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ABSTRACT: 
 
Recently, development of high performance CPU, cameras and other sensors on mobile devices have been used for wide variety of 
applications.  Most of the applications require self-localization of the mobile device.  Since the self-localization is based on GPS, 
gyro sensor, acceleration meter and magnetic field sensor (called as POS) of low accuracy, the applications are limited.  On the other 
hand, self-localization method using images have been developed, and the accuracy of the method is increasing.  This paper 
develops the self-localization method by integrating sensors, such as POS and cameras, on mobile devices simultaneously.  The 
proposed method mainly consists of two parts: one is the accuracy improvement of POS data filtering, and another is development of 
self-localization method by integrating POS and camera.  The POS data filtering combines all POS data by using Kalman filter in 
order to improve the accuracy of exterior orientation factors.  The exterior orientation factors with POS filtering are used as initial 
value of ones in image-based self-localization method.  The image-based self-localization method consists of feature points 
extraction and tracking, relative orientation, coordinates estimation of the feature points, and orientation factors updates of the 
mobile device.  The proposed method is applied to POS data and images taken in urban area.  Through experiments with real data, 
the accuracy improvement by POS data filtering is confirmed.  The proposed self-localization method with POS and camera make 
the accuracy more sophisticated by comparing with only POS data filtering. 
 
 

1. INTRODUCTION 

Recently, development of high performance CPU, cameras and 
other sensors on mobile devices have been used for wide 
variety of applications.  One of the most popular applications is 
augmented reality (AR).  The AR technique superimposes 
various data on the scene which the users see at the time instead 
of comprehensive and detailed three dimensional modelling 
such as virtual reality.  The AR uses sequential images taken 
from same view points of users as environmental scene, and 
then reality of visualization increase compared with the virtual 
reality.  AR requires self-localization, namely orientation of the 
mobile device.   
 
Since the self-localization of the mobile device is based on GPS, 
gyro sensor, acceleration meter and magnetic field sensor 
(called as position and orientation system (POS) in this paper) 
of low accuracy, the applications are limited to tags 
superimposition on the sequential images.   
 
On the other hand, self-localization method using images have 
been developed, and the accuracy of the method is increasing.  
The method, however, requires initial values of the orientation 
factors and distance of baseline.  GCPs can be used to specify 
the absolute coordinates.  But it takes a lot of time and effort, 
and the applicability is restrictive.   
 
This paper develops the self-localization method by integrating 
sensors, such as POS and cameras, on mobile devices 
simultaneously.  The proposed method mainly consists of two 
parts: one is the accuracy improvement of POS data filtering, 
and another is development of self-localization method by 
integrating POS data and images. 

2. POS DATA FILTERING 

2.1 Overview 

In this study, an iPhone4s is used as a mobile device.  The 
centre of the mobile device is defined as the origin of the 
coordinate system for the mobile device.  In the coordinate 
system, z axis is set as the vertical direction of device monitor, 
and y axis is norm direction of the monitor plane, and x axis is 
defined according to right-handed coordinate system.  The 
rotations with regard to the axis x, y, z (roll, pitch, yaw) are 
expressed as g , g , g , respectively.  For absolute coordinate 

system, origin is same as the device coordinate system.  Z axis 
is set as the direction of gravitational force, and X axis is north-
seeking. When the both coordinate systems coincide, the 
rotation angles are define as 0, namely g =0, g =0, g =0.   

 
As mentioned before, POS includes GPS, gyro sensor, 
acceleration meter and magnetic field sensor.  The 
corresponding data are three dimensional coordinates of the 
sensor (longitude: E (degree), latitude: N (degree), ellipsoidal 
height: h (m)), angular velocity ( g , g , g  (rad/s)), 

acceleration ( ax , ay , az  (G)) and azimuth angle ( ti  (rad)), 

respectively.   
 
