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ABSTRACT: 

 

Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and 

lifelong robotic assistance. So far, Monte Carlo Localization (MCL) has given one of the promising solutions for the indoor 

localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL 

approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a 

few hundreds millimetre error at up to a few FPS) or is not fully verified with the precise ground truth. Therefore, the purpose of this 

study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial 

laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed 

as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further 

improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic 

particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization 

accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-

based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a 

few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less 

number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency. 

 

 

1. INTRODUCTION 

With recent interest in indoor navigation and lifelong robotic 

assistance for human life support, there is an increased need for 

more effective and accurate localization method in three 

dimensional indoor environments. The localization is the 

ability to determine the robot’s position and orientation in the 

environment. So far, three typical methods have been proposed 

for the indoor localization; (1) based only on internal sensors 

such as an odometry or an inertial navigation, (2) utilizing 

observations of the environment from outer sensors in an a 

priori or previously learned map such as Monte Carlo 

Localization (MCL), and (3) relying on infrastructures 

previously-installed in the environments such as distinct 

landmarks such as bar-codes, WiFi access points or 

surveillance camera networks (Borenstein et al., 1997).  

  

Among them, MCL gives one of the promising solutions for the 

localization when previously created environment map is 

available and the system installation should be realized at a low 

cost. The MCL is a kind of probabilistic state estimation 

methods (Thrun et al., 2005) which can provide a 

comprehensive and real-time solution to the localization 

problem. However, previous work of MCL has been mostly 

limited to 2D motion estimation in a planar map using 2D laser 

scanners (Dellaert et al., 1999; Thrun et al., 2001). Recently, a 

few 3D MCL approaches have been proposed where rough 3D 

models and consumer-level depth cameras are used as the 

environment maps and outer sensors (Fallon et al., 2012; 

Hornung et al., 2014; Jeong et al., 2013). However, their 

localization accuracy and efficiency still remain at an 

unsatisfactory level (a few hundreds millimetre error at up to a 

few FPS) (Fallon et al., 2012; Hornung et al., 2014), or the 

accuracy is not fully verified using the precise ground truth 

(Jeong et al., 2013).  

 

Therefore, the purpose of this study is to improve an accuracy 

and efficiency of 6DOF motion estimation in 3D Monte Carlo 

Localization (MCL) for indoor localization. To this end, firstly, 

a terrestrial laser scanner is used for creating a precise 3D mesh 

model as an environment map, and a professional-level depth 

camera is installed in the system as an outer sensor. GPU scene 

simulation is also introduced to upgrade the speed of prediction 

phase in MCL. Moreover, GPGPU programming is 

implemented to realize further speed up of the likelihood 

estimation phase, and anisotropic particle propagation is 

introduced based on the observations from an inertia sensor in 

MCL. The improvements in the localization accuracy and 

efficiency are verified by the comparison with a previous 3D 

MCL method (Fallon et al., 2012). 

 

      

2. 3D MONTE CARLO LOCALIZATION 

Monte Carlo Localization (MCL) is one of probabilistic state 

estimation methods (Thrun et al., 2005) using observation from 

outer sensor. The position and orientation of a system to be 

estimated is expressed by a state variable. A probability density 

function of the state variables is represented approximately by a 

finite set of “particles” each of which expresses a discrete 

instance of the state variables, and a progress of the probability 
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distribution is estimated by repeating propagation, likelihood 

evaluation and weighting based on the observation, and 

resampling of the particles.  

    

The 3D MCL algorithms of our study are extensions of the 

previous 3D MCL approach which made use of GPU scene 

simulation (Fallon et al., 2012). As our extensions, in order to 

increase the accuracy of a map and an outer sensor, a terrestrial 

laser scanner is introduced for creating a precise 3D mesh 

model as an environment map, and a professional-level depth 

camera is installed as an outer sensor. Moreover, in our second 

extensions, a GPGPU programming is implemented to realize a 

speed up of the localization process, and an anisotropic particle 

propagation based on the observations from an inertia sensor is 

introduced in order to increase the localization accuracy.  

