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ABSTRACT:

Understanding of human dynamics has drawn attention to various areas. Due to the wide spread of positioning technologies that use
GPS or public Wi-Fi, location information can be obtained with high spatial-temporal resolution as well as at low cost. By collecting
set of individual location information in real time, monitoring of human dynamics is recently considered possible and is expected
to lead to dynamic traffic control in the future. Although this monitoring focuses on detecting anomalous states of human dynamics,
anomaly detection methods are developed ad hoc and not fully systematized. This research aims to define an anomaly detection problem
of the human dynamics monitoring with gridded population data and develop an anomaly detection method based on the definition.
According to the result of a review we have comprehensively conducted, we discussed the characteristics of the anomaly detection
of human dynamics monitoring and categorized our problem to a semi-supervised anomaly detection problem that detects contextual
anomalies behind time-series data. We developed an anomaly detection method based on a sticky HDP-HMM, which is able to estimate
the number of hidden states according to input data. Results of the experiment with synthetic data showed that our proposed method
has good fundamental performance with respect to the detection rate. Through the experiment with real gridded population data, an
anomaly was detected when and where an actual social event had occurred.

1 INTRODUCTION

Understanding of human dynamics such as people’s mobility or
distribution in a city has drawn attention to various areas; for ex-
ample, urban planning and marking. Recently, due to the wide
spread of positioning technologies that use GPS or public Wi-Fi,
location information can be obtained with high spatial-temporal
resolution as well as at low cost. Therefore, by collecting set of
individual location information in real time, monitoring of hu-
man dynamics is considered possible and is expected to lead to
dynamic traffic control in the future. This monitoring focuses on
detecting anomalous states of human dynamics as well as normal
states. Because there are uncountable possible factors that may
trigger the anomalous states, it would not possible to monitor all
of the factors. In contrast, if anomalous states are detected by
analysis on observation data of human dynamics monitoring such
as mesh population data or set of individual GPS trajectories, this
will be very useful. The characteristics that human dynamics may
drastically change depending on regions and times, and the mas-
sive observation data through 24-hour-monitoring would however
make manual anomaly detection difficult. On the other hand, sta-
tistical anomaly detection method can learn normal states from
regularly acquired data and automatically detect anomalies as a
different state from normal states.

Several researches on statistical anomaly detection of human dy-
namics have been conducted. Candia (Candia et al., 2008) has
used extensive cell phone records resolved in both time and space,
focused on the occurrence of anomalous events and discussed
how these spatial-temporal anomalies can be described using stan-
dard percolation theory tools. Horanont (Horanont, 2010) in terms
of hot spots extraction and visualization, has interpolated aggre-
gate cell phone Call Detail Records by using an implemented
platform. As an example of researches focusing on GPS tra-
jectory data, Pan (Pan et al., 2013) has identified anomalies ac-

cording to drivers’ routing behavior on an urban traffic network.
Horiguchi (Horiguchi et al., 2013) has implemented a real time
monitoring system that provides the visual comprehension of re-
gional traffic situations in terms of the fluidity and the singularity
indices. Moreover, there are other researches that try to detect
an anomalous trajectory caused by external factors such as acci-
dents or vicious drivers by collecting the vehicle trajectories over
a long period of time.

Although these researches on statistical anomaly detection of hu-
man dynamics have been conducted so far, these methods are
developed ad hoc due to the diversity of data and anomalies.
Anomaly detection methods are not fully systematized yet. Addi-
tionally it is considered difficult even for a well-suited method for
certain application domain to apply to another domain because of
the discrepancy in the definition of anomalies between the do-
mains.

For these reasons, this research aims to firstly define an anomaly
detection problem with regard to the human dynamics monitor-
ing. Because of the anonymity and the high accessibility, this
research targets gridded population data that is aggregated indi-
vidual GPS data into each grid to estimate population of each
grid for each instance of time. Secondly, based on the definition,
we develop a suitable anomaly detection method for the human
dynamics monitoring, and finally evaluate the fundamental per-
formance of the proposed method. Therefore, development of
anomaly detection method and clarification of the fundamental
performance of the proposed method will make it possible to de-
tect anomalous states behind the human dynamics. In the future,
the human dynamics monitoring is expected to lead an effective
traffic control and a better understanding of social mechanisms.

