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ABSTRACT:

In this paper, we leverage spatial model to process indoor localization results and then improve the track consisting of measured
locations. We elaborate different parts of spatial model such as geometry, topology and semantics, and then present how they contribute
to the processing of indoor tracks. The initial results of our experiment reveal that spatial model can support us to overcome problems
such as tracks intersecting with obstacles and unstable shifts between two location measurements. In the future, we will investigate
more exceptions of indoor tracking results and then develop additional spatial methods to reduce errors of indoor tracks.

1 INTRODUCTION

Nowadays indoor navigation heavily relies on an accurate and
stable positioning or localization technique. Unfortunately, exist-
ing positioning techniques are still at experimental phase (Fuchs
et al., 2011; Miller, 2006). Compared with outdoor GPS tracks
(recordings of positions at regular intervals), indoor tracking suf-
fers from low accuracy, which results in a limited number of in-
door tracking applications.

Although we may not get highly accurate position information in
an indoor environment, tracking pedestrians still appears attrac-
tive, especially to some mission-critical scenarios (Fuchs et al.,
2011). For some applications users may be more interested in
moving trends than accurate coordinates.

Existing indoor positioning and navigation experiments (Miller,
2006; Spassov, 2007) show that under some conditions users (hu-
man or robot) can navigate even if individual localization accu-
racy may not be very high.

Meanwhile, different indoor tracking methods (Burgard et al.,
1997; Girard et al., 2011; Jensen et al., 2009; Khider et al., 2012;
Miller, 2006; Spassov, 2007; Thrun et al., 2005) design various
strategies to avert deviation of tracks. However, they largely rely
on positioning equipment, sensors and users. The results reveal
varying properties in precision (Fuchs et al., 2011).

Compared with the uncertain results from combining various hard-
ware, a more stable configuration can be achieved if the proper-
ties of the spatial model are used. The information stored in spa-
tial models, such as coordinates, semantics of objects, topological
relations between objects, etc. can provide some qualitative sup-
port for indoor localization regardless the used hardware.

In order to make a better use of indoor positioning measurements
and be independent from the adopted devices, this paper is go-
ing to present a suitable spatial model and related information to
qualitatively improve indoor tracking results.

2 BACKGROUND

To be able to localize a person or robot in a given indoor area,
the indoor space has to be partitioned. Indoor space can be par-

titioned by either real building boundaries (walls) or artificial
boundaries, which are the result of a subdivision/decomposition
procedure. Such artificial subdivision/decomposition can be based
on a regular grid (grid for short), triangulation tessellation, trapezoidal-
based tessellation and Voronoi diagrams (Afyouni et al., 2013).

Grid is widely applied to indoor navigation and tracking. Li et
al. (Li et al., 2010) elaborate on a grid graph model. They first
overlay the building parts/ cellular units (such as a room, a wall,
etc.) with grids and then generate a grid graph. The underlying
cellular units provide semantic information to the corresponding
grid cells. One grid cell of the grid graph has one and only one
membership of a cellular unit, and the topological relationships
among cellular units can be represented by the edges of the grid
graph.

Similarly, in robot motion, a planning occupancy grid approach
uses a regular matrix of equally-sized cells for autonomous nav-
igating robots (Franz, 2005; Moravec & Elfes, 1985). In this
matrix, each cell connects to its eight neighboring cells (with ex-
ception of boundary cells). A high probability value is assigned
to grids in accessible/navigable spaces and a low value to grids
occupied by objects.

In addition to subdivision/decomposition approach, semantic and
topological information is important as well for indoor naviga-
tion. The topology of an indoor space can be modeled in either a
3D space or 2D layers (Worboys, 2011). Two types of topology
are distinguished: connectivity and adjacency. Most existing spa-
tial models utilize connectivity graph to represent indoor space
topology (Domnguez et al., 2011). The semantics of a spatial
model describes the basic spatial and structural concepts of in-
door environments (Liu & Zlatanova, 2012; Tsetsos et al., 2006).
Semantics is also referred to ontology when it is utilized for rea-
soning (Worboys, 2011).

