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ABSTRACT:

Processing massive datasets which are not fitting in the main memory of computer is challenging. This is especially true in the case
of map generalization, where the relationships between (nearby) features in the map must be considered. In our case, an automated
map generalization process runs offline to produce a dataset suitable for visualizing at arbitrary map scale (vario-scale) and efficiently
enabling smooth zoom user interactions over the web. Our solution to be able to generalize such large vector datasets is based on the
idea of subdividing the workload according to the Fieldtree organization: a multi-level structure of space. It subdivides space regularly
into fields (grid cells), at every level with shifted origin. Only features completely fitting within a field are processed. Due to the
Fieldtree organization, features on the boundary at a given level will be contained completely in one of the fields of the higher levels.
Every field that resides at the same level in the Fieldtree can be processed in parallel, which is advantageous for processing on multi-
core computer systems. We have tested our method with datasets with upto 880 thousand objects on a machine with 16 cores, resulting
in a decrease of runtime with a factor 27 compared to a single sequential process run. This more than linear speed-up indicates also an
interesting algorithmic side-effect of our approach.

1. INTRODUCTION

Geographic vector datasets are an example of the big data phe-
nomena. Practitioners using these large geographic datasets of
the whole world, a continent or a country, for example, can eas-
ily get into difficulties because the shear size of the data is too
big. Functionalities such as storage, analysing, processing or vi-
sualisation hit the physical limitations of a computer. Automated
map generalization is not exceptional in this. In recent years the
process for generating vario-scale data structures (based on au-
tomated map generalization) have been described (van Oosterom
et al., 2014). However, only datasets which can fit into the main
memory of the computer could be processed efficiently, limit-
ing the maximum size of datasets to be processed. Therefore we
have developed an automated generalization method for process-
ing large geographic vector dataset of arbitrary size into vario-
scale data structures.

The main goal of our research is to create a process to be able
to produce a vario-scale data structure for a large dataset based
on the following requirements (each one supported by its own
motivation):

• Input independent – The approach should be able to process
different datasets intended for various map scales.

• Automatically generated partition – The division of the space
into smaller pieces should work fully automatically and not
require manual intervention.

• Suitable for parallel processing – Besides the fact, that datasets
hitting the physical limitation of the computer cannot be
processed, the approach should be suitable to run in parallel
for more practical reasons, such as reduction of processing
time.

• The features should be processed just once – Features on the
boundaries of a dataset split in pieces will require special
care. However, it should be guaranteed that features should
not be split in artificial parts and the feature is processed
just once during the whole process, increasing efficiency and
consistency of the result.

• Be suitable for data produced at a range of map scales – A
vario-scale structure contains a whole series of simpler maps
where features in the map are modified versions of its own
predecessor. This requires a hierarchical data structure to
record all the successive changes.

One of our goals is to produce a vario-scale topographic dataset
(based on the large scale 1:10,000 map for the whole of The
Netherlands) and disseminate this data via a web service interface
enabling access at arbitrary map scale and smooth zoom user in-
teractions over the web. In our related paper Huang et al. (2014)
we described the server-client architecture. This dataset its pla-
nar area partition (roads, water, terrain) contains approximately
5.2 million area features. To be able to process a massive dataset
of this size we have designed a method to split the original dataset
into smaller pieces, called fields (at multiple levels). Starting
at the lowest level, these small fields can be handled separately
and processed fields (with less data after generalization) are com-
bined into bigger fields at an higher level. Additional benefit is
the possibility to process the fields in parallel on today’s multi-
core systems, which can significantly speed up the generalization
process. On the other hand, the objects located on the boundaries
of the fields require special attention, which will be described in
the remainder of this paper, namely: §2. presents related work and
other options to handle large datasets. §3. explains the principles
of our process in more detail. In §4. modifications of the pro-
cess specific for road network generalization are introduced. A
demonstration of the approach with multiple real world datasets
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is given in §5., followed by conclusions and the future work in
§6.

