

IMPROVEMENT OF 3D MONTE CARLO LOCALIZATION

USING A DEPTH CAMERA AND TERRESTRIAL LASER SCANNER

S. Kanai
 a,

*, R. Hatakeyama
 a
, H. Date

a

a
 Graduate School of Information Science and Technology, Hokkaido University, Kita-ku, Sapporo 060-0814, Japan

- {kanai, hdate}@ssi.ist.hokudai.ac.jp, r_hatakeyama@sdm.ssi.ist.hokudai.ac.jp

Commission IV/WG7 & V/4

KEY WORDS: Monte Carlo Localization, Depth Camera, Terrestrial Laser Scanner, GPGPU, IMU, Scene Simulation

ABSTRACT:

Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and

lifelong robotic assistance. So far, Monte Carlo Localization (MCL) has given one of the promising solutions for the indoor

localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL

approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a

few hundreds millimetre error at up to a few FPS) or is not fully verified with the precise ground truth. Therefore, the purpose of this

study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial

laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed

as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further

improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic

particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization

accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-

based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a

few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less

number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency.

1. INTRODUCTION

With recent interest in indoor navigation and lifelong robotic

assistance for human life support, there is an increased need for

more effective and accurate localization method in three

dimensional indoor environments. The localization is the

ability to determine the robot’s position and orientation in the

environment. So far, three typical methods have been proposed

for the indoor localization; (1) based only on internal sensors

such as an odometry or an inertial navigation, (2) utilizing

observations of the environment from outer sensors in an a

priori or previously learned map such as Monte Carlo

Localization (MCL), and (3) relying on infrastructures

previously-installed in the environments such as distinct

landmarks such as bar-codes, WiFi access points or

surveillance camera networks (Borenstein et al., 1997).

Among them, MCL gives one of the promising solutions for the

localization when previously created environment map is

available and the system installation should be realized at a low

cost. The MCL is a kind of probabilistic state estimation

methods (Thrun et al., 2005) which can provide a

comprehensive and real-time solution to the localization

problem. However, previous work of MCL has been mostly

limited to 2D motion estimation in a planar map using 2D laser

scanners (Dellaert et al., 1999; Thrun et al., 2001). Recently, a

few 3D MCL approaches have been proposed where rough 3D

models and consumer-level depth cameras are used as the

environment maps and outer sensors (Fallon et al., 2012;

Hornung et al., 2014; Jeong et al., 2013). However, their

localization accuracy and efficiency still remain at an

unsatisfactory level (a few hundreds millimetre error at up to a

few FPS) (Fallon et al., 2012; Hornung et al., 2014), or the

accuracy is not fully verified using the precise ground truth

(Jeong et al., 2013).

Therefore, the purpose of this study is to improve an accuracy

and efficiency of 6DOF motion estimation in 3D Monte Carlo

Localization (MCL) for indoor localization. To this end, firstly,

a terrestrial laser scanner is used for creating a precise 3D mesh

model as an environment map, and a professional-level depth

camera is installed in the system as an outer sensor. GPU scene

simulation is also introduced to upgrade the speed of prediction

phase in MCL. Moreover, GPGPU programming is

implemented to realize further speed up of the likelihood

estimation phase, and anisotropic particle propagation is

introduced based on the observations from an inertia sensor in

MCL. The improvements in the localization accuracy and

efficiency are verified by the comparison with a previous 3D

MCL method (Fallon et al., 2012).

2. 3D MONTE CARLO LOCALIZATION

Monte Carlo Localization (MCL) is one of probabilistic state

estimation methods (Thrun et al., 2005) using observation from

outer sensor. The position and orientation of a system to be

estimated is expressed by a state variable. A probability density

function of the state variables is represented approximately by a

finite set of “particles” each of which expresses a discrete

instance of the state variables, and a progress of the probability

*Corresponding author:

Satoshi Kanai (kanai@ssi.ist.hokudai.ac.jp)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W5-61-2015

61

mailto:kanai@ssi.ist.hokudai.ac.jp

distribution is estimated by repeating propagation, likelihood

evaluation and weighting based on the observation, and

resampling of the particles.