Normally, each sensor is used separately (Daehne and 
Karigiannis, 2002), or some sensors are selected among them 
(Agrawal and Konolige, 2006; Kourogi and Kurata, 2005; 
Wagner et al., 2009).  The proposed method combines all 
sensors data in order to improve the accuracy of exterior 
orientation factors.  Figure 1 shows the pipeline of the POS data 
filtering.   
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Figure 1. Flow of the POS data filtering 

 
 
2.2 Filtering method of rotation 

Initial rotation of the mobile device is calculated from 
acceleration meter and magnetic field sensor, and rotation 
during movement is calculated from the gyro sensor.  The data 
of gyro sensor have drift error.  In order to correct the drift error, 
filtering method with the data of the acceleration meter and the 
magnetic field sensor is applied.  In this step, the data of such 
sensors are combined by using Kalman filter (Schall et al., 
2009).  The assumption, that the mobile sensor moves linearly, 
is accepted here.   
 
2.2.1 Calculation of rotation: When the mobile device 
remains stationary, the acceleration meter detect only 
acceleration of gravity g.  The relationship between the 
acceleration and initial rotation ( a , a , m ) can be expressed 

as follows. 
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From the equation (1), roll and pitch can be calculated.   
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Yaw should be transformed according to the above defined 
coordinate system: 
 
 m ti     (3) 

 
For calculation of rotation during movement, data of the gyro 
sensor are added to the initial rotation.  Derivatives of the 
rotation with respect to time ( ,  ,  ) are represented by 

using angular velocity ( g , g , g ). 
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By integrating equation (4), the rotation during movement can 
be acquired. 
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2.2.2 Filtering of rotation: According to integration, the 
error is accumulated.  It is important to point out here that the 
acceleration meter and the magnetic field sensor are free from 
such cumulative error.  With the acceleration meter and the 
magnetic field sensor, the rotation during movement is 
corrected.  Filtering theory is applied in order to correct the 
cumulative error.   
 
For the efficient computation, Kalman filter is adopted as 
filtering method (Ristic et al., 2004).  The Kalman filter 
consists of dynamic equation and observation equation as 
follows: 
 
 xt = Ft xt-1 + Gt vt (6) 
 yt = Ht xt + wt (7) 
 
where xt = state vector at time t 
 yt = observation vector at time t 
 Ft , Ht, Gt = matrices of transition, system noise, 
                                         observation at time t, respectively 
 vt = system noise vector at time t  ~N(0, Qt) 
 wt = observation noise vector at time t  ~N(0, Rt). 
 
In this study, these vectors and matrices are constructed as 
follows: 
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The Bt is same as equation (4).  Matrices Ht and Gt are set as 
identity matrices.  In equation (8), suffix a, m, g express data of 
the acceleration meter, the magnetic field sensor, gyro sensor, 
respectively.  
 
Since the Kalman filter is based on linear equation with normal 
distribution, the equations can be solved analytically. The 
equations (9) and (10) are related to forecast, and (11) –(13) 
filtering.   
 
 xt|t-1 = Ft xt-1|t-1 (9) 

 
 Vt|t-1 = Ft Vt-1|t-1F

T
t + Gt Qt Gt

T (10) 
 

 Kt = Vt-1|t-1 Ht
T (Ht Vt-1|t-1Ht

T + Rt)
-1 (11) 

 
 xt|t = xt|t-1 + Kt (yt - Ht xt|t-1) (12) 

 
 Vt|t-1 = Vt|t-1 - Kt Ht Vt|t-1  (13) 

 
State vector xt|t is a result of filtering method for rotation. 
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2.3 Filtering method of position 

Although the position of the mobile device is measured with 
GPS directly, the accuracy of the position can be improved by 
relating to the other sensors used for rotation calculation.  Here 
the Kalman filter is also applied to all POS data to estimate the 
position.   
 
2.3.1 Calculation of position: Since GPS data are originally 
longitude E, latitude N, ellipsoidal height h, the coordinates are 
transformed to the Plane Rectangular Coordinate System (XG, 
YG, ZG).  The coordinates are used for initial position of the 
mobile device.  For measurement of position during movement, 
data of GPS and the acceleration meter are considered.   
 
The relationship between the measured acceleration and second 

derivatives of position ( X , Y , Z ) can be expressed as follows. 
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Here, rotation matrices are represented as R.  Additionally, 

velocity ( tX , tY , tZ  ) can be calculated from GPS data. 
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Where, Δt is GPS data acquisition interval.  By using both of 
velocity and acceleration, position at time t is calculated.   
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2.3.2 Filtering of position: In the similar fashion of filtering 
method of rotation, Kalman filter is applied for improving 
position.  Dynamic and observation equations are same as 
equations (6), (7).  State vector, observation vector and matrix 
Ft are set for position filtering. 
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Analytical solution of the dynamic and observation equations 
can be conducted in the same manner of equations (9) – (13).   

