Our method consists of three major steps. First, 

the input point clouds are decomposed into several parts based 

on geometric similarity. Second, polygon data are created from 

the representative parts. Third, the polygon data are arranged 

based on the input point cloud. 

  

The main advantage of this method is its ability to simplify the 

modelling process by using local shape matching. Our method 

performs best to model cases with repetitive identical parts, 

such as most of civil structures. This approach has the potential 

to handle incomplete point cloud data and reuse the results for 

other similar data sets. Moreover, our method can use several 

input point cloud data generated by different devices.  

 

2. RELATED WORK 

Several methods to create product models from point cloud data 

have been previously proposed. For example, Adan et al. 
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(2013) proposed a method for creating Building Information 

Model (BIM) of a school building using point cloud data.  

 

In order to enhance the accuracy of the point cloud accuracy, 

several point clouds from various viewpoints are adjusted to 

one point cloud. To accomplish this, the input point cloud was 

first decomposed into primitive surfaces. Support Vector 

Machine learning (SVM) is then used for recognizing wall, 

floors, ceilings and clutters. Next, surface parts, such as walls, 

were reconstructed at full scale. Finally, a BIM model including 

surface parts such as walls and openings, and windows and 

doorways was created. The resulting recall ratios of the actual 

building were about 80%. However, one of the walls was 

shorter than the others, presumably due to occlusion caused by 

objects such as tables and shelves. 

 

In another example, Matsuoka et al. (2014) proposed a method 

for creating product models from the point cloud of plumbing 

within a plant. In our method, simple parts, such as surfaces or 

pillars, were first detected. Then, the rest of the parts, such as 

tee, elbow, or torus components, were estimated using 

positional relations. The resulting recall ratios for surfaces and 

pillars were about 80%, and about 60% for all other parts. 

 

Nan et al. (2012) proposed a method for decomposing cluttered 

indoor point cloud data into furniture by replacing polygons 

with the most similar types in the database. In this method, the 

input point cloud was first roughly decomposed into level or 

curved surfaces. Next, several surfaces were combined into 

furniture using machine learning. As a result, recognition ratios 

of tables and chairs were over 90% in their experiments. 

However, the precision largely depends on the pose of the 

objects. 

 

3. PROPOSED METHOD 

3.1 Overview 

In our proposed method, the input point cloud is divided into 

similar parts and their representative parts are polygonised. 

Next, the method places the replication of the representative 

part in the matched target region of the model, automatically. 

Figure 1 shows an overview of proposed method. 

 

First, similar parts are located using a local shape matching 

method from the input point cloud (Figure 1(b)). Although 

many methods for finding similar regions already exist (Wang 

et al. 2008), most of these require other input data as search 

keys. In our research, search keys already exist in the input 

point cloud. 

 

Next, we divide the point cloud into similar and unrelated parts 

(Figure 1(c)). In the third step, representative parts are 

identified and polygonised (Figure 1(d)). These polygons are 

copied to locations where the same types of parts exist. (Figure 

1(e)). In this result, one input point cloud is translated into 

several polygons. We will explain this process in detail in the 

next section. 

 

3.2 Clustering by similarity 

Geometric similarity is evaluated by invariants called descriptor. 

The descriptor is an invariant of the shape usually defined by 

low-dimensional vectors. We use the shape context descriptor 

(Mori et al., 2005). This is a normalized 2D histogram 

consisting of length l and angle between arbitrary point pairs  

 (Figure 2). Note that this descriptor is designed for whole 

shape matching whereas our purpose is local shape matching. 

We calculate this for each subset of the point cloud in the 

region defined by a sphere with radius r (Figure 3(a)). 

 

Similarity between two descriptors are evaluated by the square 

root of the products of coefficients as shown in Equation 1 
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where Hij denotes a coefficient of the histogram. 

 

Since we define the descriptor for all points, the computational 

load of similarity evaluation becomes high. We introduce an 

efficient pruning of the descriptors inspired by Attene et al., 

(2010). Figure 3 shows an overview of the procedure. First the 

keypoints of the input point cloud are chosen. Second, one of 

the keypoints is chosen at random to serve as “seed point”. 

Third, similar regions to the seed region are searched. Here 

unsimilar points are rejected in order to reduce the 

computational load. We repeat this procedure with gradually 

enlarging radii until all seed points are examined.  

Input point cloud

 

Search similar parts

 
(a) (b) 

Segmentation

Part 1

Part 2

Other

 

Polygon

×4

×2

×1

 
(c) (d) 

Arrangement

 

 

(e)  

Figure 1. Overview of our proposed method 

 

 
Figure 2. Graphical description of shape context descriptor 
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Figure 4 Overview of searching keypoints method 

 

Since it would be highly inefficient to use every point in the 

same manner as the seed points, we limited seed point selection 

to keypoints, which we defined as intersection points of three 

surfaces. Figure 4 shows an overview of this method.  

 

First, region growing is used to cluster the surfaces of the input 

point cloud (Ballard et al., 1982). Region growing is a method 

that identifies region based on certain defined conditions. 

Planer region can be extracted by this method. Next, we extract 

keypoints or unique points of the point clouds. The unique 

points appear at the corner of the models. In order to detect 

them, we evaluate the number of clusters in the spherical 

supports. For each point, we define sphere with radius r, and 

check how many clusters are in the sphere. In case of 1 and 2, 

the region are considered as plane and sharp edges, respectively. 

Yet, corners must have 3 or more clusters (Figure 4(a)). Since 

this computation is applied to all the points, many neighbouring 

points are recognized as corner points (Figure 4(b)). We select 

the closest to the average points of the clusters as the keypoints 

(Figure 4(c)).  