With spatial information, one can conduct indoor tracking with
different localization devices. Commonly indoor tracking meth-
ods includes: Dead reckoning, Grid filter, Map matching, Model-
based approaches.

Dead reckoning (DR) computes a persons current location by ad-
vancing a known position with course, speed, time and distance
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to be travelled. DR data can be collected by inertial measurement
unit (IMU) on tracking devices. The uncertainty of dead reck-
oning positions grows with time thus it is necessary to check the
position regularly (Miller, 2006).

Grid filter is a kind of discrete Bayesian filter, which probabilis-
tically estimates a targets location based on observations from
sensors. This type of methods are widely used in the field of
robotics (Burgard et al., 1997; Thrun et al., 2005). They com-
putes the location in two phases: the prediction phase where the
prior probability of location is estimated based on the previous lo-
cation, a motion model and the map of tracking environment; and
the update phase where the posterior probability is computed by
multiplying the prior probability with a conditional probability.
The conditional probability is computed according to the mea-
surements of sensors.

Map matching assumes a user can be only located along certain
routes. Some constraints on indoor environments are applied
to refine estimates of the moving positions of a person inside a
building. For instance, a user does not pass through walls, but
only along corridors and through doorways (Miller, 2006). Ba-
sically, there are two map matching techniques: point-to-vertex
matching (i.e. a measured location to a vertex in route), and
point-to-edge matching (i.e. a measured location to an edge in
route). An implementation of point-to-edge matching shows sat-
isfied results in corridor environment (Spassov, 2007).

Model based methods adopt a vector model of the indoor envi-
ronment to improve the estimation of user location. This method
can be taken as an extension of map matching methods. They
consider model features (such as walls or obstacles) (Girard et
al., 2011), sensor information (e.g. speed & direction), and in-
formation from users (e.g. mean velocity and velocity variance
(Khider et al., 2012)). Jensen et al. (Jensen et al., 2009) proposes
a base graph model for tracking which represents the connectivity
and accessibility of indoor space.

However, the existing tracking methods employ limited spatial
information. To the best of our knowledge, indoor tracking re-
search is seldom focus on integration of geometrical, topological
and semantic features of indoor environments for tracking.

Based on used techniques, current types of localization systems
include Angulation (angle), Lateration (distance), Fingerprint-
ing, Inertial and motion sensors, and Neighborhood (Fuchs et al.,
2011). However, we focus on location data processing rather than
specific localization technique. Therefore, in this research we
assume the location data are acquired and we aim at mitigating
tracking errors in the data.

We take WiFi fingerprinting localization system for example: it
may result in three types of tracking errors: a measured location
at an incorrect space/wall/table, an incorrect moving direction be-
tween some localization results, or sudden jumps between loca-
tions (shifting back and forth) (Besada et al., 2007).

We intend to bridge spatial model and indoor tracking and show
the capability of spatial model on improving indoor tracking. The
grid model is chosen because it simplifies the localization. Mean-
while, geometric, topological and semantic features of the grid
model are utilized to estimate the probability of a users location.

3 METHOD

This section presents how an appropriate spatial model can help
on improving indoor tracking results. We concentrate on two ma-
jor errors, i.e. 1) a track crosses indoor objects and 2) a track
jumps back and forth.

3.1 Using Spatial Model

As we mentioned, we decided to adopt grid model due to its reg-
ularity and flexibility. Meanwhile we take motion direction of
pedestrian into consideration as well.

Figure 1: Spatial model construction

In the first place, we require a spatial model incorporating geom-
etry, topology and semantics of indoor environments. In order to
detect unrealistic locations, the geometry, topology and semantics
of a spatial model need to be used together. Figure 1 provides the
workflow of constructing the required spatial model.

Firstly, we pick digital floor plans of a building; secondly, from
the original data, we extract semantics of spaces (e.g. room,
door); thirdly, we keep the vector geometry of indoor spaces and
discretize it to grids; fourthly, we integrate semantics and grids
so that each grid cell has a clear meaning or membership; Fi-
nally, according to the computed grid model of indoor spaces, we
can generate the topological model (i.e. connectivity) of the grid
model.

In the next subsections, we will explain each type of information
and the usages of them for tracking.