3. IMAGE INTEGRATING METHOD 

The position and rotation based on POS data filtering are used 
as initial value of the orientation factors in image-based self-
localization method.  The position is already represented in the 
geodetic coordinate, and then the distance of baseline is also 
supplied in the real scale.  The image-based self-localization 
method consists of feature points extraction and tracking, 
relative orientation, three dimensional coordinates estimation of 
the feature points, and orientation factors updates of the mobile 
device.  Figure 2 shows an overview of the proposed method.   
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Figure 2. Flow of the POS and camera integration 

 
 
3.1 Feature points extraction and tracking 

Recently, sophisticated feature points extraction and tracking 
algorithms have been developed.  One of the most reliable 
algorithms is SURF (Speeded-UP Robust Features) (Bay et al., 
2008).  Figure 3 shows an example of feature points extraction 
by the SURF in our experiments.   
 

 
Figure 3. Feature points extraction by SURF 

 
Even if the SURF is applied to feature points extraction and 
tracking, incorrect matching points are still exist.  The feature 
points tracking are refined by using not only adjacent frames 
also sequential frames.  Firstly, extracted feature points are 
searched in sequence between adjacent frames.  After the 
tracking process within a certain number of frames, position of 
feature points are re-projected into first frames (back matching).  
If the displacement between first and last position of the points 
is larger than a threshold, the feature points are discarded.  With 
the result of the matching, three dimensional coordinates of the 
feature points can be calculated.  When the depth of the points 
is larger than a threshold, the feature points are also discarded.   
 
After the above mentioned thresholding process, incorrect 
matching points still remain (Figure 4).  Especially in the case 
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of application in urban area, similar textures make such 
incorrect matching.  In this study, RANSAC (Random Sample 
Consensus) (Fischler and Bolles, 1981) is also applied (Figure 
5).  RANSAC algorithm is a method of outlier removal.  Finally, 
the remaining points are accepted as feature points.   
 

 
Figure 4. Incorrect matching by SURF 

 

 
Figure 5. Correction of matching results by RANSAC 

 
3.2 Three dimensional coordinates estimation 

The position and rotation of a mobile sensor are already 
acquired through POS data filtering described in the previous 
chapter.  With the position and rotation, and feature points 
tracking results, three dimensional coordinates of the feature 
points can be calculated.  Camera calibration is conducted in 
advance.  For the calibration, checkerboard is used. 
 
First of all, an initial tree dimensional coordinates is built based 
on intersection (Stewenius et al., 2006).  For the optimization of 
intersection, RANSAC algorithm (Fischler and Bolles, 1981) is 
also applied.   
 
3.3 Orientation factors updates 

Once initial value of the orientation factors and three 
dimensional coordinates of the feature points are acquired, the 
orientation factors updates are conducted by bundle adjustment 
(Triggs et al., 2000; Luhmann et al., 2014).   
 
The feature points have coordinates pi = (Xi, Yi, Zi).  The each 
sequential frame has a three dimensional coordinates  
qj = (Xj, Yj, Zj) as the camera position.  At the frames j, the 
feature point i has camera coordinate system (uij, vij).  A 
transformation between the camera coordinate and the world 
coordinate systems represents collinearity equation. 
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where  c = focal length 
 

ijij vu  ,  = factors of interior orientation 

 akl = factors of rotation matrix 
 
The position and rotation updates are computed iteratively by 
minimizing a robust objective function of the re-projection error.   
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Tukey bi-weight objective function  , TObj   is applied as a 

robust objective function and x is a set of parameters.  Iteration 
of reweighted least squares method is used to allow the robust 
estimator to converge. 
 