 

3.3 Part decomposition and polygonization 

The result of clustering of a single point cloud, and we 

decompose this into individual parts using connected 

component labelling. The graph is constructed when the point 

pairs are enough near (<r) (Figure 5). Figure 6 shows the result 

of decomposition. After dividing the data, we choose 

representative parts and polygonise them by common surface 

reconstruction algorithms (e.g. Poisson surface reconstruction 

(Kazhdan, et al., 2006).  

 

3.4 Alignment into point cloud 

The final step is to align the representative polygons into the 

point cloud (Figure 7) by iterative closest point (ICP) algorithm 

(Besl and McKay, 1992). ICP yields a good result when good 

initial alignment is given. In this research, correspondence 

 
Figure 5. Graphical description of decomposition by Euclidean 

distance 

  

 
Figure 6. Result of decomposition.  
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Figure 7. Graphical description of ICP 

 

between similar objects are already established and this can be 

used for initial alignment.  In ICP, closest points are chosen as 

candidates of corresponding points and rigid transformation 

between corresponding points are computed in the least square 

manner.(Figure 7(b)). ICP iterates this process until the error 

between the points are locally minimized. 

 

4. EXPERIMENTAL VALIDATION 

4.1 Experiments 

We conducted an experiment in which a point cloud data was 

applied to a harbour breakwater located alongside the Naruo 

River in Nishinomiya City, Hyogo Prefecture, Japan. The 

scanned area of the breakwater was 100 m long and 

approximately 3 m high. Scanning was performed by mobile 

mapping systems (MMS). Figure 8(a) shows a photograph of 

the breakwater, and Figure 8(b) shows the point cloud. The 

laser scanner used on the MMS was using the time-of-flight 

method. The number of scanned points was 1,107,956 and the 

average distance between points were 3 - 6 cm. 

 

Two different supports with different sizes can be seen in Figure 

8(c) and (d). A pentagon-shaped loss was found to have 

occurred due to a blockage by a billboard. In our experiment, 

unnecessary data such as trees and buildings were manually 

removed from the raw scanned data. Additionally, since it was 

not necessary to examine the surface parts of walls and roads to 

determine whether they could be considered similar, they were 

automatically clustered using region growing (Figure 9). After 

these preparations, the number of points in the input cloud was 

reduced to 141,270. 

 

In our experiment on local similarity shape matching, a range of 

radii r and a threshold of degree of similarity d were set. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Overview of local shape matching method 
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(a) 

 
(b) 

 

 

(c) (d) 

Figure 8. Experimental target 

 

 
Figure 9. Surface-part clustering result 

 

4.2 Results 

First, we searched for input point cloud keypoints. Figure 10 

shows the keypoints sampling results. 19 keypoints are detected 

in our case study and selected as seed points. 

 

Second, we searched for similar parts. Figure 11 shows results 

of local shape similarity matching when r is set as 1.2 and d as 

0.8. After first decomposition of the point cloud of all similar 

parts, it was further decomposed into two types of parts, as 

shown in Figure 12. Ultimately, the input point cloud was 

decomposed into five types of parts (Figure 13) and 18 parts are 

decomposed.  

 

Third, we decomposed the results into stand-alone parts and 

representative parts for polygonization. Representative parts are 

indicated by arrows in Figure 13. Figure 14 shows results 

polygonizing the representative parts. 

 

Fourth, we translated the resulting polygons into a point cloud 

by using parallel translation and ICP. Figure 15 shows the 

results of polygonizing each part and their arrangement. 

Computation of local similarity shape matching took 53.492 sec. 

Other computations took less than 1 sec. We used a common 

PC (Intel Core™ i5-3570K CPU @ 3.40 GHz) in this 

experiment. 

 

4.3 Discussion 

While our method, which was designed to find similar parts 

from an input point cloud via a local shape matching technique, 

was able to roughly decompose the point cloud into parts, it was 

not able to completely classify two types of parts. Since this 

method used spheres, decomposed parts often had extra points 

outside of the part. 

 

In this experiment, extra points were located on the surface 

parts such as walls and roads and resulted from the parts having 

decomposed over time. However, in order to accept various 

point clouds, it will be necessary to devise a method of rejecting 

the extra points of such parts. 

 

Additionally, it should be noted that this harbour area runs 

along a slope, and that breakwater height gradually decreases. 

This low-height region was not used for our experiment. 

However, since such civil structures exist and must be taken 

into consideration, it will be necessary to broaden, magnify, or 

shrink point cloud data or polygons in the future. 

 

5. CONCLUSION 

In this study, we proposed a method that can be used to 

efficiently create product models from the point cloud data of 

civil structures. Our primary idea was to find similar parts via 

local shape matching and translate those into the same polygons. 

We evaluated our method using the point cloud of a harbour 

area that contains two types of supports. The results showed 

that our method was capable of decomposing the point cloud 

into parts and arranging them in a way that matched the actual 

structure. Thus, we conclude our proposed method is capable of 

roughly decomposing the point clouds of civil structures into 

parts arrange into product models. 

 

Our future work will focus on two issues: (1) to improve part 

decomposition by rejecting extra points which fall outside of 

parts, and  (2) to evaluate our method by using the point clouds 

generated by other scanning devices. 
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Figure 10. Keypoints sampling result 

 

 
Figure 11. Local shape matching result 

 

 
Figure 12. Decomposition result 

 

 
Figure 13. Final decomposition result 

 

 

 
 

(a) (b) 

 

Figure 14. Results of polygonizing each part 

 

 

 
Figure 15. Results of arranging polygons into a point cloud 
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