 

Figure 1 shows a flow of our baseline 3D MCL algorithm. The 

state variable 𝒙𝑡 = [𝑥𝑡 , 𝑦𝑡, 𝑧𝑡, 𝜑𝑡 , 𝜃𝑡 , 𝜓𝑡] denotes a 6-DOF pose 

of the depth camera at a time step 𝑡 , and a probability 

distribution of 𝒙𝑡 is expressed by two different set of particles 

𝒳𝑡|𝑡−1and 𝒳𝑡|𝑡 as Eqs (1) and (2).  

 

 𝒳𝑡|𝑡−1 ≡ { 𝒙𝑡|𝑡−1
(𝑖)

 }                                            (1)   

    

 𝒳𝑡|𝑡      ≡ { 𝒙𝑡|𝑡
(𝑖)

  }                                              (2)   

    

where, 𝒳𝑡|𝑡−1 is called a predicted distribution, 𝒳𝑡|𝑡 is called a 

filter distribution, and 𝒙𝑡|𝑡−1
(𝑖)

 and  𝒙𝑡|𝑡
(𝑖)

 represent an i-th particle 

of each distribution respectively.  

 

The depth camera pose 𝒙𝑡  can be estimated by the following 

steps;  

 

1) Initialization: An initial filter distribution 𝒳0|0 at 𝑡 =0 is 

created by assigning a same state 𝒙0|0 into all of the 

particles in the distribution as Eq(3). 

 

 𝒳0|0 = {𝒙0|0, 𝒙0|0, … . . . , 𝒙0|0}                          (3)

    

2) Propagation: A predicted distribution 𝒳𝑡+1|𝑡  of the next 

time step 𝑡 + 1  is generated from a current filtered 

distribution 𝒳𝑡|𝑡  by applying a system model of 6-DOF 

motion of the depth camera. In the baseline algorithm, the 

system model is given by a Gaussian noise model as Eq(4). 

 

 𝒙𝑡+1|𝑡
(𝑖)

=  𝒙𝑡|𝑡
(𝑖)

+ ℵ(𝟎, 𝛔𝟐)                                  (4)

   

where, ℵ(𝟎, 𝛔𝟐)  is a 6D normal random numbers with  

variances  𝛔𝟐 = [𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝑧
2, 𝜎𝜑

2, 𝜎𝜃
2, 𝜎𝜓

2  ].  By substituting 

𝒙𝑡|𝑡−1
(𝑖)

 with 𝒙𝑡+1|𝑡
(𝑖)

 in 𝒳𝑡|𝑡−1 ,  a predicated distribution at 

the next time step is updated to 𝒳𝑡+1|𝑡. 

 

3) GPU scene simulation:  As shown in Figure 2, a set of 

simulated depth images is generated in a premade a 3D 

mesh model of an environment map. Each simulated depth 

image 𝑍(𝑖)
𝐺  is easily obtained by GPU rendering whose 

viewpoint coincides with a camera pose expressed by an i-

th particle  𝒙𝑡+1|𝑡
(𝑖)

∈ 𝒳𝑡+1|𝑡 in the predicted distribution. In 

this study, an OpenGL function glReadPixels() is used to 

quickly obtain an two-dimennsional array of normalized 

depth values of 𝑍(𝑖)
𝐺  from a depth buffer of GPU in one go.     

 

4) Likelihood estimation and weighting:  A raw depth 

image  at time step 𝑡 + 1 is captured from the depth 

camera, and then a simple moving average filter among 

consecutive frames is applied to the image to suppress 

noises of depth values. This filtered depth image is also 

rendered by GPU to generate a rendered actual depth 

image 𝑍𝐷  which has a same image format as a simulated 

image 𝑍(𝑖)
𝐺 . Then  𝑍𝐷  is compared with each of the 

simulated image 𝑍(𝑖)
𝐺 . As a result of the comparison, a 

likelihood of i-th particle  𝑙(𝑖) ∈ [0, 1] is evaluated by 

Eqs(5) and (6). 

