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ABSTRACT: 

 

This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many 

human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in 

advance of human tracking process. In real situation these parameters may change according to situation of observation and 

difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state 

space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then 

referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, 

which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient 

with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that 

sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions. 

 

 

1. INTRODUCTION 

Human tracking method is classified into two manners. One is 

that in each frame human candidates are detected and then the 

same person is identified in adjacent frames. The other is that, 

in each frame, each human position is predicted from that of 

previous frame and then accurate position is calculated by a 

stochastic model using observed information. As we can 

consider pedestrian behaviour model for successive frames, this 

method has an advantage to tracking many persons 

simultaneously in complex situations in which occlusions and 

proximities are occurred (e.g. Ali and Dailey, 2009; Nakanishi 

and Fuse, 2012). Mathematically this method should be solved 

as a stochastic process. Typical formulation for this method is 

based on Bayesian statistics; predicted position is described by 

prior distribution, observed information corresponds to data and 

accurate position to posterior. When we use this method, we 

should define a likelihood function that describes likelihood of 

observed information occurred by given predicted position. We 

call this likelihood function “observation model” in human 

tracking method (explained later in detail). This paper aims at 

an estimation of parameters of observation model, that is,  

person recognition model, using a sequential Bayesian filtering 

method. We especially deal with a stochastic process for human 

tracking mentioned above. 

 

A main problem on human tracking from sequential images is to 

identify the same person in successive frames. When we acquire 

colour information from an image, we use a human detection 

model to detect and then identify a person in adjacent frames. 

Any models used here have some parameters that correspond to 

sensitivity and thresholds. Usually this parameters are set 

empirically or adjusted to data in advance of tracking process. 

This means that we have to set models and parameters 

according to observations every time. We cannot directly apply 

a setting on one observation site to another. Moreover, we 

might have to change model settings on the same observation 

site on different time or day. 

 

Thus in this paper we apply sequential Bayesian filtering to an 

estimation of this parameters and update parameters according 

to observations at each frame. We call this updating as an 

adaptive estimation. In addition to an advantage that parameters 

are automatically adjusted to change in observation situations as 

mentioned above, this adaptive estimation can deal with 

differences in prediction accuracy in a tracking process. When 

we use stochastic process like general state space model for 

tracking, an estimated human position is determined by both 

prediction by previous human position and detection by present 

observation. Therefore if prediction is quite accurate, then 

sensitivity of detection can be high; Sensitivity parameters can 

be set large, or thresholds parameters can be set high. In 

contrast, if prediction is uncertain, then detection sensitivity 

should be low. 

 

In previous research (Nakanishi and Fuse, 2012) we assume a 

tracking process as a data assimilation process and describe it in 

a form of general state space model. Human position and size 

are defined as unobservable variables: state vectors, and 

stochastic pedestrian behaviour model is introduced into a 

system model. We assume that state vectors generate colour 

images according to a person recognition model: an observation 

model. We applied Bhattacharyya coefficient (Bhattacharyya, 

1943) to formulate an observation model. While even we use 

only Bhattacharyya coefficient to formulate an observation 

model, we have slight knowledge about function forms and 

parameter settings that bring good observation models. 

Although experimental tests have been conducted in some 

function forms and parameters (Nakanishi and Fuse, 2014), 

parameters are decided in advance there. 

 

In this paper we sequentially estimate a parameter of some 

observation models using general state space model. From this 

estimation we consider good parameters correspond to 

prediction and observation situations; how parameters should 

be according to prediction and observation accuracy. 
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2. MODELLING FRAMEWORK 

2.1 General State Space Model 

Firstly we explain a general state space modelling (Figure 1) 

and its application to human tracking (Nakanishi and Fuse, 

2012). In this modelling, we can estimate a dynamics of 

unobservable variables. A state vector xt is a set of 

unobservable variables at time t that we will estimate a true 

value. An observation vector zt is a set of observable variables 

at time t. A system model p(xt|xt-1) is a conditional density 

function that represents a dynamics of a state vector. An 

observation model p(zt|xt) is also a conditional density function 

that represents a likelihood of realisation of zt given xt. After we 

obtain z1:t = {z1, z2,..., zt}, a series of observations from time 1 

to t, the posterior distribution of xt is calculated by Bayes’ 

theorem as follows: 
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In this equation, p(zt|xt) is an observation model: human 

recognition model, p(xt|xt-1) is a system model and p(xt-1|z1:t-1) is 

the estimation result at time t-1. 

