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ABSTRACT: 

 

In traffic network, link disruptions or recoveries caused by sudden accidents, bad weather and traffic congestion, 

lead to significant increase or decrease in travel times on some network links. Similar situation also occurs in 

real-time emergency evacuation plan in indoor areas. As the dynamic nature of real-time network information 

generates better navigation solutions than the static one, a real-time dynamic navigation algorithm for emergency 

evacuation with stochastic disruptions or recoveries in the network is presented in this paper. Compared with 

traditional existing algorithms, this new algorithm adjusts pre-existing path to a new optimal one according to the 

changing link travel time. With real-time network information, it can provide the optional path quickly to adapt to 

the rapid changing network properties. Theoretical analysis and experimental results demonstrate that this 

proposed algorithm performs a high time efficiency to get exact solution and indirect information can be calculated 

in spare time. 

 

1 Introduction 

Emergency evacuation, including traffic evacuation 

(Hamza-Lup, 2007), earthquake evacuation (Hao-Che 

Wu, 2012) and 3D building evacuation (Chalmet, 

1982) etc., are common in our daily lives. In 

emergency situations, the unforeseen events such as 

vehicle breakdowns, traffic accidents, fire hazards, 

roadway conditions etc., contribute to the 

uncertainties of travel times in real-life transportation 

networks (Sahar Abbasi, 2011). Thus, the dynamic 

nature of real-time network information generates 

better navigation solutions than the static one. For an 

individual traveler, his/her interest is to find a 

real-time optimal path with shortest distance, minimal 

time or minimum fuel consumption, etc. Fortunately, 

the shortest path algorithm is the solution to this issue, 

whose goal is to find the optimal path between two 

nodes in a given network while minimizing the total 

cost (travel times). 

A large body of literatures on the shortest path 

algorithm for static and dynamic networks (Powell 

W.B., 1996) has been presented. Actually, most 

dynamic shortest path algorithms are the variants or 

improvements of static algorithms. In general, they 

can be divided into two categories (Cho H., 2009): 

exact and heuristic algorithm. For the exact algorithm, 

Dijkstra algorithm (Dijkstra E. W., 1959) remains by 

far one of the fastest known algorithms for the general 

case of arbitrary nonnegative link cost network. 

Dijkstra algorithm starts from origin node and 

gradually expending the search space to neighboring 

links until the destination node with the breadth-first 

search method. The time complexities of Dijkstra 

algorithm are O(𝑛2 +𝑚) , O((𝑛 +𝑚)log𝑛)  and 

O(𝑚 + 𝑛log𝑛) respectively when the data structures 

are linear array, binary and Fibonacci heap. Another 

famous exact algorithm is Bellman-Ford algorithm 

(Bellman R., 1958), which can deal with the links 

with negative cost. Bellman-Ford algorithm begins 

from any node and finds the shortest path between the 

origin and every node located within k links after kth 

iterations utilizing a link relaxation method. Its time 

complexity is O(𝑛𝑚) , which is worse than the 

Dijkstra algorithm. Some other common exact 

shortest path algorithms include Dantzig (G. B. 

Dantzig, 1967), D’Esopo-Pape (S. Pallottino, 1979), 

Pallottino (G. GaUo and S. Pallottino, 1986). More 

details were introduced by Lu feng (2001). However, 

the exact algorithms examine all possible nodes from 

the origin to the destination without direction guide, 

resulting in many unnecessary operations, which 

makes them cannot meet the instantaneity demand of 

real-time application. 