 

       𝑙(𝑖) = ∑ 1 −
|𝑧𝐷

𝑗
− 𝑧(𝑖)

𝑗
|

0.5 + |𝑧𝐷
𝑗

− 𝑧(𝑖)
𝑗

|

𝑀

𝑗=1

                                    (5) 

 

             𝑙(𝑖) =
𝑙(𝑖) − 𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛

                                                     (6) 

 

where, 𝑧𝐷
𝑗

 is a depth value at a pixel 𝑗  in the rendered 

actual depth image 𝑍𝐷 , 𝑧(𝑖)
𝑗

 is a depth value at a pixel 𝑗 in 

the simulated image 𝑍(𝑖)
𝐺  corresponding to an i-th particle, 

Figure 2.  GPU scene simulation 

Figure 1.  Our 3D MCL baseline algorithm 
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and  𝑀 is the number of pixels in a depth image.  𝑙𝑚𝑎𝑥 and 

𝑙𝑚𝑖𝑛 are the maximum and minimum likelihood values 

respectively among elements of a set {𝑙(𝑖)}  each of which 

is evaluated by Eq(5) corresponding to an i-th particle. 

Using Eq(6), a normalized likelihood value 𝑙(𝑖)(∈ [0, 1]) 

for an i-th particle can be obtained. 

  

Once a normalized likelihood value 𝑙(𝑖)  is obtained, a 

normalized weight 𝓌(𝑖)(∈ [0, 1])  is assigned to the  𝑖 -th 

particle in the predicted distribution 𝒳𝑡+1|𝑡 based on  𝑙(𝑖) 

as Eqs(7) and (8). 

 

             𝓌̃(𝑖) = exp [−
(𝑙(𝑖)−1)

2

0.052
]                                       (7) 

 

             𝓌(𝑖) =
𝓌̃(𝑖)

∑ 𝓌̃(𝑖)
𝑁
𝑖=1

                                                      (8) 

 

where,  𝑁 is the number of particles. 

 

5) State estimation and resampling: The most probable 

estimate of the depth camera pose 𝒙𝑡+1 is obtained as a 

weighted sum of the particles in 𝒳𝑡+1|𝑡 as Eq(9). 

 

            𝒙𝑡+1 = ∑ 𝓌(𝑖)𝒙𝑡+1|𝑡
(𝑖)

𝒙𝑡+1|𝑡
(𝑖)

∈𝒳𝑡+1|𝑡
                           (9)         

 

Finally, a new filtered distribution  𝒳𝑡+1|𝑡+1 is recreated 

by resampling particles in 𝒳𝑡+1|𝑡  so that an existence 

probability of i-th particle approximately equals to 𝓌(𝑖).  

Roulette wheel selection method (Doucet et al, 2001) is 

used for the resampling.  

 

By repeating the above from step 2) to 5), the particle 

distribution can be updated according to the observation from 

the depth camera, and state estimation of the camera pose 𝒙𝑡 is 

sequentially updated. GPU rendering is introduced in step 2) 

for generating 𝑁 simulated depth images in real time.  

 

 

3. EFFICIENCY IMPROVEMENT OF THE 

LOCALIZAITON BASED ON GPGPU PROGRAMMING 

As shown in Figure 3-(a), in our baseline MCL algorithm 

described in section 2, processing other than GPU scene 

simulation (step 2)) are executed by CPU, and every simulated 

depth image 𝑍(𝑖)
𝐺  which is rendered in GPU has to be uploaded 

directly to CPU right after the rendering using an OpenGL 

function glReadPixels().As a result, (𝑁 × 𝑀 × 𝐷) byte data has 

to be uploaded in all from GPU to CPU in every time step, 

where N means the number of total particles,  𝑀 is the number 

of pixels in a depth image, and 𝐷 is the number of bytes of one 

pixel data. In our setting, a professional-level depth camera 

(SR4000) is used, and it generates a depth image of 176×144 

pixels in every frame. When a float-type variable (4 bytes) is 

used per pixel and 100 particles are included in a distribution, 

around 10Mbyte data has to be uploaded from GPU to CPU in 

every frame. Due to relatively slow execution speed of 

glReadPixels(), its transmission delay is not negligible, and it 

was observed that the delay caused a considerable bottleneck of 

the baseline MCL algorithm.    