The 3D MCL algorithms of our study are extensions of the

previous 3D MCL approach which made use of GPU scene

simulation (Fallon et al., 2012). As our extensions, in order to

increase the accuracy of a map and an outer sensor, a terrestrial

laser scanner is introduced for creating a precise 3D mesh

model as an environment map, and a professional-level depth

camera is installed as an outer sensor. Moreover, in our second

extensions, a GPGPU programming is implemented to realize a

speed up of the localization process, and an anisotropic particle

propagation based on the observations from an inertia sensor is

introduced in order to increase the localization accuracy.

Figure 1 shows a flow of our baseline 3D MCL algorithm. The

state variable 𝒙𝑡 = [𝑥𝑡 , 𝑦𝑡, 𝑧𝑡, 𝜑𝑡 , 𝜃𝑡 , 𝜓𝑡] denotes a 6-DOF pose

of the depth camera at a time step 𝑡 , and a probability

distribution of 𝒙𝑡 is expressed by two different set of particles

𝒳𝑡|𝑡−1and 𝒳𝑡|𝑡 as Eqs (1) and (2).

 𝒳𝑡|𝑡−1 ≡ { 𝒙𝑡|𝑡−1
(𝑖)

 } (1)

 𝒳𝑡|𝑡 ≡ { 𝒙𝑡|𝑡
(𝑖)

 } (2)

where, 𝒳𝑡|𝑡−1 is called a predicted distribution, 𝒳𝑡|𝑡 is called a

filter distribution, and 𝒙𝑡|𝑡−1
(𝑖)

 and 𝒙𝑡|𝑡
(𝑖)

 represent an i-th particle

of each distribution respectively.

The depth camera pose 𝒙𝑡 can be estimated by the following

steps;

1) Initialization: An initial filter distribution 𝒳0|0 at 𝑡 =0 is

created by assigning a same state 𝒙0|0 into all of the

particles in the distribution as Eq(3).

 𝒳0|0 = {𝒙0|0, 𝒙0|0, … . . . , 𝒙0|0} (3)

2) Propagation: A predicted distribution 𝒳𝑡+1|𝑡 of the next

time step 𝑡 + 1 is generated from a current filtered

distribution 𝒳𝑡|𝑡 by applying a system model of 6-DOF

motion of the depth camera. In the baseline algorithm, the

system model is given by a Gaussian noise model as Eq(4).

 𝒙𝑡+1|𝑡
(𝑖)

= 𝒙𝑡|𝑡
(𝑖)

+ ℵ(𝟎, 𝛔𝟐) (4)

where, ℵ(𝟎, 𝛔𝟐) is a 6D normal random numbers with

variances 𝛔𝟐 = [𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝑧
2, 𝜎𝜑

2, 𝜎𝜃
2, 𝜎𝜓

2]. By substituting

𝒙𝑡|𝑡−1
(𝑖)

 with 𝒙𝑡+1|𝑡
(𝑖)

 in 𝒳𝑡|𝑡−1 , a predicated distribution at

the next time step is updated to 𝒳𝑡+1|𝑡.

3) GPU scene simulation: As shown in Figure 2, a set of

simulated depth images is generated in a premade a 3D

mesh model of an environment map. Each simulated depth

image 𝑍(𝑖)
𝐺 is easily obtained by GPU rendering whose

viewpoint coincides with a camera pose expressed by an i-

th particle 𝒙𝑡+1|𝑡
(𝑖)

∈ 𝒳𝑡+1|𝑡 in the predicted distribution. In

this study, an OpenGL function glReadPixels() is used to

quickly obtain an two-dimennsional array of normalized

depth values of 𝑍(𝑖)
𝐺 from a depth buffer of GPU in one go.

4) Likelihood estimation and weighting: A raw depth

image at time step 𝑡 + 1 is captured from the depth

camera, and then a simple moving average filter among

consecutive frames is applied to the image to suppress

noises of depth values. This filtered depth image is also

rendered by GPU to generate a rendered actual depth

image 𝑍𝐷 which has a same image format as a simulated

image 𝑍(𝑖)
𝐺 . Then 𝑍𝐷 is compared with each of the

simulated image 𝑍(𝑖)
𝐺 . As a result of the comparison, a

likelihood of i-th particle 𝑙(𝑖) ∈ [0, 1] is evaluated by

Eqs(5) and (6).