In emergency situations, the shortest paths need 

to be quickly identified because an immediate 

response is required. To overcome the defect of exact 

algorithm, lots of heuristic methods have been 

proposed to decrease the computation time of the 

shortest path algorithm. The advantage of heuristic 

algorithms lie in that they utilize prior information 

contained in the network structure, e.g. the location of 

origin node and destination node (L. Fu, 2006). A* 
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algorithm (Hart P. E., 1968) is one of the most 

effective methods of utilizing the idea of limiting 

search space. By calculating an estimated cost based 

on the Euclidian distance between the origin and 

destination nodes, the search direction of the A* 

algorithm is guided to the destination. Not only the 

search space has been reduced compared with exact 

algorithm, but also the A* algorithm can obtain a 

relatively high accuracy. Thus, A* algorithm has been 

widely implemented in vehicle navigation system. 

Another heuristic method of limiting search space is 

hierarchical search algorithm (Huang Y, 1996) that 

divides the network into several sub-networks with 

different scales. It first calculates a rough shortest path 

with a relatively low accuracy and more accurate 

calculations are completed later with more details in 

fine scale. All aforementioned heuristic algorithms 

adopt the limiting search space strategy to reduce the 

computational complexity. While the bi-directional 

search algorithm (Dantzig G. B., 1960) is to 

decompose the search problem into two separate 

produces. Its basic idea is expending the search space 

from both origin and destination nodes concurrently. 

The computational complexity and accuracy depend 

on the number of intersected nodes between two 

search sub-spaces. Although heuristic methods 

achieve substantial performance improvements, they 

come at the cost of accuracy. 

Both the exact and heuristics algorithms have 

defects: the exact shortest path algorithms are too 

computationally intensive to be feasible for real-time 

operations; the heuristics algorithms could reduce the 

search space or decompose the search problem by 

utilizing location information contained in the 

network structure, but they always cannot get the 

optimal solution, thus the travel time provided for 

users may be longer due to accuracy loss compared 

with exact algorithm. The computational time and 

travel time are both important for traveler. Neither of 

exact and heuristics algorithms can maximize two 

parts of time. In emergency situations, the traffic flow 

is real-time dynamics, and the navigation path 

changes from one path to another one. In this paper, 

we focus on the exact dynamic adjusting method 

(EDAM) for the shortest navigation path considering 

the network disruptions (Derya Sever, 2013) and 

recoveries. The EDAM is inspired by the network 

simplex method (Damian J. Kelly, 1993; Helgason R. 

1995). With the EDAM, the shortest path is calculated 

dynamically with variation flow, making the best of 

priori knowledge including the location of origin and 

destination, network structure and pre-existing path. 

This paper is organized as follow. In next 

section, the shortest path problem with stochastic link 

disruptions and recoveries is introduced, and then the 

EDAM is presented, also theoretical analysis of time 

complexity and accuracy are given. In Section 3, 

experiments are performed, followed by concluding 

remarks. 

2 Methodology 

2.1 The shortest path problem 

Let  (   ) be a network with 𝑛      nodes and 

𝑚      links, where   is a set of node and   is 

the link set. Each link (   )   
 
has a cost    , which 

represents the travel time for a traveler to go through 

that link. A path P from origin (O) to destination (D) 

is a series of connected link and the travel time of P is 

the sum of travel time on every individual link in P. 

The shortest path problem is to find the path with 

minimum total travel time. Let    denotes the 

shortest distance (minimum total travel time) from 

node i to D. Then, the following constraints for each 

node i should be met: 

     +    ,    (   )            (1) 

                     (2) 

 In a dynamic network, the travel time varies 

over time (X. Cai, 1997). Generally, it is assumed that 

the link travel times on all links are random variables, 

and a network is referred to dynamic and stochastic 

network (L. Fu, 1996) if the link travel time is 

modeled as a stochastic process. In this paper, we 

focus on the case where the network flow is 

approximate equilibrium within a short time, and only 

a few of link travel time change concurrently during 

this period. Considering the link disruptions and 

recoveries, the travel times could both increase or 

decrease. 

 For the expression convenience, some 

definitions and notations are given here. Let 𝑇  

denote the shortest path tree (solid lines in Fig. 1) (P. 