There are two types of the bundle adjustment: full bundle 
adjustment and local bundle adjustment.  The local bundle 
adjustment uses only some recent frames.  The full bundle 
adjustment is more accurate than the local bundle adjustment, 
but computational load is more expensive.  In the sense of 
computation, the local bundle adjustment is more preferable at 
the expense of accuracy (Arth et al., 2009).  The local bundle 
adjustment can be applied recursively (Mclauchlan, 2000).   
 
 

1:11:1   jjj EEE  (21) 

 
E1:j expresses the objective function by using from 1st frame to 
jth frame.  According to the recursive form, bundle adjustment 
can be conducted effectively.  It is important to point out here 
that the accuracy depends on the number of frames with the 
recursive form.  We examined the relationships between 
number of frames and computation time / sum of squared error.  
In this study, based on the length of baseline, the local bundle 
adjustment is applied for improving the accuracy. 
 
In order to solve the bundle adjustment problem, Levenberg-
Marquardt method (Hartley and Zisserman, 2004) is applied.  
The objective function E is approximated by the following 
formula:  
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4. EXPERIMENTS 

The proposed method is applied to POS data and images taken 
in urban area.  An iPhone4s is used as a mobile device, which is 
equipped with GPS, gyro sensor, acceleration meter, magnetic 
field sensor (POS) and a camera.  Camera calibration is 
conducted in advance.  In order to evaluate the accuracy, 
orientation data of Mobile Mapping System (MMS) of Trimble 
are compared.  The MMS is also equipped with the iPhone4s.  
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The experimental site is in urban area (Figure 6), at which 
condition of GPS receiver is appropriate.   
 

 

 
Figure 6. Experimental site 

 
4.1 Experiment of POS data filtering 

First experiment is application of POS data filtering.  Figure 7 
compares estimation results of roll, pitch and yaw with MMS 
data.   
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Figure 7. Results of rotation angle with POS sensor fusion 

 
The displacement between estimated value and MMS data with 
respect to roll, pitch, and yaw is 0.024 (rad), 0.031 (rad), and 
0.17 (rad) on average, respectively.  In the result of yaw, the 
gap was large, because of limitation of function in iPhone, that 
is negative value of yaw angle is converted to zero 
automatically.   
 

Position accuracy is also examined (Figure 8).  The root mean 
square of the positions displacement is 5.67 (m) 
 

 
Figure 8. Result of position with POS sensor fusion 

 
 
4.2 Experiment of POS and camera integration 

As shown in Figure 8, accuracy of POS data filtering became 
worse at the area in a curve.  Focusing on such area, result of 
POS and camera integration was examined.   
 
Figure 9 shows the accuracies of rotation angle by all sensors 
(POS and camera) integration.  From the comparison between 
the accuracies of the proposed method and ones of POS data 
filtering, clear improvement was not confirmed.   
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Figure 9. Results of rotation angle with all sensors integration 
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Figure 10 shows the result of all sensors integration.  Compared 
with the previous result, the accuracy improvement can be 
confirmed.  During the application area, the root mean square of 
the positions displacement with only POS data filtering is 3.59 
(m).  On the other hand, one with POS and camera integration 
improved to 3.26 (m).   
 

MMS
iPhone POS
iPhone POS 
+ camera

 
Figure 10. Result of position with all sensors integration 

 
 

5. CONCLUSIONS 

This paper develops the self-localization method using sensors, 
such as POS and cameras, on mobile devices simultaneously.  
The proposed method applies the Kalman filter in order to 
combine all sensors data except for camera (POS data filtering).  
Additionally, by using the position and rotation from POS data 
filtering as initial value of bundle adjustment, POS and camera 
integration method is achieved.   
 
Through experiments with real data, the accuracy 
improvements of position and rotation by POS data filtering 
were confirmed.  The results of final integration method 
improved the accuracy.  It means that proposed self-localization 
method with POS and camera make the accuracy more 
sophisticated compared with only POS data filtering.  
Especially, the improvement at the area in a curve is noticeable.  
According to the experiments, the significance of the proposed 
method is confirmed.   
 
As a further work, accuracy of three dimensional coordinates 
estimation of feature points will be evaluated by comparing 
with laser scanner data on MMS.  Additionally, integrated 
filtering method between POS data filtering and bundle 
adjustment will become challenging investigation.  As a result, 
promising method can be constructed, and then more 
impressive visualization will be accomplished. 
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