The paper is organized as follows: In section 2, we explain how
the anomaly detection of human dynamics monitoring can be in-
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terpreted withrespect to the factors that characterize anomaly de-
tection problem. Additionally, we give an explanation that the
state-space model, especially the Hidden Markov Model based
on Hierarchical Dirichlet Process, is considered possible to ap-
ply. In section 3, after introducing the properties of nonparamet-
ric Bayesian model such as Dirichlet process, detail of the pro-
posed anomaly detection method is presented. We demonstrate
our proposed method with synthetic and real data and discuss the
fundamental performance in section 4. Finally, section 5 con-
cludes with a summary and some directions for future works.

2 PROBLEM SETUP FOR ANOMALY DETECTION OF
HUMAN DYNAMIC MONITORING

2.1 Interpretation of anomaly detection factors

Statistical anomaly detection aims to identify data that are not
consistent with a pattern that most other data follow (Chandola et
al., 2009). It is also referred to as novelty detection (Pimentel et
al., 2014) or outlier detection (Hodge and Austin, 2004) in differ-
ent application domains although the main principle is common.
The importance of anomaly detection attributes to value of de-
tected anomalies in data; anomalies are often important trends
behind huge data or critical and significant data. Combined with
the progress of data acquisition techniques and computer per-
formance, this great importance makes anomaly detection gain
much research attention in variety of application domains; intru-
sion detection, image processing, structural health monitoring, et
cetera.

Firstly, we have comprehensively reviewed the previous studies
of anomaly detection in variety of areas and a result of the review
shows that there are four factors that characterize anomaly detec-
tion problem; the nature of the input data, the output of anomaly
detection, availability or unavailability of the data labels, and the
type of anomalies (Chandola et al., 2009). This section provides
a clear explanation of these factors as well as the interpretation of
human dynamics monitoring targeting gridded population data.

2.1.1 Nature of input data: The first factor that character-
izes anomaly detection is the nature of the input data. This can
be roughly divided into binary, categorical and continuous. Addi-
tionally, each input data might consist of univariate or multivari-
ate. Input data can also be categorized in terms of relationship
between each input data; for example, temporal data, spatial data,
graph data, et cetera. In the case of this study with gridded popu-
lation data, input data can be considered as temporal data of con-
tinuous values because each gridded population can be regarded
as input value. Moreover, since it is commonly considered that
urban population distribution has a greater influence with closer
region, this temporal data may also have some spatial correlation.
Therefore, development to handle temporal anomaly detection is
necessary and spatial extension may be preferred.

2.1.2 Output of anomaly detection: The second important
factor for any anomaly detection method is the manner in which
the anomalies are reported. There are typically two ways: One is
to calculate anomaly score for each instance, and the another is
to assign ”normal” label or ”anomalous” label for each instance.
If the anomaly score of every grid is computed, it can be utilized
as an indicator of the traffic control priority. Also, if normal or
anomalous label that represents what kind of state the grid is, it
can be beneficial. In this manner, the human dynamics monitor-
ing is considered to accept both anomaly score and labels.

2.1.3 Data labels: The normal or anomalous labels associ-
ated with a input data instance that is used to learn anomaly
detection models is the third factor to characterize anomaly de-
tection. Since it is difficult to obtain all of possible states, es-
pecially anomalous states, anomaly detection techniques can be
divided into three modes based on the extent to which the la-
bels are available; supervised anomaly detection with the need
of both normal and anomalous labels in training dataset, semi-
supervised anomaly detection with only normal labels, and un-
supervised anomaly detection without any prior information with
regard to input dataset. In the case of human dynamics moni-
toring, normal labels can be obtained in a relatively simple way
by using observational data of the day when and the place where
big social events such as serious accidents and natural disasters
are not reported. On the other hand, the availability of anoma-
lous labels is a big issue for not only human dynamics monitor-
ing but any anomaly detection problem. For these reasons, semi-
supervised or unsupervised anomaly detection is thought able to
be employed.