 

If we need the estimated value for xt, following values are 

usually used (Jaynes, 2003). 

(a) Posterior mean: An expected value of p(zt|xt). 
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(b) Posterior mode: Maximum a posteriori 
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(c) n percentile of the posterior: A value that cumulative 

frequency of posterior equals to n percent 
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Figure 1.  General state space model 

 

 

We use particle filter (Gordon, et al., 1993; Kitagawa, 1996) for 

calculating equation (1), for some models are assumed to be 

non-linear. In this work we use 65536 particles to approximate 

posteriors. We also use Halton sequences (Halton, 1964) to 

generate prior (predictive) distributions. They are typical quasi-

random number sequences. Thus good approximation of 

posteriors with less number of particles is expected. 

2.2 Self-Organizing Modelling 

Now we consider that a set of parameters θ of observation 

model is also unobservable. This means that parameters of a 

person recognition model can take different value from time to 

time. We introduce θ into state vector as follows (Kitagawa, 

1998): 
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Then we can describe system and observation models as follows. 
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Here we assume that a system model of parameters θ: p(θt|θt-1) 

is random walk model. Then we can calculate a posterior in the 

same way as equation (1), 
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Marginal distributions are calculated as  

 

 

   1: 1:| |t t t t tp p d x z x z θ  (9) 

   1: 1:| |t t t t tp p d θ z x z x  (10) 

 

 

We obtain this posteriors at each time instant t; Equation (9) is 

estimated positions and (10) is estimated parameters at each 

time. These are the estimated results in this paper. 
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3. MODEL SETTINGS 

3.1 State Vector and Observation Vector 

We use “BEHAVE” dataset (Blunsden and Fisher, 2010; Figure 

2) for analyses. This dataset provides sequential images and 

ground truth of human positions and sizes of rectangles on these 

images. We define four-dimensional xt, representing human 

position and its size, considering an inscribed ellipse in the 

rectangle (equation (11)). We also define zt as colour values at 

each pixel inside the ellipsoid (equation (12)). We define state 

and observation vectors at one second intervals. This means that 

we predict each second human position of one second after. 

And we also use colour information from images every one 

second. 

 

 

 , , ,
T

x yx y a ax  (11) 

 , ,
T

xy xy xy xyr g bz  (12) 

where x, y = coordinates of each pixel on images 

ax, ay = ellipse’s semidiameter of x and y 

respectively 

rxy, gxy, bxy = corresponding colour value  

at pixel (x, y) 

 

 

 
Figure 2. Example of used dataset 

 (Blunsden and Fisher, 2010) 

 

 

3.2 System Model 

System model in this paper describe a difference of positions 

and sizes of the same person in successive frames. We consider 

only changes in positions and assume that sizes are predicted 

precisely at each frame. Then we set system model in two 

manners. One is that we set it as difference of true values. This 

means that relative value of position change is precisely 

predicted. The other is that we set it with error terms in addition 

to relative position changes. Details are explained later. 

3.3 Observation Model 

We build a model of p(zt|xt) as follows, using Bhattacharyya 

coefficient B and a parameter c (Figure 3): 
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where B = Bhattacharyya coefficient 

i = pixel value 

r, g, b = corresponding colour 

p, q = normalized histogram of previous and   

predictive position respectively 

pm = relative frequency of pixel value m in    

histogram p  

 

 

As shown in equation (13), the domain of Bhattacharyya 

coefficient is [0, 1]. Here an integration of equation (15) with 

interval [0, 1] is one for any B and c. This fact theoretically 

guarantee that adaptive estimation can be done. This parameter 

c corresponds to θ in Chapter 2 in following part of this paper. 

 

 
Figure 3. Observation model with parameter B and c 

 

 

4. EXPERIMENTAL RESULTS 

4.1 Settings 

We conduct experiments on dataset mentioned above in five 

settings shown in Table 4.  

 

Firstly we set initial state vectors as a true value from the 

dataset and system models as a true model: the difference 

between true values of successive frames. We set several 

patterns for the parameter’s initial value and system models of 

that parameter. These are setting 1-3. Initial value of c in setting 

1 and 2 are decided as the maximum likelihood estimator that is 

calculated using dataset itself. In contrast, that of setting 3 is 

smaller value. The difference between setting 1 and 2 is 

variance of system model of c; in setting 2 system model of c 

has large variance than that of setting 1. 

 

Secondly we change system models and initial values of human 

position. These are setting 4 and 5. This is natural assumptions; 

the former setting is corresponding to uncertainty in prediction 

models, and the latter in detection models. This time we get not 

only the posterior of the parameter but also the posteriors of 

human position. 