 𝑙(𝑖) = ∑ 1 −
|𝑧𝐷

𝑗
− 𝑧(𝑖)

𝑗
|

0.5 + |𝑧𝐷
𝑗

− 𝑧(𝑖)
𝑗

|

𝑀

𝑗=1

 (5)

 𝑙(𝑖) =
𝑙(𝑖) − 𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛

 (6)

where, 𝑧𝐷
𝑗

 is a depth value at a pixel 𝑗 in the rendered

actual depth image 𝑍𝐷 , 𝑧(𝑖)
𝑗

 is a depth value at a pixel 𝑗 in

the simulated image 𝑍(𝑖)
𝐺 corresponding to an i-th particle,

Figure 2. GPU scene simulation

Figure 1. Our 3D MCL baseline algorithm

Particle

Propagation

Likelihood

Estimation

State

estimation &

Resampling

GPU Scene

Simulation

Particle
Set

System model

3D Mesh Model
（Environment Map）

Gaussian noise
(or Anisotropic noise
estimated from IMU)

Predicted
distribution
of particles

Simulated
depth images

Estimated
camera pose

OpenGL
(or
GPGPU)

Terrestrial
laser scanner

Weights for
particles

Professional-level
Depth camera

Actual depth image

(or GPGPU)

Real environment

Likelihood

estimation

Actual depth image

Measurement
by a depth

camera
and

GPU rendering
Simulated

depth images

3D mesh model
rendering

for the particles

Rendered scene
at particle i

Simulated depth image
at particle i

Acquisition of
depth map
from GPU

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W5-61-2015

62

and 𝑀 is the number of pixels in a depth image. 𝑙𝑚𝑎𝑥 and

𝑙𝑚𝑖𝑛 are the maximum and minimum likelihood values

respectively among elements of a set {𝑙(𝑖)} each of which

is evaluated by Eq(5) corresponding to an i-th particle.

Using Eq(6), a normalized likelihood value 𝑙(𝑖)(∈ [0, 1])

for an i-th particle can be obtained.

Once a normalized likelihood value 𝑙(𝑖) is obtained, a

normalized weight 𝓌(𝑖)(∈ [0, 1]) is assigned to the 𝑖 -th

particle in the predicted distribution 𝒳𝑡+1|𝑡 based on 𝑙(𝑖)

as Eqs(7) and (8).

 𝓌̃(𝑖) = exp [−
(𝑙(𝑖)−1)

2

0.052
] (7)

 𝓌(𝑖) =
𝓌̃(𝑖)

∑ 𝓌̃(𝑖)
𝑁
𝑖=1

 (8)

where, 𝑁 is the number of particles.

5) State estimation and resampling: The most probable

estimate of the depth camera pose 𝒙𝑡+1 is obtained as a

weighted sum of the particles in 𝒳𝑡+1|𝑡 as Eq(9).

 𝒙𝑡+1 = ∑ 𝓌(𝑖)𝒙𝑡+1|𝑡
(𝑖)

𝒙𝑡+1|𝑡
(𝑖)

∈𝒳𝑡+1|𝑡
 (9)

Finally, a new filtered distribution 𝒳𝑡+1|𝑡+1 is recreated

by resampling particles in 𝒳𝑡+1|𝑡 so that an existence

probability of i-th particle approximately equals to 𝓌(𝑖).

Roulette wheel selection method (Doucet et al, 2001) is

used for the resampling.

By repeating the above from step 2) to 5), the particle

distribution can be updated according to the observation from

the depth camera, and state estimation of the camera pose 𝒙𝑡 is

sequentially updated. GPU rendering is introduced in step 2)

for generating 𝑁 simulated depth images in real time.

3. EFFICIENCY IMPROVEMENT OF THE

LOCALIZAITON BASED ON GPGPU PROGRAMMING

As shown in Figure 3-(a), in our baseline MCL algorithm

described in section 2, processing other than GPU scene

simulation (step 2)) are executed by CPU, and every simulated

depth image 𝑍(𝑖)
𝐺 which is rendered in GPU has to be uploaded

directly to CPU right after the rendering using an OpenGL

function glReadPixels().As a result, (𝑁 × 𝑀 × 𝐷) byte data has

to be uploaded in all from GPU to CPU in every time step,

where N means the number of total particles, 𝑀 is the number

of pixels in a depth image, and 𝐷 is the number of bytes of one

pixel data. In our setting, a professional-level depth camera

(SR4000) is used, and it generates a depth image of 176×144

pixels in every frame. When a float-type variable (4 bytes) is

used per pixel and 100 particles are included in a distribution,

around 10Mbyte data has to be uploaded from GPU to CPU in

every frame. Due to relatively slow execution speed of

glReadPixels(), its transmission delay is not negligible, and it

was observed that the delay caused a considerable bottleneck of

the baseline MCL algorithm.