2. RELATED WORK

Automated map generalization of large datasets is a notoriously
difficult problem: A computationally complex, time demanding
and data-intensive problem and it requires high-performance com-
puting, commonly considered as one main approach for handling
such data. Using cluster-, grid-, cloud- or super computing, paral-
lel processing is a good way to deal with massive datasets (Sharker
and Karimi, 2014). It requires decomposition into independent
tasks that can run in parallel. This can be executed in less time,
leading to more efficient computation and solving of complex
problems, which map generalization by all means is. These rea-
sons and the fact that computers with multiple cores are common
in these days explains why researchers focus on map generaliza-
tion of large datasets in parallel.

Many aspects of processing geographic data in parallel have been
extensively studied in the past. Domain decomposition for paral-
lel processing of spatial problems have been studied by Ding and
Densham (1996), Armstrong and Densham (1992), Zhou et al.
(1998) and Meng et al. (2007). Meng et al. (2007), for instance,
used the Hilbert space filling curve to achieve a better parallel
partitioning. Another focus point has been on the development of
frameworks for parallel computing (see e. g. Hawick et al. (2003),
Wang et al. (2011) and Guan et al. (2012)). The MapReduce pro-
gramming model (Dean and Ghemawat, 2004) is well known for
parallel computation and has only recently been extended with
capabilities for various computational geometry problems (El-
dawy et al., 2013). It must be noted, that all these work do not
focus on the problem of automated map generalization.

Meijers and Ledoux (2013) present an algorithm, termed Edge-
Crack, to obtain a topological data structure and perform small
geometric corrections of the input by snapping to avoid prob-
lems. They show how they extend the algorithm to a Divide-and-
Conquer approach using a quadtree based subdivision, which is
also suited for parallel processing. They report on successfully
obtaining a topological data structure for 5,3 million polygons
with their approach, however it does not consider any generaliza-
tion.

The Netherlands’ Kadaster processes the whole of The Nether-
lands from scale 1:10,000 to 1:50,000 in an automated fashion
in parallel (Stoter et al., 2014). They developed their custom so-
lution using ESRI generalization software. To obtain a map for
the whole of the country they partitioned the dataset based on the
main road network. Their irregular partitioning requires minimal
features to be split and the amount of data is more less distributed
equally. This advantage comes with drawbacks, because defin-
ing this partitions is difficult and cannot be done fully automat-
ically (e. g. near the coast the road network is too sparse to ob-
tain reasonable small dataset parts). Their solution is created and
tuned for generalization of maps for a specific target scale and to
achieve the best result possible, however this tailor made solution
can not be applied out of the box for different dataset or targeting
creation of data for another map scale such as a European land
use map.

Thiemann et al. (2011) present the automated derivation of CORINE
Land Cover (scale 1:100,000) from the high resolution German
authoritative land cover datasets (scale 1:10,000) of the whole
area of Germany. First the datasets are split into rectangular and
slightly overlapping tiles. These are processed independently and
then composed into one result. To preserve consistency of data

some redundancy is added to the partitions in the form of over-
lapping border regions. In these border regions features are pro-
cessed more than once, leading to redundant (and potentially in-
consistent) output. This redundancy is removed in the compo-
sition phase. Their generalization uses some deterministic algo-
rithms for every tile to guarantee that the tiles can be stitched
together without any observed problems later. A user parame-
ter that describes the size of the overlapping border regions is
required.

The described method in this paper fulfils the requirements listed
in § 1. and uses a vario-scale data structure to capture the general-
ization results of a large dataset. A solution for processing large
datasets into a vario-scale structure based on a Fieldtree was pro-
posed quite some time ago (van Putten and van Oosterom, 1998),
but has never been implemented nor tested. A vario-scale data
structure is a specific structure, which stores the results of map
generalization actions; features are generalized in small steps,
progressively leading to a simpler and simpler map. This pro-
cess is based on repeatedly processing the least important feature,
which is based on a global criterion. We assume that objects can
be well generalized with optimized algorithms and appropriate
parameters for use at any map scale. The intermediate represen-
tations of the objects can be ordered by a sequence of general-
ization operations that eliminate small and less important objects
to satisfy the representation constraint, while at the same time
simplifying the boundaries of these objects. The vario-scale data
structure, which has been proposed in (van Oosterom, 2005), cap-
tures these incremental changes with minimal redundancy. Both
the detailed objects at the largest scale and the intermediate ob-
jects generated during the generalization process are stored in a
set of database tables. Redundant storage is avoided as much as
possible by storing the shared boundaries between neighbouring
areas instead of the explicit polygons themselves (i. e. using a
topological data structure composed of nodes, edges and faces).
Once the automated generalization process is finished, for every
topological primitive (node, edge or face) in the structure it is de-
fined what is the valid range of map scales for which this element
should be shown and from these primitives maps at arbitrary map
scale can be constructed.