3.1.1 Geometry At the beginning we need to link a measured
location to the grid model we made. Thus we tag the center of
grid with accurate coordinates. Afterwards, each measured loca-
tion is mapped to its closest grid (i.e. the point-to-vertex way of
map matching).

Besides coordinates, a buffer of a location is applied as well. The
relevant part for a location would possibly be the deviation area
of the measurement of the location (Fig. 2a). Thus a buffer of the
known previous location is used to represent the search region of
the current location. The size of the buffer depends on walking
speed and the time interval of location determination. This im-
plies that the human must be in the buffer area in this given time
interval.

Two types of distances are introduced to estimate the correctness
of the new positions: Euclidean distance and Manhattan distance.
The well-known Euclidean distance is the direct length between
two points in Euclidean space; while the Manhattan distance rep-
resent the sum of the absolute differences of their Cartesian co-
ordinates (Wikipedia, 2014b) (Fig. 2b). In addition, we use an
orientation vector to represent the direction from one grid cell to
another (Fig. 2c).

As mentioned above, the buffer of previous computed location is
used to infer the current possible location. Except the buffer, the
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(a)

(b)

(c)

Figure2: Buffer, Distance and Direction

previous direction and the difference of the two types of paths
(Euclidean and Manhattan) are taken into consideration to com-
pute the new location.

3.1.2 Semantics We pick out important semantics for track-
ing, namely, floor, space, door, and obstacle. Floor helps us to
know the switch of floors; space includes room, corridor/passage
and vertical passage.

We define space as a region with real boundary (e.g. walls), or a
region with specific function. Space is a quite important notion
since user expects to be localized in a correct space even without
accurate location inside of the space.

Door is a connection between two separate spaces, namely, it is
the transition from one space to another. It might happen that a
user may obtain many inaccurate measurements around a door. In
this case its pivotal to be aware which room the current location
is.

Obstacle is defined for objects or regions, which are occupied and
inaccessible. It provides constraints that a users location should
not be located inside an obstacle, and the obstacle should not on a
users track. In this manner, we obtain tracks outside of obstacles,
i.e. avoiding them.

Figure 3: Neighborhood in a space and between spaces

Figure 4: The difference between Manhattan shortest distance
andEuclidean shortest distance

3.1.3 Topology As connectivity indicates whether a grid cell
can be reached from a predefined location, its an ideal indicator
for tracking. If the neighboring grid cells do not belong to any
obstacle and are in the same space to a grid, then the grid connect
with its neighbors. In this paper we select 8-neighborhood, which
means there are at most 8 connected neighbors to one grid cell.
If a grid cell and one of its neighbors are not in the same space,
then they may connect by grid cells of a door between them (Fig.
3).

Based on connectivity between different grid cells, its easy to get
the shortest path between two connected grid cells by employing
shortest path algorithms. It is worth noting that the shortest path
represents Manhattan distance.

Given two grid cells, we compute the difference between their
Manhattan shortest distance and Euclidean shortest distance. The
difference can indicate obstacle occurrence. If there is no obsta-
cle between two grid cells, the difference of the two distances
will be very small. Otherwise, the difference will increase due to
obstacle avoidance (Fig. 4).

3.2 Improving Tracks

After we introduce the geometric, topological and semantic fea-
tures of the grid model for indoor tracking, we can make full use
of them. For instance, a location is taken as a possible candidate
when it is accessible (semantics), connected to previous location
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Figure 5: The Selection of measured locations

(topology),and inside a certain buffer of previous determined lo-
cation (geometry).

In general, by using the previous location and previous moving
direction, we could compute the probability of each grid cell to
be the current location. Then we can apply the probability to a
set of measured candidates of the current location. Finally the
one with the highest probability is picked out.

The computation steps are as follows: Firstly, a buffer of the pre-
vious location is set up, only the grid cells inside the buffer are
considered. Secondly, the probability of these grid cells are as-
signed. If a grid cell belongs to an obstacle, its probability is set
to 0; or if the grid cell is at a distinct space from the space of
the previous location, its probability is half decreased. Addition-
ally, the difference of the two types of distances is applied. We
assume that there is a negative relation between the distance dif-
ference and probability, therefore a grid cell with a larger distance
difference is assigned a lower probability.