2.1.4 Type of anomalies: Anomalies can be classified into
following three categories; point anomaly, contextual anomaly
and collective anomaly. An individual data is regarded as a point
anomaly if the data is considered anomalous with respect to the
rest of the data, a data instance is regarded as a contextual anomaly
if anomalous in the specific context (but not separately), and a set
of data instance is regarded as a collective anomaly if anomalous
with respect to the entire data set. As examples of anomalies
that are possibly detected in gridded population data, there is an
extreme increase or decrease caused by traffic congestion and a
change of the population pattern affected by a change of the traffic
demands. Figure 1 illustrates these possible anomalies in a grid-
ded population temporal data. Aimed at the detection of these
temporal anomalies as well as spatial anomalies due to the spa-
tial correlations of gridded population data, contextual anomaly
detection techniques are considered suitable to this study.

Figure 1:Anomalies in gridded population data

Based on these analyses showed in Table 2, we define the anomaly
detection of human dynamics monitoring as a problem that de-
tects contextual anomalies in time-series data of gridded popula-
tion data by learning normal states with training dataset.
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Table2: Characteristics of the anomaly detection of human dy-
namics monitoring

Interpretation of
Factors human dynamicsmonitoring

Input data Temporaldata of continuous value of
an individual gridded population

Temporaldata with spatial correlation
Output Both anomalyscores and labels
Data labels Semi orunsupervised anomaly detection

Normal labelsobtained from daily data
Typeof anomaly Contextualanomaly

An extreme increase or decrease caused
by traffic congestion

A changeof the population pattern
by achange of the traffic demands

2.2 State-spacemodel for anomaly detection

According to the problem setup defined above, anomaly detec-
tion techniques based on state-space models are considered pos-
sible to be applied. State-space models are models that consist of
hidden (or latent) state variables and observed variables, and as-
sume that hidden variables emit observed variables while evolv-
ing through time. This representation makes it possible to model
complex temporal data, and this is the reason why state-space
models are often used for anomaly detection in time-series data
(Pimentel et al., 2014). Additionally, the high capability of ad-
dition of new variables such as neighbor population can make
spatial extension of models possible.

There is said to be two most common techniques that use state-
space models for anomaly detection. One assumes that anomalies
are detected by calculating likelihood or emission probability of
each observation, while the another assumes that anomalies are
assigned to state variables which indicate anomalous states.

When considering the application for the anomaly detection of
human dynamics monitoring, the construction of data generation
models can be seriously problematic with regard to the former
technique. Since there are few studies with respect to prediction
or simulation of gridded population data, it is considered difficult
to develop system models and observation models of which ac-
curacy is enough for anomaly detection.

On the other hand, the later technique often suffers from the deci-
sion of the number of the hidden states because it generally needs
to be fixed beforehand. Unfortunately, the accurate number of the
hidden states that gridded population data possibly come into is
unknown. This problem, however, can be conquered when the
number is estimated from the collection of observation data.

This research regards that Hidden Markov Models based on Hi-
erarchical Dirichlet Process, which are ones of nonparametric
Bayesian models, can estimate the number of states of tempo-
ral data, and can be applied to the anomaly detection of human
dynamics monitoring. Especially, we use a sticky Hierarchical
Dirichlet Process - Hidden Markov Model (sHDP-HMM) which
allows more robust learning of smoothly varying dynamics by
limiting rapid state transitions. In the next section, an anomaly
detection method based on a sHDP-HMM is proposed.

3 THE PROPOSED ANOMALY DETECTION METHOD

3.1 Nonparametric Bayesian models

In this section, following a brief explanation about the Dirichlet
Process that is important aspect for understanding of nonpara-
metric Bayesian models, a sticky HDP-HMM is referred which
is applied Dirichlet Process to Hidden Markov Model.