3. GENERATING A LARGE VARIO-SCALE
STRUCTURE

The whole process of obtaining a large vario-scale data structure
is composed of a sequence of steps: Data import, constructing
a Fieldtree and distribution of the objects over the Fieldtree, pro-
cess field by field (level by level) and finalization. The description
of the complete process will now follow in the same order, step
by step.

3.1 Import

The initial step of the process is to import the input planar par-
tition into a topological data structure consisting of nodes, edges
and faces. We consider topological clean data where nodes de-
gree of two do not exist (unless for island rings) and there are no
intersecting or dangling edges. In case the input data is not in the
required topological structure (as data is often modelled as a set
of simple features) and the dataset is large, then this is also a large
data processing challenge, to which the same parallel processing
strategy could have been applied as presented in this paper for
creating the vario-scale structure.

3.2 Constructing a Fieldtree and object distribution

To split the dataset into smaller pieces we use the Fieldtree data
structure (Frank and Barrera, 1990). The Fieldtree has been de-
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NRLEVELS=8 # Given number of levels to create

FINEGRID=12500 # Grid size (m) at most detailed level

THEORIGX=0 # Origin in x- and y-direction

THEORIGY=0

for (i=0; i<NRLEVELS; i++) do

SIZE[i] = FINEGRID * 2^i

ORIGX[NRLEVELS-1] = THEORIGX

ORIGY[NRLEVELS-1] = THEORIGY

for (i = NRLEVELS-2; i>=0; i--) do

ORIGX[i] = ORIGX[i+1] - SIZE[i+1]/4

ORIGY[i] = ORIGY[i+1] - SIZE[i+1]/4

Figure 1: Pseudo code as given by van Oosterom and Vijlbrief
(1996) for determining the layout of a Fieldtree (its grid size and
the shifted origin of the grid cells at every level). Note that the
number of levels (needed to be able to fit the whole domain of the
dataset in one last field) can be determined given the parameter
for the finest grid size (finegrid) and the extent of the dataset.

Level 1

Level  2

Level 3

(a) Three levels where lowest
is in pink, middle in green and
top level in blue.

(b) 3D impression of the same
fields. Note, the third dimen-
sion is scale.

Figure 2: A Fieldtree (top view and 3D impression)

signed for GIS and similar applications. Besides its multi-level
organization of space, it subdivides space regularly, spatial ob-
jects are never fragmented, and geometric and semantic informa-
tion can be used to assign the location of a certain object in the
Fieldtree.

Figure 2 demonstrates the organization of fields at multiple levels
in the Fieldtree. The most detailed and smallest fields are at the
bottom (large scale), and the less detailed and larger fields (small
scale) are at the top of the Fieldtree. The bottom fields will ini-
tially be filled with the input data, while the content of the higher
level fields is (mainly) generated during the generalization pro-
cess. Note that due to the shifted grid origins, every field has nine
child fields (of which 1 completely contained, 4 half contained,
and 4 quarter contained) in the level below, except the fields from
the lowest level. In reverse direction: a field has either 1, 2 or
4 parents (depending on its location in the grid). The fact that
a field can have more than one parent causes it to be a non-pure
hierarchy and strictly speaking the term ‘tree’ is incorrect. The
number of levels in the Fieldtree is based on the extent of the
dataset and size of the lowest level field is given by a user defined
parameter (cf. Figure 1).