Thirdly, we filter the measured locations. If we dont have previ-
ous direction, then a moving direction is computed by averaging
orientations of all location measurements at a current moment. In
order to determine whether a grid cell is inside the moving direc-
tion area, we compare the angle between the orientation vector
of the grid cell and the moving direction with an angle threshold.
Thus if a measurement is inside the moving direction and not in
obstacles, then it is selected (points in circle in Fig. 5). In other
words, the candidate set is narrowed down.

In addition, we check the selected candidate locations on their
moving directions. The moving directions are computed based
on their connection with the previous location. In this manner,
improper directions, such as the path crossing an obstacle, can be
avoided.

To summarize, we employ a probabilistic method to represent the
effect of spatial factors on filtering location measurements, and
then pick out the most possible one. Afterwards, the computed or
picked candidate locations compose a track which doesnt violate
spatial constraints (e.g. no crossing over obstacle).

4 EXPERIMENT

4.1 Preparations

In this experiment a WiFi positioning system is provided by re-
searchers of Wuhan University (Verbree et al., 2013). The system

leverages WiFi fingerprinting method to localize mobile clients.
In addition, we employs a magnetometer to measure orientations
of a walking person.

The experiment environment is at the office of CGI Company,
Rotterdam. The original data to build grid model are floor plans
of CGI office. We discrete indoor spaces and objects to grid
cells by intersecting the grid cells with floor plans. The grid cell
size should be compatible with walking human speed. We chose
0.7m because the averaging walking speed of human is 1.4 m/s
(Wikipedia, 2014a).

We hold two important assumptions during this experiment:

• Start location is known.

• Motion is in a constant pace.

In the next subsections, we will illustrate two cases of tracking.
One is about walking inside a space, the other one focuses on
passing between different spaces.

4.2 Case Studies

The first case is walking inside a large space. We visualized both
actual motion track and measured locations of WiFi system in
Figure 6a. The problems in the case include locations crossing
obstacles/spaces, or even inside of obstacles (Fig. 6a). As shown
in Figure 6a, the sequence of measured location are disordered,
and there are some measurements located in another space, which
contradicts to the real motion track.

Figure 6b presents the improvement on track after spatial model
aid. The nodes represent the most possible location at each mea-
sured moment. The track is significantly improved. Errors such
as inside/crossing obstacles/another space, and the wrong moving
directions are now corrected.

The second case is walking between spaces. In this case, we
would like to know if the correct room is selected especially
around doors.

In order to distinguish the room a measurement belongs to, two
conditions are proposed for determination of transferring between
spaces:

• The door connecting two spaces is in the moving direction
area;

• The previous computed location is at the door.

Only when the both conditions are met, the current location is
confirmed in the new space (room).

We conducted a test between two spaces. Figure 7a presents the
original measured locations and the actual movement route. The
locations appear disordered. Figure 7b provides the improvement
on the original track, and related spaces are highlighted in bold
lines. Though the track includes fake zigzags due to measurement
errors, the moving trend is still correct and the track doesnt lie in
any obstacle. More importantly, the switching between the two
spaces was detected. Around the door between the two rooms, we
successfully eliminate sharp shifts (back and forth). The locations
after processing are strictly successive in a time sequence.
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(a) before improvement

(b) after improvement

Figure6: Walking inside a Space

5 CONCLUSIONS

This paper presents the usage of spatial model and related infor-
mation for indoor tracking. With WiFi measurements on loca-
tions, we leverage a spatial model to qualitatively improve in-
door tracking results. Our experiment demonstrates using spatial
model has the potential to overcome problems such as tracks over
obstacles and unstable shift between two measurements.

In the future, we will investigate more error cases during local-
ization process. Once we collect these exceptions from tracking,
we can devise more spatial constraints within grid model. Our fi-
nal goal is to develop a methodology, which can mitigate tracking
errors with only spatial constraints. In this manner, different mea-
surements from distinct localization systems can be processed in
a standard method, and thus we can provide improved/smooth
tracks for different localization equipment.

(a) before improvement

(b) after improvement

Figure7: Walking between Two Spaces
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