Narva éz, 2000). In this tree, 𝑃  is the precursor node 

in 𝑇  of node i, 𝐶  is the set of successor nodes in 

𝑇  of node i, reduced cost  𝑢𝑣
𝑑   𝑣 +  𝑢𝑣 −  𝑢. In 

Fig. 1, 𝑃1  4 , 𝐶1  {𝑂 2} ,  1  12 ,  0  5 , 

 01
𝑑   1 +  01 −  0  8. A sub-tree 𝑇  contains all 

nodes whose shortest paths to D pass through i, e.g. 

𝑇7 contain node O, 1, 2 and 4. 
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Figure 1. The shortest path tree 

2.2 Dynamic Navigation Algorithm 

When an emergency situation occurs, two parts of 

work need to be done for the dynamic navigation 

algorithm. At the beginning, only network topology 

and instant travel times on all links without any 

predictive information are acquired. With relate 

knowledge, an exact shortest path tree will be 

constructed. And then based on foregone shortest path 

tree, the shortest path from O to D could be updated 

according to the real-time network information. 

(1) Generating the initial solution 

As the introduction in section 1, neither of exact 

and heuristic algorithms can maximize both the 

computational time and travel time. However, exact 
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solution (i.e. exact shortest path tree) need to be 

obtained in this step because the accuracy is important 

for subsequent calculations. Compare with total 

evacuation time, the computation time is much less. In 

addition, the travel time directly affects the travel cost. 

So the accuracy of the shortest path algorithm is 

relatively more important than the time performance. 

To compromise the contradiction of time 

performance and accuracy, two strategies are often 

taken. One is adopting hybrid shortest path algorithm 

(Hsun-Jung Cho, 2009) that integrates several exact 

and heuristics algorithms. Two advantages exist: 1) 

although the hybrid shortest path is not always the 

optimal solution, it is very close to optimal; 2) a 

significant performance improvement compared with 

single exact algorithm is made. The other strategy is 

calculating the shortest paths with exact and heuristics 

algorithms concurrently by utilizing parallel 

computing technology. The heuristics shortest path 

could be used for navigation at first, and replaced by 

the exact one once the exact algorithm is completed. 

(2) Real-time updating method 

After the first step, the shortest path tree 𝑇  has 

been constructed. With the latest and real-time 

network information, the shortest path could be 

updated dynamically for real-time navigation. 

Considering the network link disruptions or recoveries, 

the correspondent link travel times can both increase 

and decrease. If the network link is disrupted, the 

travel time is set to infinity. 

When the travel time of link (   )    changes 

over time regardless of increases or decreases, the 

recalculation is triggered. The main steps of the 

EDAM are as follow: 

EDAM 

1) let ∆   − (   +   ); 

2) if ∆>  , then set      + ∆ , 𝑃    

and  𝑘   𝑘 + ∆ for any 𝑘  𝑇 ; 

3) if ∆<   and (   )  𝑇 , then 

a) let 𝑇′  𝑇 ; 

b) find the minimum reduced cost  𝑢𝑣
𝑑  

where 𝑢  𝑇′and 𝑣 ∉ 𝑇′; 

c) if  𝑢𝑣
𝑑 < ∆, the algorithm terminates; 

otherwise, set  𝑢   𝑢 +  𝑢𝑣
𝑑 , 

𝑃𝑢  𝑣, 𝑇′  𝑇′ − 𝑇𝑢; 

d) perform step b and c repeatedly until 

𝑇′  ∅. 

In the above steps, if i is the ancestor of j, then 

(   ) is regarded as the changed link, and then (   ) 
case is disposed. When a travel time changes, 

corresponding recalculations are triggered. The most 

time-consuming case is ∆<   and (   )  𝑇 . Under 

this circumstance, the 𝑂 − 𝐷  shortest path can be 

outputted to user once 𝑂 ∉ 𝑇′  and the rest of 

calculation can be done in background. With this 

optimizing, user always obtains the optimal 

navigation route in the earliest time. 