When the layout of the fields for all levels in the tree has been
determined the features of the dataset are redistributed over the
fields. The nodes, edges and faces are distributed to the fields in
the lowest level based on their bounding box, see Figure 3. Every
feature is stored in the smallest field in which it is completely
contained. In case the object is bigger than a field or it intersects
with more fields, a non-fitting object is placed in a field at a higher

(a) Lowest level fields (b) Highest field

Figure 3: Distribution of the edges over the fields of the Fieldtree.
Data that fits in a field has its own colour. Edges that intersect the
boundary of one of the fields at the lowest level, have been stored
in the field at the next level. Note the shift in origin of the field at
the highest level.

level and it will be processed later (together with the generalized
features of the child fields). It has been proven that an object is
completely contained in a field not more than two levels higher,
compared to its own size. A very large object will be placed in
one of the highest levels of the Fieldtree, which means that such
an object will not be processed (generalized) until that level is
reached.

Once the distribution is finished, every lowest field can be treated
separately/ in parallel. Every field has it own set of tables with
nodes, edges and faces in the database: When a field is processed
these tables provide the initial input, during processing these are
populated with the result of the generalization steps and at the
end of processing output is written to the appropriate parent field
tables.

Note that only features completely present in a field are processed
at the current level (i. e. for an area feature (face) all its compos-
ing nodes and edges are present in the field). Features on the
boundary of a field are processed at a higher level, where they do
completely fit. When all the nine child fields are processed, then
the parent field one lever higher can be processed. This process-
ing of fields is repeated until the top level is treated.

The grid location at the next level is shifted, in order to guarantee
that objects which could not be processed in the current field (e. g.
they are bigger than the field) can be treated in the next or one
level above that. Note that every field of the next level has edges
of twice the size (and therefore four times the area size) com-
pared to the fields at the previous level. It is our goal to simplify
the content of a field by a factor 4, that is, if the input consists of
n area features, then the output should be of size n/4. In a uni-
form distribution this will result in higher level fields with similar
workload as in the lower level fields. In case of non-uniform data
the reduction by a factor of 4 will maintain the relative differences
in map density, while decreasing the number of features towards
the higher (and larger) level fields.

3.3 Processing Field by Field

When the features have been distributed over the fields of the
Fieldtree every field in the lowest level can be processed. Pro-
cessing fields (i. e. executing the automated generalization pro-
cess for this part of the map and keeping track of result in tGAP
structure) is the most time and computational consuming part.
But because objects in the different fields are not in interaction to
each other, every field can be processed separately and this pro-
cessing can happen in parallel. Note that our automated general-
ization process is based on iteratively finding the least important
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feature in the current field, instead of a global criterion, this has
now become a ‘local field’ criterion. This makes sense as gener-
alization of for example the northern part of the dataset, should
not influence much the generalization that happens in the south.
Furthermore, replacing the global by a local criterion makes the
problem computationally easier.

Processing one field means applying generalization operations:
Merging faces, removing boundaries (edges), simplification of
edges, collapsing areas to line features and splitting of faces.
This leads to simplification of the objects of the part of the map
stored in the field and divides generalized features into two cate-
gories. First, finished features: these are not valid any more for
the map scale that has been reached with the generalization pro-
cess. These features are stored for the final vario-scale dataset.
Second, unfinished features: these still need to be processed (to-
gether with the ‘boundary’ features, which did not fit in the lower
level fields and the features that were intersecting the field bound-
aries of the just processed level). These features are placed in the
tables of the grid cell of the next level in the Fieldtree in which
they completely fit. We call this propagating features up. As ex-
plained above, to preserve the same amount of information (pro-
cessing work) through whole Fieldtree about 75% of the field is
processed. The other 25% is left and propagated up. Because
the area of a field at the next level is four times bigger, the data
amount (and thus the workload) for a field at the next level will
be approximately the same.

3.4 Finalization

After all fields at all levels of the Fieldtree are processed the final
operation takes place; it combines all information together. All
processed fields are searched and the final global ordering (and
numbering) of the objects based on their range of scales defined
during the vario-scale structure creation takes place. This global
ordering is helpful when using the structure for making maps at
arbitrary map scale. The individual field tables are merged to-
gether to create one set of tables (with one node, edge and face
table for the final dataset) that encodes the result of the progres-
sive generalization process for the whole dataset. In this stage the
structure is ready to use, by other applications such as web clients
supporting smooth zoom of vario-scale data or for conversion to
real 3D representation (Šuba et al., 2014a).