To reduce this delay, General Purpose computing on GPU

(GPGPU) (Eberly, 2014) is introduced in the algorithm so that

the GPU takes both GPU scene simulation (Step 2)) and

likelihood estimation (Step 3)) as shown in Figure 3-(b). The

parallel processing of likelihood estimations for all particles

can be handily implemented in GPGPU. In the GPGPU

implementation, the simulated depth image 𝑍(𝑖)
𝐺 is directly

rendered using GLSL (OpenGL Shading Language). And using

CUDA (Sanders et al., 2010), a resulting rendered image can be

compared with the rendered actual depth image 𝑍𝐷 , and

likelihood estimation and weighting can be processed on the

GPU without transferring any simulated depth image data to

the CPU. Finally, only a set of weights of the particles {𝓌(𝑖)}

only has to be transferred from GPU to CPU. Moreover, a

likelihood value at a pixel 𝑗 in the right hand side of Eq.(5) can

also be evaluated independently of the other pixel. So we

parallelized this pixel-wise likelihood calculation using CUDA.

As a result of this implementation, a set of weights {𝓌(𝑖)}

whose data amount is around (𝑁 × 𝑊) byte (𝑊: a number of

bytes per one weight) in total only has to be uploaded from

GPU to CPU per every frame. This can significantly reduce the

data amount to be uploaded to about 400Byte. The effect of the

implementation on our localization performance is explained in

5.2.

4. ACCURACY IMPROVEMENT OF THE

LOCALIZAITON WITH THE AID OF

AN INERTIA SENSOR

As the other approach for the accuracy improvement in the

localization, a small 6-DOF inertial measurement unit (IMU) is

installed in the system. With the aid of this IMU, the

パーティクル レンダリング

シミュレーション
距離画像

パーティクル レンダリング

シミュレーション
距離画像

Device(GPU)Host(CPU)

Resampling
State estimation

Propagation

State

Particles Rendering
(OpenGL)

3D mesh
model

Rendering
(OpenGL)

Actual depth
image

State variable

×
of particles

Point coord.
×

of pixels
From

depth camera

GPU Scene
Simulation

重み 尤度計算・
重み付け

シミュレーション
距離画像

重み 尤度計算・
重み付け

シミュレーション
距離画像

Raw depth
image

Weight Likelihood
estimation &

Weighting

Actual depth
image

Simulated
depth image Simulated

depth image

Bytes/pixel
×

of pixels
×

of particles

Bottleneck

Bytes/pixel
×

of pixels

:Data:Processing ：Data amount
to be transferred :Transfer :Output

(a) Baseline algorithm

重み 尤度計算・
重み付け

パーティクル レンダリング

シミュレーション
距離画像

重み 尤度計算・
重み付け

パーティクル レンダリング

シミュレーション
距離画像

Device(GPU)Host(CPU)

Raw depth
image

Likelihood
estimation &

Weighting(CUDA)

Rendering
(OpenGL + GLSL)

3D mesh
model

Rendering
(OpenGL + GLSL)

Actual depth
image

Simulated
depth image

Weight

Bytes/weight
×

of particles

Less transfer

GPU Scene
Simulation

State

Particles

State variable

×
of particles

Resampling
State estimation

Propagation

From
depth camera

Point coord.
×

of pixels

(b) GPGPU-based algorithm

Figure 3. Difference in MCL

between the baseline and GPGPU-based algorithm

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W5-61-2015

63

anisotropic particle propagation based on an actual observation

from the IMU can be introduced in the propagation step

(Step1)) in MCL.

Different from Gaussian-based isotropic particle propagation in

the baseline MCL, more particles are allocated adaptively along

the direction of the measured acceleration and angular

acceleration given from the IMU. In the propagation step in the

MCL, this anisotropic particle propagation is easily

implemented by replacing the original propagation equation

Eq(4) with Eq(10).