4.2 Results and Discussions 

It is difficult to evaluate an accuracy of estimation of state 

vectors, for state vectors themselves cannot be observed. So in 

this paper we discuss results qualitatively. We take a result of 

one person as an example to explain and discuss about results. 

We confirmed that similar tendencies are common among other 

persons. Results are shown in Figure 5. Solid lines show 

posterior mean and dashed lines show 25, 50 and 75 percentiles 

respectively. 
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Table 4. Setting for analyses 

Setting Initial value of c Initial error of position System model of c Noise of system model of position 

1 8.52 0 ct~N(ct-1, 0.1) 0 

2 8.52 0 ct~N(ct-1, 0.5) 0 

3 2.00 0 ct~N(ct-1, 0.1) 0 

4 2.00 0 ct~N(ct-1, 0.1) N(0, diag(25)) 

5 2.00 5 pix for x-y each ct~N(ct-1, 0.1) N(0, diag(25)) 

 

 

Setting 1 Setting 2 Setting 3 

   
   

Setting 4 Setting 5  

  

 

   

Solid lines show expected values of posteriors; Dashed lines show 25, 50 and 75 percentiles respectively; 

t is frame number and framerate is 25 [fps]. 

 

Figure 5. Posterior distributions of parameter c in each setting 

 

 

Setting 4 - x  Setting 4 - y 

  
  

Setting 5 - x  Setting 5 - y 

  
  

Solid lines show expected values of posteriors; Dashed lines show 25, 50 and 75 percentiles respectively; 

t is frame number and framerate is 25 [fps]. 

 

Figure 6. Posterior distributions of positions in each setting 
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In setting 1-3, sequential Bayesian estimation are succeeded and 

posterior distributions are similar to each other. We also found 

that the value of parameter is low when a person is occluded by 

other person: around frame #8200 and #9200. This is the 

expected tendency, for Bhattacharyya coefficient is low when 

occlusions occur. This showed that adaptive parameter 

estimation was useful in that values of parameter changed 

according to observation situations. 

 

In setting 4, when noise of system model is large, the accuracy 

of position estimation became low when there were occlusions. 

This is consistent with the results of setting 1-3 above. And 

after frame #10000 we found that the parameter value became 

slightly high. This is because once we lost an accurate position 

of a person, then we compared two histograms composed of 

background pixels. This fact is also shown from position’s 

marginal posteriors. Figure 6 shows posteriors of residual 

(relative value to ground truth). If shape of this distribution is 

sharp around zero, estimations are good. Actually from around 

frame #10000 we lost the accurate position in each coordinates 

x and y. Especially y coordinates was difficult to predict 

precisely, for a little difference in y value cannot be affected to 

shape of colour histogram; clothes tended to be the same colour 

in upper and lower pixels of a certain pixel, and also 

background pixels be the same colour in upper and lower of a 

certain person. In setting 5, very similar tendency to setting 4 

was shown. 

 

In summary, the observation model in this paper can deal with 

prediction errors that are less than 10 pixels, otherwise it is 

difficult to correct errors and estimate precise positions of 

persons. In order to achieve successful tracking in such a case, 

parameter value should be kept low during low accuracy of 

prediction. Also it may bring about good result to introduce 

foreground detection model into proposed model and to use 

only foreground pixels to make histograms.  

 

 

5. CONCLUSION 

In this paper we estimated the parameter of person recognition 

model adaptive to observation data by using sequential 

Bayesian filtering. After formulate the estimation, we applied 

the proposed method to dataset. From results we showed that 

appropriate parameter changes from time to time according to 

the situation of observation and prediction. Also we discussed 

about the tendency of parameter change by comparing 

parameter values and some settings for parameter estimation. 

Basically the results were consistent with settings and situations. 

Thus we could confirm that sequential Bayesian filtering is a 

useful way to deal with time and space varying parameter 

estimation. 

 

Future works are as follows. Firstly we conduct such analyses 

on other models. For example, we combine the models with 

foreground detection models to deal with larger prediction 

errors. Also we employ models with more than one parameter to 

deal with more complex situations. At last we try to find the 

way to formulate observation models themselves, not only their 

parameters, according to the dataset. To achieve such 

estimations with larger calculation amount, we have to consider 

how to approximate posteriors by smaller particles. An 

application of merging particle filter (Nakano et al., 2007) or 

Rao-Blackwellisation (Casella and Robert, 1996) is one 

possible way. 
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