4. READ-ONLY BUFFER FOR ROAD NETWORK

When we tried to use our Fieldtree approach for a road network
dataset of The Netherlands (in Dutch: Nationaal Wegen Bestand),
we realised that for generalization near features are important
(e. g. in the connectivity analysis needed in road network general-
ization), and this was slightly problematic with our design where
features overlapping tile boundaries are already propagated up
(not present).

We outlined in §3. that objects on the boundary of a field can not
use information about their direct neighbours for generalization
decisions, because they are not present (already propagated up).
However, in case of processing the road network, we need extra
information at the boundary of the field because the connectivity
of the roads is crucial, because roads incident with lot of other
roads should stay in the process the longest. Therefore we intro-
duced a ‘read-only’ data buffer around the boundary of the field
where no generalization actions can be performed and objects are
used only for connectivity information purpose, see the red fea-
tures in Figure 4. The buffer is computed locally. Instead of
using a geometric radius ε, we use a topological measure, only

Figure 4: The inward ‘read-only’ buffer example for a subset
of the road network dataset with only four field at the bottom.
The buffer for right bottom field in the figure is illustrated in red.
2 − neighbours of the intersecting face with boundary of field
has been chosen. Note two things: First, only the content of the
fields at current level are shown. Faces intersecting with bound-
ary are not in the figure (already propagated up). Second, the
part of the dense region near to the boundary is not selected as a
buffer because no intersecting face is within the i− neighbours
distance.

considering i-neighbours. It is similar to a bread-first search, e. g.
1-neighbours check only direct neighbours, 2-neighbours check
the neighbours of the direct neighbours, etc. In our case, first,
the faces intersecting with the field boundary are selected. Then
the ‘read-only’ buffer based on the i-neighbours of these faces
is computed. Since the boundary intersecting faces and buffer
faces are propagated up and generalization is only performed in
the non-buffer regions (less work is done). It causes that all gen-
eralization happens in the region that is shrunk inwards. When
the field is processed, all objects from the ‘read-only’ buffer are
propagated up.

5. RESULTS

We have tested our method with multiple datasets that differ in
content, size and type of features. The details of these datasets
(Figures 4 and 5 give an illustration) are as follows:

• CORINE Land Cover dataset for an area of the United King-
dom and Ireland with approximately 100,000 faces and an
area around Estonia with approximately 130,000 faces both
intended to be used at a 1:100,000 map scale (Figure 5a).

• A road network dataset of the Netherlands (in Dutch: Na-
tionaal Wegen Bestand). This dataset is intended for use at
a 1:25,000 map scale. Note that the cycles/ areas of the road
network (i. e. the ‘space between the roads’) have been used
for creating a planar area partition and driving the general-
ization procedure (iteratively picking the smallest cycle of
the road network to be removed, ultimately leading to re-
moval of an road from the network, as described by Šuba
et al. (2014b)). It contains approximately 200,000 of these
areas.

• Dutch cadastral dataset (scale 1:1,000) for area of province
of Gelderland (The Netherlands) with approximately 880,000
faces. The geographic extent of the data spans 130 km× 90
km. Although the generalization process is less meaningful
for cadastral parcels, this dataset is a useful test dataset for
our research as it is topologically structured and has been
proven to be topologically clean and valid (Figure 5b).
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Figure 6: Processing time needed versus field size (smallest
fields). Note that the smallest field size was determined based
on the average feature size in the dataset.

All datasets have been processed in parallel (multiple fields at
same time) at our research server with 16 CPU cores1. All vario-
scale tables are stored in a PostgreSQL database management
system extended with PostGIS2.

The different datasets we processed show that the approach works,
even for different types of input data (land cover data, road net-
work and cadastral map). The successful processing with the road
network dataset demonstrates that when it is important to have
neighbouring features available (for generalization decisions), it
is possible to shrink the domain inwards. With this approach we
are still able to process fields in parallel, while each feature is just
processed once.