 𝒙𝑡+1
(𝑖)

= 𝒙𝑡
(𝑖)

+ ℵ(𝒅𝑡, 𝛔̂𝟐) (10)

where, 𝒅𝑡 = [𝑑𝑥𝑡, 𝑑𝑦𝑡 , 𝑑𝑧𝑡 , 𝑑𝜑𝑡, 𝑑𝜃𝑡 , 𝑑𝜓𝑡] is a 6D estimated

positional and rotational displacements derived from the

numerical integration of the measured acceleration and angular

acceleration of IMU at time step 𝑡. We also assume from the

observation that a standard deviation of each displacement in

the system model is comparable to the estimated displacement

𝒅𝑡, and therefore set as 𝛔̂𝟐 = [𝑑𝑥𝑡
2 , 𝑑𝑦𝑡

2 , 𝑑𝑧𝑡
2 , 𝑑𝜑𝑡

2 , 𝑑𝜃𝑡
2 , 𝑑𝜓𝑡

2].

5. EXPERIMENTS

5.1 Setup

The improvement in efficiency and accuracy is verified in

localization experiments in an indoor environment. Figure 4

shows our experimental setup. As shown in Figure 4-(a), a

professional-level depth camera (SR4000, TOF camera, Pixel

resolution: 176×144) and an IMU (ZMP IMU-Z Tiny Cube)

were attached on a top surface of a small wagon. A laptop PC

(Windows-7, Corei7-3.7GHz, and GeForce GT-650M) on the

wagon recorded a time sequence both of raw depth image from

the depth camera and acceleration data from the IMU on site.

On the other hand, the localization calculation was done on the

other desktop PC (Windows-7, Corei7-2.93GHz, and GeForce

GTX-770).

As a preparation, 3D point clouds of corridor space (9× 11 ×
2.4m) in a university building shown in Figure 4-(b) was first

measured by a terrestrial laser scanner (FARO-Focus 3D), and

a precise 3D mesh model with 141,899 triangles shown in

Figure 4-(c) was created as an precise environmental map of

the space using a commercial point cloud processing software.

GeForce GTX-770 was used when investigating the effect of

GPGPU programming on an efficiency of the localization.

5.2 Results

Efficiency improvement by GPGPU programming: Figure

5 compares the averaged processing time for single time step of

MCL. 6-DOF depth camera pose is estimated in the experiment.

From this figure, it is clearly shown that the proposed GPGPU-

based algorithm is effective in reducing the time for

localization when the number of particles remains below a few

hundreds which is a general setting of this MCL.

However, the improvement in the processing speed was not so

significant even when the GPGPU implementation is applied as

shown in Figure 5. The reason for this behaviour is that

GPGPU coding generally requires a sophisticated knowledge of

parallel processing, and there is still a room for more efficient

parallelization coding in likelihood estimation and weighting

processing in GPU.

Accuracy improvement by IMU: Figure 6 compared the

estimated camera positions using the baseline and proposed

IMU-based algorithm in case of 200 particles. In this

11m 8m

Depth camera
(SR4000)

Wagon

Control PC

(a) Platform

(b) Real environment

(c) 3D mesh model of the
environment map

Figure 4. The platform and the environment map

0

20

40

60

80

100

120

140

160

180

200

100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
ro

ce
ss

in
g

ti
m

e
 [

m
se

c]

of particles

手法①(GPGPUなし) 手法②(GPGPUあり)

Effective range
when using GPGPU

Without GPGPU With GPGPU (GTX770)

Figure 5. Processing time with and without GPGPU

5m

6m
Ground Truth

推定位置(提案手法①)

推定位置(提案手法③)

Ground truth

Baseline algorithm

With IMU

Figure 6. The traces of estimated camera positions

 with and without IMU

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W5-61-2015

64

experiment, 6-DOF depth camera pose was estimated, but the

accuracy verification is verified only in a planer position [𝑥, 𝑦]
of 2-DOF. The ground truth trace of the wagon was precisely

collected from physical marker recording attached under the

wagon using a terrestrial laser scanner. The estimated positions

with the aid of the IMU locate much closer to the ground truth

than those without IMU.

Figure 7 shows the median and standard deviation of

localization errors in different settings of the number of

particles. In all settings, the IMU-based algorithm

outperformed the baseline one, and the averaged median of the

localization errors from the ground truth was reduced by 34%.

And as shown in Figure 8, no significant decrease in the

performance was observed when introducing the IMU.