 

To reduce this delay, General Purpose computing on GPU 

(GPGPU) (Eberly, 2014) is introduced in the algorithm so that 

the GPU takes both GPU scene simulation (Step 2)) and 

likelihood estimation (Step 3)) as shown in Figure 3-(b). The 

parallel processing of likelihood estimations for all particles 

can be handily implemented in GPGPU. In the GPGPU 

implementation, the simulated depth image 𝑍(𝑖)
𝐺  is directly 

rendered using GLSL (OpenGL Shading Language). And using 

CUDA (Sanders et al., 2010), a resulting rendered image can be 

compared with the rendered actual depth image 𝑍𝐷 , and 

likelihood estimation and weighting can be processed on the 

GPU without transferring any simulated depth image data to 

the CPU.  Finally, only a set of weights of the particles  {𝓌(𝑖)} 

only has to be transferred  from GPU to CPU.  Moreover, a 

likelihood value at a pixel 𝑗 in the right hand side of Eq.(5) can 

also be evaluated independently of the other pixel. So we 

parallelized this pixel-wise likelihood calculation using CUDA. 

 

As a result of this implementation, a set of weights {𝓌(𝑖)} 

whose data amount is around (𝑁 × 𝑊) byte (𝑊: a number of 

bytes per one weight) in total only has to be uploaded from 

GPU to CPU per every frame. This can significantly reduce the 

data amount to be uploaded to about 400Byte.  The effect of the 

implementation on our localization performance is explained in 

5.2. 

 

 

4. ACCURACY IMPROVEMENT OF THE 

LOCALIZAITON WITH THE AID OF  

AN INERTIA SENSOR 

As the other approach for the accuracy improvement in the 

localization, a small 6-DOF inertial measurement unit (IMU) is 

installed in the system. With the aid of this IMU, the 
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anisotropic particle propagation based on an actual observation 

from the IMU can be introduced in the propagation step 

(Step1)) in MCL.  

 

Different from Gaussian-based isotropic particle propagation in 

the baseline MCL, more particles are allocated adaptively along 

the direction of the measured acceleration and angular 

acceleration given from the IMU. In the propagation step in the 

MCL, this anisotropic particle propagation is easily 

implemented by replacing the original propagation equation 

Eq(4) with Eq(10). 

 

 𝒙𝑡+1
(𝑖)

=  𝒙𝑡
(𝑖)

+ ℵ(𝒅𝑡, 𝛔̂𝟐)                                (10)
  

where, 𝒅𝑡 = [ 𝑑𝑥𝑡, 𝑑𝑦𝑡 , 𝑑𝑧𝑡 , 𝑑𝜑𝑡, 𝑑𝜃𝑡 , 𝑑𝜓𝑡  ]   is a 6D estimated 

positional and rotational displacements derived from the 

numerical integration of the measured acceleration and angular 

acceleration of IMU at time step 𝑡.  We also assume from the 

observation that  a standard deviation of each displacement in 

the system model is comparable to the estimated displacement 

𝒅𝑡, and therefore set as  𝛔̂𝟐 = [ 𝑑𝑥𝑡
2  , 𝑑𝑦𝑡

2  , 𝑑𝑧𝑡
2  , 𝑑𝜑𝑡

2  , 𝑑𝜃𝑡
2  , 𝑑𝜓𝑡

2  ]. 