2.3 Analysis 

The EDAM can obtain the optimal solution for 

First-in First-out network with varying cost. In a 

shortest path tree 𝑇 , four main cases exist when the 

travel time changes:     increases or decreases for 

(   )  𝑇  or (   ) ∉ 𝑇  respectively. When 

(   ) ∉ 𝑇 , if      +    , no shortest paths will be 

influenced; while if    >   +    , the precursor of 

node i will turn to j and all shortest distances for any 

node 𝑘  𝑇  should be reduced by   +    −  . 

When (   )  𝑇 , if     decreases, all shortest paths 

keep constant, but the shortest distances for all nodes 

in 𝑇  should be updated by the variation of    ; if     

increases, then all shortest paths for node 𝑘  𝑇  may 

change, and the steps shown in the EDAM can 

guarantee the correctness of shortest path tree. For 

example, if  7  increases to 6 and    
𝑑  is the 

maximum reduced cost, then 𝑃(    𝐷)  is the 

shortest path of node 3 because all shortest paths of 

node 𝑘1 ∉ 𝑇7 keep constant and all reduced cost  𝑢𝑣
𝑑  

where 𝑢  𝑇7  and 𝑣  𝑇7  is zero. Thus, each 

renewal of shortest path tree can obtain optimal 

solution. 
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Figure 2. The update method of the shortest path tree 

As for the time complexity, the above 

computational steps show that only when the travel 

time in the shortest path increases to a certain level, 

more than one iteration are needed to be performed. In 

this case, the computational complexity for each node 

𝑘  𝑇  depends on the topological length of shortest 

path to i; otherwise, the shortest path remain 

unchanged. In the bad case, two main steps are 

included. At first, searching the maximum reduced 

cost  𝑢𝑣
𝑑  where 𝑢  𝑇′ and 𝑣 ∉ 𝑇′  with  𝑇   time 

complexity is performed. Then, 𝑇′ is converted into 

∅  through replaced by 𝑇′  𝑇′ − 𝑇𝑢  iteratively, 

additional  𝑇𝑢  space need to be searched at each 

iteration. The total time complexity of updating 

shortest path is 2 𝑇  . In the above steps, the shortest 

path and distance are recalculated for all nodes in 𝑇 . 
As descripted in section 3, the shortest path from O to 

D could be outputted to user at the earliest time. If 

∆>  , all shortest paths keep constant, thus the user is 

navigated along original route. While if ∆<   and 

(   )  𝑇 , the time complexity of finding the 

maximum reduced cost  𝑢𝑣
𝑑  and adjusting the 

shortest path is O(2 𝑇  ). To maintain the shortest 

path tree, the shortest path and distance for every node 
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𝑘  𝑇  should be updated. Once 𝑘  𝑇 − 𝑇𝑢 , the 

shortest path of O is obtained, and the remaining 

works could be done in the background. 

3 Experiment 

3.1 Experimental design 

The test data sets in our experiment are artificial 

networks, including a Washington-Line-Moderate 

(WLM) network with 4098 nodes and 65,028 links, a 

Washington-RLG-Long (WRL) network with 8194 

nodes and 24,512 links, a Washington-RLG-Wide 

(WRW) network with 8,194 nodes and 24,448 links, a 

Genrmf-Long (GL) network with 4,096 nodes and 

18,368 links, a Genrmf-Wide (GW) network with 

8,214 nodes and 38,813 links, and an Acyclic-Dense 

(AD) network with 256 nodes and 32,640 links, AK 

network with 4,102 nodes and 6,151 links. All of them 

were provided by the first DIMACS implementation 

challenge and detailed introductions are given by 

Boris V Cherkassky (1995). 