3.1.1 Dirichlet process: The dirichlet process (DP) is called
a distribution over a distribution or a countably infinite proba-
bility measure, uniquely defined by a base measureH on a pa-
rameter spaceΘ and a concentration parameterα. We denote
it by DP(α,H). DP is also regarded as a stochastic process in
which a probability distribution called as a base measure is ap-
proximated by a random discrete distribution. A random draw
G0 ∼ DP(H,α) can be expressed as

G0 =

∞∑
k=1

πkδ(θk), θk ∼ H (1)

where theδ(θk) indicates a Dirac delta, and the weightsπk are
sampled via a stick-breaking construction, denoted below:

νk = Beta(1, α)

πk = νk

k−1∏
l=1

(1− νl)
(2)

Here, let them be denoted byπ = (π1, π2, ..., π∞) ∼ GEM(α).
The stick-breaking process can be interpreted as dividing a stick
of 1 in length, which is a total sum of probability, by weightsπk

drawn from a Beta distribution. These infinitely divided sticks
make an infinite multinomial distributionπ. Additionally, δ(θk)
is called an atom and assigned to parameter drawn from the pa-
rameter spaceΘ. This representation gives us an insight into how
the parameterα controls the model complexity ofG0 in terms of
the expected numbers of components.

The DP is commonly used as a prior on the parameters of a
mixture model with a random number of components. Such a
model is called a dirichlet process mixture model and its graphi-
cal model is depicted in Figure 3(a). Here, letN be the number
of the observationsyi’s andzi be an indicator for the assignment
of observations to the parameters. An indicatorzi is drawn from
the countably infinite multinomial distributionπ constructed by
the stick-breaking process GEM(α), a parameterθk is assigned
by the indicatorzi, and the observationyi is emitted from the
likelihood distributionF with the parameterθk.

3.1.2 Hierarchical dirichlet process: The hierarchical dirich-
let process (HDP) defines first a global base measureG0, drawn
by a DP prior DP(γ,H) as an average distributions of the group
specific distributionsGj , which is sampled from a DP(α,G0).
SinceG0 is discrete due to the characteristics of the DP, the group
specific distributionsGj will share the same atomsδ(θk). This
ensures that the mixture models in the different groups share mix-
ture components.

With respect to the representation of the stick-braeking process,
the HDP can be interpreted that the global parameterβ is sampled
from GEM(γ), then the group specific distributionπj is sampled
from the DP(α, β), and finally the group specific indicatorzji
and theith observation are generated in the same way as the DP,
as depicted in Figure 3(b).

3.1.3 Hierarchical dirichlet process - hidden markov model:
The model that hierarchical dirichlet process applies to a hidden
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Figure 3:Dirichlet process mixture model(a), Hierarchical Dirichlet Process(b) and sticky HDP-HMM(c)

markov model is called hierarchical dirichlet process - hidden
markov model (HDP-HMM) (Teh et al., 2006). In HDP-HMMs,
the inditatorzt acts as the hidden state at the timet, πj means
the state specific transition distribution for statej, andβ is called
as the global transition distribution. Due to the fact that each
group specific ditributionGj shares the common components,
each state specific distributionπj share the common countably
infinite states. This also means the state transition matrixπ can
be regarded to have raw and column of countably infinite.

The ability of HDP-HMMs to have countably infinite states the-
oretically make it possible to estimate the number of states ac-
cording to input data, and has leads to some application such as
clustering and anomaly detection, especially where the number
of clusters or states is unknown (Lello et al., 2012).

An extension of the HDP-HMM, nemed a sticky HDP-HMM or
sHDP-HMM, has been deveploed by Fox (Fox et al., 2009) to
solve the issue which the standard HDP-HMM learns a model
with unrealistically fast dynamics that causes the reduction of the
model precision. The sHDP-HMM introduces the hyper-parameter
κ > 0 that controls the expected probability of the self-transition
to the stage where the state specific ditributionπj is sampled. The
graphical representation of the sHDP-HMM is depicted in Figure
3(c). The resulting generative model is given by:

β|γ ∼ GEM(γ)
θk|H ∼ H

πj |α, β, κ ∼ DP(α+ κ,
αβ+κδj
α+κ

)
zt|zt−1, {πj}∞j=1 ∼ πzt−1

xt|zt, {θj}∞j=1 ∼ F (xt|θzt)

(3)

In termsof the human dynamics monitoring, since it is consid-
ered that hidden states behind human dynamics gradually transit
through time, setting the accurate expected probability of tself-
transition can lead to the model with high predictive performance.
Therefore, we consider that the adequate number of states be-
hind human dynamics data can probably be estimated by using a
sHDP-HMM for the an anomaly detection model.