Table 1 summarizes the performances between the proposed

MCL method with IMU and the previous 3D MCL study

(Fallon et al., 2012). The table shows that our MCL method

realized much smaller localization error (16%) even with 57%

less particles.

6. SUMMARY

Several methods were proposed to improve the accuracy and

efficiency of 3D Monte Carlo Localization (MCL) for indoor

localization. For the baseline algorithm, a terrestrial laser

scanner was used for creating a precise 3D mesh model as an

environment map, and a professional-level depth camera was

installed as an outer sensor. Moreover, two original approaches

were proposed for the improvement. As a result, it was

confirmed that GPGPU-based algorithm was effective in

increasing the computational efficiency to 10-50 FPS when the

number of particles remain below a few hundreds. On the other

hand, inertia sensor-based algorithm reduced the localization

error to a median of 47mm even with less number of particles.

The results showed that our proposed 3D MCL method

outperforms the previous one in accuracy and efficiency

aspects.

References

Borenstein, J., Everett, H.R., Feng, L., and Wehe, D., 1997,

Mobile robot positioning: Sensors and techniques. Journal of

Robotic Systems, 14(4), pp.231–249.

Dellaert, F., Fox, D., Burgard, W., and Thrun, S., 1999. Monte

Carlo Localization for mobile robots. IEEE International

Conference on Robotics and Automation (ICRA), pp.1322–

1328.

Doucet, A, Freitas, N., and Gordon, N., 2001. Statistics

Sequential Monte Carlo Methods in Practice, Springer, New

York, pp.437-439.

Eberly, D.H., 2014. GPGPU Programming for Games and

Science, CRC Press, Boca Raton.

Fallon, M.F., Johannsson, H., and Leonard, J.J., 2012. Efficient

scene simulation for robust monte carlo localization using an

RGB-D camera. IEEE International Conference on Robotics

and Automation (ICRA), pp.1663–1670.

Hornung, A., Oswald S., Maier D., and Bennewitz, M., 2014.

Monte carlo localization for humanoid robot navigation in

complex indoor environments. International Journal of

Humanoid Robotics, 11(2), pp. 1441002-1–1441002-27.

Jeong, Y., Kurazume, R., Iwashita Y., and Hasegawa T., 2013,

Global Localization for Mobile Ro bot using Large-scale 3D

0

20

40

60

80

100

120

100 200 300 400 500

Er
ro

r
m

e
d

ia
n

 [
m

m
]

of particles

提案手法①(IMUなし)

提案手法③(IMUあり)

Baseline algorithm
With IMU

(a) Median of error

(b) Standard deviation of error

Figure 7. Localization error in different particle settings

0

50

100

150

100 200 300 400 500

Er
ro

r
St

d
.d

e
v.

 s
[m

m
]

of particles

提案手法①(IMUなし)

提案手法③(IMUあり)

Baseline algorithm
With IMU

Figure 8. Processing time per frame

 in different particle settings

0

20

40

60

80

100

120

140

100 150 200 250 300 350 400 450 500

処
理
時
間

[m
se

c]

パーティクル数

IMU導入前(従来手法)

IMU導入後(提案手法②)

of particles

A
ve

ra
ge

 p
ro

ce
ss

in
g

ti
m

e
[m

se
c]

Baseline algorithm

With IMU

of
particles

Speed
[FPS]

Localization Error

Median[mm] s [mm] 3s %

Proposed method
with IMU 150 23.5 47 78 100

[Fallon et al., 2012] 350 7-8 300 N/A 90

Table 1. Comparison of the performances between

the proposed method and [Fallon et al., 2012]

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W5-61-2015

65

Environmental Map and RGB-D Camera. Journal of the

Robotics Society of Japan, 31(9), pp.896–906.

Sanders, J., and Kandrot, E., 2010. CUDA by Example: An

Introduction to General-Purpose GPU Programming,

Addison-Wesley Professional, Boston.

Thrun, S., Fox, D., Burgard, W., and Dellaert, F., 2001. Robust

Monte Carlo localization for mobile robots. Artificial

Intelligence, 128(1), pp.99–141.

Thrun, S., Burgard, W., and Fox, D., 2005. Probabilistic

Robotics, MIT Press, Cambridge, pp.189–276.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4/W5, 2015
Indoor-Outdoor Seamless Modelling, Mapping and Navigation, 21–22 May 2015, Tokyo, Japan

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-W5-61-2015

66