To verify the correctness and measure the time 

performance of the EDAM, the experiment is 

designed as follow: 1) every shortest path tree updated 

by the EDAM will be compared with the result of the 

traditional Dijkstra algorithm; 2) the consumed time 

of adjusting shortest path will be tested considering 

the travel time increases and decreases in random 

selected links. In the experiment, after obtaining the 

initial shortest path tree with the Dijkstra algorithm, 

100,000 number of change are generated randomly, 

and the EDAM adjusts the shortest paths according to 

the changes. Correspondingly, the Dijkstra algorithm 

recalculates all works on the basis of same changes. 

All algorithms were executed in the same 

computing environment, which is a personal computer 

with 2.50GHz CPU, 10GB memory and 64-bit 

Windows 7 Professional operating system. All codes 

are written in C++ and compiled with the gcc 

compiler. 

3.2 Results and discussion 

Both the correctness and time performance have been 

tested. For the correctness, the distances from the 

origin to destination nodes calculated by the EDAM 

and Dijkstra algorithm are the same. Thus, the shortest 

paths of the EDAM are exact, not approximate. 

 WLM WRL WRW GL GW AD AK 

Dijkstra (ms) 1,403,940 576,748 437,787 385,176 363,628 85,426 34,080 

EDAM (ms) 10,069 16,564 9,604 8,740 9,964 309 9,674 

Case 1 166,780 116,735 117,039 125,953 120,564 196,341 43,772 

Case 2 15,278 14,527 14,966 14,700 18,920 1,649 7,851 

Case 3 5,229 21,392 21,428 20,322 20,034 694 35,835 

Case 4 1,013 9,450 9,732 8,241 8,620 56 25,495 

Others 11,700 37,896 36,835 30,784 31,862 1,260 87,047 

Table 1. The time performance of the EDAM 

Table 1 shows the time performance of the 

EDAM and Dijkstra algorithm, it demonstrates that 

the consumed time of each adjusting operation in the 

EDAM is less than 0.1 milliseconds averagely. In 

table 1, case 1 denotes (   ) ∉ 𝑇  and     increases; 

case 2 denotes (   ) ∉ 𝑇  and     decreases; case 3 

denotes (   )  𝑇  and     increases; case 4 denotes  

(   )  𝑇  and     decreases; while other cases 

include the variation is zero or i is an ancestor node of 

j. The frequency of each case depends on the network 

density, for example, the frequencies of case 3 and 4 

are relative low in AD network, and high in AK 

network because AD is dense network and AK is 

sparse network. The total number of all cases is twice 

as total changes, because each change will trigger two 

cases for (   ) and (   ). 
When compared with the Dijkstra algorithm, the 

EDAM runs much faster although unfair exists. The 

EDAM can deal with the cases where the link travel 

time can either increase or decrease, but the Dijkstra 

algorithm can make the best of priori knowledge only 

when the link travel time decreases. 

4 Conclusions and future work 

This paper presents a novel navigation algorithm for 

emergency evacuation, which is adapted to the 

dynamic changed network weights. This algorithm 

minimizes both of the computing time and evacuation 

time. Making the best of pre-existing shortest path 

tree, the change of travel time is classified into four 

categories and different cases are recalculated with 

different strategies. Furthermore, the shortest O-D 

path is always outputted to traveler at the earliest time. 

Theoretical analysis show that the optimal solution 

can be obtained and the total time complexity of 

updating shortest path tree is just 2 𝑇   in the worst 

case, where i is the node related to changed link. The 

experimental result demonstrated that the EDAM runs 

much faster than the traditional Dijkstra algorithm 

with obtaining the optimal solution. With the help of 

global positioning system and geography information 

system, the EDAM can provide a real-time navigation 

function for traveler. 

 However, this paper just processes the case 

where only one link travel time changes at one time. 

In the reality, more than one link travel time are about 

to change concurrently. In future, we focus on the 

efficient algorithm of dealing with multi-varying cases. 

In addition, the predictive information has not been 

taken into consideration (Ahuja, 2003). Therefore, 

effective algorithms will be designed for dynamic 

stochastic network with predicted traffic condition. 
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