To obtain insights in what is a reasonable field size for the small-
est fields in the fieldtree, we run the whole process (constructing
fieldtree, distributing the objects, generalization field by field, fi-
nalization) with different sizes for the smallest fields in the field-
tree. We varied the sizes of these fields, based on the average size
of a feature in the dataset. We used sizes varying from 20 to 160
times the average feature size. Figure 6 shows the resulting tim-
ings we obtained. The graph shows that as rule of thumb, we can
set the size of smallest fields to 100 times the average feature size
(i. e. around 10,000 objects in the smallest fields) and that the to-
tal runtime is then rather optimal. Furthermore, this graph learns
us that too small fields lead to a lot of overhead in processing:
Many tables that contain a little bit of data, and cannot be gen-
eralized sufficiently for the next level (so no reduction will take
place at a level, so waste of processing time / overhead in terms
of copying data to the next level).

For the biggest dataset (the cadastral map with 880,000 faces) we
investigated in-depth the runtime needed for the generalization
step. In a sequential run this step took 7900 seconds (slightly
more than 2 hours). We measured the time needed for parallel
processing field by field. We also investigated whether this could
be shortened, by taking a different order of processing the fields.

1HP DL380p Gen8 server (with two 8-core Intel Xeon processors, E5-
2690 at 2.9 GHz, 128 GB main memory, and RHEL 6 operating system)
with Disk storage (direct attached) with 400 GB SSD, 5 TB SAS 15K
rpm in RAID 5 configuration (internal), and 2 x 41 TB SATA 7200 rpm
in RAID 5 configuration.

2PostgreSQL 9.3.4 and PostGIS 2.2.0dev

(a) Level order scheduling

(b) Parent child scheduling

Figure 7: Two different scheduling orders for the cadastral
dataset. Every rectangle represents one field. Note that different
colours correspond to the levels of the fieldtree (i. e. red corre-
sponds to the fields with finest grid size). (a) Level order schedul-
ing. The process waits until all fields of the same level are pro-
cessed before processing of the next level starts. (b) The parent
child scheduling. Fields are scheduled for processing when all its
upto 9 child fields are done.

Figure 7 shows two possible scheduling strategies for distributing
work in multiple parallel CPUs.

The first strategy, the ‘level order’ scheduling, takes care of all
fields at the same level before the higher level is started. The
second and more refined strategy, the ‘parent child’ scheduling,
will schedule the parent field for scheduling if all its children are
processed.

It is clear that parallel processing significantly speeds up the whole
process, run time is shortened with a factor between 7900

340
= 23

and 7900
290

= 27. Given the 16 CPUs the speed up lies between
factor 7900

340∗16 = 1.4 and 7900
290∗16 = 1.7 in our implementation.

We assumed that the second scheduling option would sincerely
reduce the processing time, but this was a bit disappointing. A
modest reduction from 340 to 290 seconds (15%). The main bot-
tleneck remains near the top of the Fieldtree where most of the
CPUs have to wait while only few processors are used. Note that
the processing time of a field is depending on the amount of data
in that field. This might be used in a better scheduling.
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(a) (b)

Figure 5: Two of the testing datasets: (a) CORINE and (b) cadastral map

As last, we found having processed the CORINE land cover dataset
the majority of the generalization work was performed at the end
of the whole process (40% of the runtime was devoted to process-
ing the last field). After inspection, this turned out to be caused
by some very large polygons remaining to the end of the pro-
cess (these massive polygons with a lot of holes representing the
land between all small settlements only fitted in the very last field
of the Fieldtree). Apart from having a negative influence on the
run time, these polygons will also have a negative impact on the
cartographic result as these polygons will keep their full original
amount of detail until when they are processed. In order to assess
the visual impact, we compared the result of the parallel version
of the algorithm with the sequential run (original non-parallel ap-
proach); see Figure 8. The visual impression of both approaches
are quite similar. The main differences are that the amount of ver-
tices is higher in the parallel version (counting showed that this
is roughly twice the amount of vertices).