 

 

5. EXPERIMENTS 

5.1 Setup 

The improvement in efficiency and accuracy is verified in 

localization experiments in an indoor environment. Figure 4 

shows our experimental setup. As shown in Figure 4-(a), a 

professional-level depth camera (SR4000, TOF camera, Pixel 

resolution: 176×144) and an IMU (ZMP IMU-Z Tiny Cube) 

were attached on a top surface of a small wagon. A laptop PC 

(Windows-7, Corei7-3.7GHz, and GeForce GT-650M) on the 

wagon recorded a time sequence both of raw depth image from 

the depth camera and acceleration data from the IMU on site. 

On the other hand, the localization calculation was done on the 

other desktop PC (Windows-7, Corei7-2.93GHz, and GeForce 

GTX-770).  

 

As a preparation, 3D point clouds of corridor space (9× 11 ×
2.4m) in a university building shown in Figure 4-(b) was first 

measured by a terrestrial laser scanner (FARO-Focus 3D), and 

a precise 3D mesh model with 141,899 triangles shown in 

Figure 4-(c) was created as an precise environmental map of 

the space using a commercial point cloud processing software. 

GeForce GTX-770 was used when investigating the effect of 

GPGPU programming on an efficiency of the localization.  

 

5.2 Results 

Efficiency improvement by GPGPU programming:  Figure 

5 compares the averaged processing time for single time step of 

MCL. 6-DOF depth camera pose is estimated in the experiment. 

From this figure, it is clearly shown that the proposed GPGPU-

based algorithm is effective in reducing the time for 

localization when the number of particles remains below a few 

hundreds which is a general setting of this MCL.  

 

However, the improvement in the processing speed was not so 

significant even when the GPGPU implementation is applied as 

shown in Figure 5. The reason for this behaviour is that 

GPGPU coding generally requires a sophisticated knowledge of 

parallel processing, and there is still a room for more efficient 

parallelization coding in likelihood estimation and weighting 

processing in GPU.   

 

Accuracy improvement by IMU:   Figure 6 compared the 

estimated camera positions using the baseline and proposed 

IMU-based algorithm in case of 200 particles. In this 
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experiment, 6-DOF depth camera pose was estimated, but the 

accuracy verification is verified only in a planer position [𝑥, 𝑦] 
of 2-DOF. The ground truth trace of the wagon was precisely 

collected from physical marker recording attached under the 

wagon using a terrestrial laser scanner.  The estimated positions 

with the aid of the IMU locate much closer to the ground truth 

than those without IMU.  

 

Figure 7 shows the median and standard deviation of 

localization errors in different settings of the number of 

particles. In all settings, the IMU-based algorithm 

outperformed the baseline one, and the averaged median of the 

localization errors from the ground truth was reduced by 34%. 

And as shown in Figure 8, no significant decrease in the 

performance was observed when introducing the IMU.  

 

Table 1 summarizes the performances between the proposed 

MCL method with IMU and the previous 3D MCL study 

(Fallon et al., 2012).  The table shows that our MCL method 

realized much smaller localization error (16%) even with 57% 

less particles.   

 

 

6. SUMMARY 

Several methods were proposed to improve the accuracy and 

efficiency of 3D Monte Carlo Localization (MCL) for indoor 

localization. For the baseline algorithm, a terrestrial laser 

scanner was used for creating a precise 3D mesh model as an 

environment map, and a professional-level depth camera was 

installed as an outer sensor. Moreover, two original approaches 

were proposed for the improvement. As a result, it was 

confirmed that GPGPU-based algorithm was effective in 

increasing the computational efficiency to 10-50 FPS when the 

number of particles remain below a few hundreds. On the other 

hand, inertia sensor-based algorithm reduced the localization 

error to a median of 47mm even with less number of particles. 

The results showed that our proposed 3D MCL method 

outperforms the previous one in accuracy and efficiency 

aspects.  
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Figure 7.  Localization error in different particle settings 
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