3.2 THE PROPOSED ANOMALY DETECTION METHOD

The proposed method consists of the following three steps: It
firstly learns hidden state that represent normal states sequence
and the hyper-parameters from training data (step 1). Secondly,
the sHDP-HMM with the learned hyper-parameters infers hidden
states of test data (step 2). By comparing the two estimated states
for each instant of time, an anomaly will finally be detected if
they are unequal (step 3).

In the step 1, a ”normal” training temporal data{xt}Tt=1 is set as

the observation variables of a sHDP-HMM, whereT indicates
the length ofd dimensional temporal data. We used dimen-
sional Gaussian distributionN(µk,Σk) for the likelihood dis-
tribution of thekth hidden state, uniquely defined by parameter
θk = (µk,Σk). Also, a Gaussian distributionN(µ0,Σ0) and a
Inverse-Wishart distribution IW(ν,∆) are used for the prior dis-
tribution of the meanµk and the variance-covariance matrixΣk

each. Since hyper-parameters are unknown, we give vague prior
distributions and try infer them by sampling algorithm. For the
sHDP-HMM explained above, the Blocked Gibbs Sampler is em-
ployed to infer all of the hyper-parameters and the parameters in-
cluding the state sequence{zt}Tt=1.

The step 2 applies the inferred sHDP-HMM to training tempo-
ral data{x′

t}Tt=1 and estimates its hidden state sequence{z′t}Tt=1

which may contain anomalies. With respect to the parameter set-
ting, the step 2 uses the expected values which are calculated
from posterior distributions of the hyper-parameters sampled the
in the step 1. Moreover, the initialization of the parameters such
asβ, π, θ is given not by new sampled values, but by using the
last ones in step 1.

Finally in the step 3, the normal state sequence{zt}Tt=1 and the
test state sequence{z′t}Tt=1 are compared. To handle the prob-
lem that the indicators assigned to each state can be exchanged
due to re-estimation ofβ, π, θ, the proposed method employs the
Hungarian Algorithm to solve assignment problem of which cost
function is given by Hamming distance between the normal and
test state sequences. After the state assignment, an anomaly at
time t is detected ifzt ̸= z′t.

Based on the characteristics of anomaly detection problem de-
fined in section 2, this proposed method is categorized to a semi-
supervised anomaly detection technique that uses normal time-
series data and detects contextual anomalies with output of anomaly
labels. This proposed method especially aims to detect contextual
anomalies that are anomalous at specific time, but normal other-
wise.

4 EXPERIMENTS AND RESULTS

In this section, we apply our proposed anomaly detection method
to both synthetic and real data, and discuss the fundamental per-
formance. In implementing the inference algorithm, we use a
MATLAB toolbox supporting several inference algorithms based
on Gibbs sampling for the sticky HDP-HMM, which has been
made available by Fox (Fox et al., 2009).
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4.1 Experimentwith synthetic data

For an experiment with synthetic data, we generate 1 dimen-
sional training and test time-series data with length ofT = 400,
depicted in Figure 5(a). We manually set twelve states repre-
sented by the numbers in Figure 5 and obtain i.i.d. samples from
Gaussian distribution defined for each state. This synthetic tem-
poral data imitates an average one-day pattern of a real grid-
ded population data discussed later, by adjusting means and vari-
ances of Gaussian distributions. The test data, which is also
sampled from the same distributions, is manually added anoma-
lous values on 10% of the test data as follows; (i)5σ anomaly at
t = 46, (ii)3σ anomalies att = 98 ∼ 108, (iii)3σ anomalies at
t = 196 ∼ 210, (iv)3σ anomalies att = 311 ∼ 328 and (v)10σ
anomaly att = 381.

We used 1 dimensional Gaussian emission distribution, and placed
priorsN(µ0,Σ0) and IW(ν,∆) on the space of mean and vari-
ance parameters. Theµ0 andΣ0 are given by empirical mean
and variance, degree of freedomν is set as 4 and∆ = I where
I indicates the identity matrix. To realize a steady inference, we
normalize the input data to make its mean be 0 and variance be 1.