6. CONCLUSIONS AND FUTURE WORKS

An approach for automated map generalization to obtain a vario-
scale data structure of massive datasets has been proposed and
tested. We have described all steps of the process chain which
we apply and we tested the approach with real data. It has been
shown that our approach is generic and works for different types
of input data such as land cover or road network data. We have
tested with real world data and got significant speed ups (upto
factor 27 on 16 core machine), although we still plan to test the
approach with a really massive dataset (e. g. topographic dataset
of The Netherlands or CORINE for whole of Europe) which not
fitting in main memory. We expect that larger dataset will ben-
efit from having even more parallelism assuming the hardware
is there; for example 32 processes. The design is scalable: each
job gets its input data from the database and writes the output
again to the database. So, the whole dataset does not have to fit
in main memory, as long as the active jobs do fit in memory, the
process should remain efficient. We have to explore this further.
In case we keep the same amount of main memory but increase
the number of parallel processes, will these jobs still fit in main
memory. If not, we should either make average job size smaller
or add more memory.

The Fieldtree is very appropriate as it is good start for divide-and-
conquer, but also offers very useful multiple levels: What is not
solved at lowest level can be solved at higher level (which is also
glueing partial solutions of lower level fields together). This fits
very well with our approach to map generalization, but the divide-
and-conquer approach using the Fieldtree may not be limited to
map generalization only (and other spatial problems could benefit
from this type of organization as well, e. g. obtaining an explicit
topological data structure).

We have presented two approaches for scheduling the parallel
work. We are aware of the fact that both of the scheduling ap-
proaches are still sub-optimal. An improved scheduling might be
based on processing the largest fields (with respect to number of
features contained) first and smaller later, and applying dynamic
scheduling from a ‘work-pool’.

Furthermore, we only carried out limited evaluation of the car-
tographic end results and as we found out with processing the
CORINE land cover dataset with massive polygons, our approach
is less robust against these polygons.

This shows that there are still some open questions to be an-
swered. Our future work includes:

• Very large features survive until the end and are not gener-
alized. These large objects and also their island objects are
affected. In our tests typical cases are: large ‘background’
polygons, or very long infrastructure features, such as rivers
and roads. Our proposal for a solution in this case: split
the large features. This raises another interesting challenge:
How to best split these large features into smaller (artificial)
chunks.

• The proper size of the lowest fields need further investiga-
tion. What is a good balance between size of fields, run-
ning time and cartographic result? We showed that the run-
ning time depends on the field proportions and number and
sizes of the features within. Too small fields lead to a lot of
overhead in processing. Too big fields can lead to memory
problems again. This implies that a proper size of fields is
crucial, also for obtaining a good cartographic end result.
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Figure 8: The visual comparison of a sequential run (in left column) and run in parallel (in right). The rows display different amount of
feature 250, 500 and 1000 from top to bottom.
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The size of fields is reflected in generalization quality. If the
fields are big the ‘seams’ of the field may be visible, because
the objects on the boundary could not be generalised for a
long time while the rest of the field has been simplified a
lot. Contrary, too small fields will contain less object which
leads to less generalization options again leading to a worse
result.

• The Fieldtree subdivides space regularly where the density
of the original data is not considered. In some cases a large
city is in one field (lot of generalization processing is needed)
while the rest of the fields cover the rural regions where
not much simplification is required. Then most of the re-
sources are spent on the field containing the city while the
other fields are already processed. A good strategy would be
to locally deepen the fields at lowest level where high data
density regions are reached. This would result in a slightly
different Fieldtree: a structure of which the lowest deepened
fields are not covering the whole domain anymore.

• Assessing the cartographic quality of our parallel creation
of the vario-scale structure compared to the traditional cre-
ation (based on global criterion for least important feature).
For example is it possible to see the seams of the Fieldtree
that subdivide the work? This is not expected so much, but
should be verified with user tests.

• As the parallel creation is not based anymore of the global
criterion (of least important feature), the Fieldtree structure
can be also used for the update of vario-scale structures:
only the field with updated data needs to be reprocessed,
and if generalized result of field is rather different, then also
the parent(s) needs to be reprocessed (recursively).
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