The upper side of Figure 5(b) depicts the learned state sequence
{zt}Tt=1 where green solid and dotted lines represent the esti-
mated mean and standard variation of each state. The estimated
state sequence is also visualized. Although we have initially set
twelve states, the final 10,000th sampling gave six states because
a couple of states were unified into one common state. Yet, sig-
nificant differences between the real Gaussian parameters and the
estimated parameters were not found.

After the inference of the test data in the step 2, hidden states
and their Gaussian parameters were estimated as illustrated in the
lower side of Figure 5(b). The number of the hidden states, which
was six at the time of training, was estimated seven. Besides, our
anomaly detection method regarded 64 points as anomaly pointed
by red circles in the figure. Table 4 shows a confusion matrix in
which a result of this anomaly detection experiment is listed. The
fact that results scored 80.0% of the detection rate shows that our
proposed method has good fundamental performance of anomaly
detection for pseudo gridded population data with respect to the
detection rate. On the other hand, the precision was 50.0% be-
cause a number of anomalies including false positives were often
detected near borders of states.

Table 4: Confusion matrix of the result with the synthetic data
Result of anomaly detection
Anomaly

64
Normal

336

True
Anomaly

40
TruePositive

32
FalseNegative

8
Normal

360
FalsePositive

32
TrueNegative

328

4.2 Experimentwith real data

As a real gridded population data for this experiment, we use
500m-1hour resolved population of 30 October 2012 and 6 Novem-
ber 2012 in Tokyo, provided by ZENRIN DataCom Co., Ltd.
Because a serious accident on the Tobu Isesaki Line has been
recognized at about 6 am on 6 November to end up an hour-and-
a-half service interruption between Asakusa Sta. and Kita-Senju
Sta., we use the data of Octber 30 for training and the another for
test. Especially, we target on a grid where Asakusa Sta. is lo-
cated (Figure 6) because it was probably considerably impacted

Figure 6:Location of the target grid

by the accident. We employ our proposed anomaly method with
the normalized temporal data for observation variables and the
same sHDP-HMM setting as before.

The upper side of Figure 7 illustrates a result of the inference of
training data and shows that the number of normal states was es-
timated three, each of which stands for morning, afternoon and
evening. After the test-data inference, new two states have been
assigned for data in morning and evening, and then, two anoma-
lies were detected as pointed by red circles in the bottom of Fig-
ure 7. This result shows that an anomaly was detected at the time
when train services had been stopped. On the other hand, while
the proposed method detected the another anomaly in evening,
there is not recognized serious events such as traffic accidents or
social events around the target area. An extensive analysis is re-
quired on the reason of this detection, whether it is result of latent
anomaly or a false alarm.

Figure 7:learning result of training data(upper), anomaly detec-
tion result(lower) and compared states(middle)

5 CONCLUSIONS

In this study, we firstly defined an anomaly detection problem of
the human dynamics monitoring with respect to gridded popula-
tion data. Based on the result of review we have comprehensively
done, we discussed how the anomaly detection of human dynam-
ics monitoring can be interpreted in terms of the four factors; na-
ture of data, output of anomaly detection, data labels and type of
anomalies. Additionally, we gave an explanation that state-space
model, especially a HDP-HMM is considered possible to apply
due to its property that a HDP-HMM can estimate the number of
hidden states according to input data. Besides, we developed an
anomaly detection method based on a sticky HDP-HMM, which
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Figure 5:Synthetic training / test time-series data(a), inference and anomaly detection results(d)

is categorized to a semi-supervised anomaly detection technique
that uses normal time-series data and detects contextual anoma-
lies with output of anomaly labels. Results of the experiment with
synthetic data showed that our proposed method has good funda-
mental performance with respect to the detection rate. Through
the experiment with real gridded population data, an anomaly was
detected at the location where a station was located and the time
when train services had been stopped.

Future works include the improvement of the precision of the
proposed method, the application of the proposed method to a
bigger dataset of different gridded population data, and the deep-
ening the interpretation of the estimated states and the detected
anomalies on the traffic networks. The final goal of this research
is to construct a dynamic traffic control model by integrating the
spatial extension of the proposed method, the on-line anomaly
detection method and the control theory.
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