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Directly using the difference form of Frenet formula will cause the three basic vectors losing their orthogonal features rapidly. 

As the analytic form is exact for infinite short length region, for finite length segregation, the omitted items should be retrieved 

to get high precision. Based on the unit orthogonal transformation in geometrical field theory, the Frenet formula is reformed for 

finite length region. Then, for given triple at the initial end of curve, using the curve parameters of curvature and torsion, the 

exact finite element formulation of Frenet formula is obtained to get the triples at any length position until the end point of curve. 

This method can be used as a high-precision technology for the measure, store, and retrieve of complicated curve. 

 

 

1. Introduction 

 

In navigation and trace (road) measurement and plotting in 

3D space, how to exactly represent or retrieve a complicated 

curve with finite data sets is a theoretic and practical 

engineering problem [1-2] in geospatial technology. 

For an arbitral curve in 3D space, finite data are measured 

and stored. To display the whole curve or obtain exact 

features at some points in user defined coordinator system, 

data re-sampling is a standard procedure. How to get high 

precision is a practical problem. Generally speaking, directly 

using the Frenet formula to construct the calculation model is 

not practical. One apparent problem is that the analytical form 

is exact for infinite short length region, while the actual 

calculation has finite elements. Then, the size of the length 

will significantly produce error which may be accumulated to 

some points very rapidly. The well-known problem is that: 

directly use the difference form of Frenet formula [1-2] will 

produce non-orthogonal triples. How to solve this problem is 

the topic for this paper. 

To describe an arbitral curve in geospatial database, the usual 

way is to storage its coordinators at each length position s  

as ( ( ), ( ), ( )X s Y s Z s ). When the coordinator system is 

changed into a new coordinator system ( ( ), ( ), ( )x s y s z s ), 

there is a relationship equation: 
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 is the coefficients of local 

transformation (Here, 1x x , 2x y , 3x z ; and 

1X X , 2X Y , 3X Z ). Based on that, the curve 

coordinators data in new coordinators system is obtained 
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through calculation. 

Although it is easy to find out the relation for initial and end 

points of the curve exactly, the whole curve coordinators are 

obtained through calculation based on the above formula. 

Hence, the accuracy is controlled by the calculation processes. 

Starting from one end point, for long curve or the high 

sampling curve, the error is additively transmitted to another 

end point. In geospatial technology, this problem is usually 

solved by redistribute the error among each points to sure the 

two ends coordinators are exact. Therefore, the accuracy is 

highly depends on data processing technology. 

Is this way the unique way to describe an arbitral curve in 3D 

space? Definitely, the answer is no. If there is a new way can 

be acquired, what benefits can be achieved in geospatial 

database technology? To answer the last question, this paper 

will firstly introduce the mathematical formulation of arbitral 

curve in Frenet formula. Then, the tensor representation of 

curve is explained in mathematic formulation. Finally, the 

related measurements, storage, and display technology is 

discussed in theoretic sense. The tensor method to describe 

curve in geospatial database is proposed.  

 

 

2. Basic Theory of Curve in 3D Space 

 

For a curve in 3D space, the well-known Frenet formula [1] is: 
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Where, s is the length parameter, is the tangent unit vector, α

β is the main normal unit vector, is the additional normal 

unit vector. For simplicity, here and after, letting 

γ

1 g α , 

, , the direct-difference form of Frenet 

formula is written as : 

2g  β 3 g γ
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For unit length increment , to get the tensor form, it is 

rearranged as: 

1ds 
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Where, the up-index ‘ini’ is used to refer the initial point s , 

the ‘end’ is used to refer the end point s ds . Surely, for a 

long curve, the curvature 
1


 and torsion 

1


 are the 

functions of length. It is easy to find out that: the initial 

orthogonal unit features of 1 2, ,ini ini ini
3g g g cannot be conserved 

as the end point, as 1 3

1end end


  g g . Hence, it must be 

reformulated based on a more exact mathematic theory. In 

tensor theory, such a kind of unit orthogonal tensor [3] is 

expressed as: 

 

 

2

1 3 1 3

3 1

2

1 3 1 3

1 1

2 2

3 3

1 (1 cos )[( ) 1] sin (1 cos )

sin cos sin

(1 cos ) sin 1 (1 cos )[( ) 1]

end ini

end ini

end ini

L L LL

L L

LL L L

      

   

       



g g

g g

g g
(5) 

 

 

Where, the is the local rotation angle of the incremental 

curve. Comparing with Eq. (4), it is easy to find out that: 
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Hence, the following results are obtained: 
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Therefore, this research concludes that: 1) The Frenet formula 

is a first order approximation for calculating the triple vectors 

along the curve; 2) For finite length increment, the exact 

formulation is Eq.(5) which can be directly calculated without 

the problem of losing orthogonal feature of unit triple. 

 

 

3. Operations in Geospatial Database 

 

For an arbitral curve, taking its length as the 1D manifold 

intrinsic coordinator s , then the curve is completely 

determined by the curvature and torsion function ( ), ( )s s  . 

To plot the curve in 3D space, once the three basic vectors 

1 0 2 0 3( ), ( ), ( 0 )s sg g g s  at a reference point 0s are given in 

user’s coordinator system, the whole curve can be retrieved 

using above finite element formulation. Without losing 

generality, if the stored curvature and torsion data are defined 

at length position ks , , the user selection 

of starting point is defined by the three basic vectors 

0,1,2, ,k  

(0) (0)
2 3 0 3, ( )s

N

(0)
1 0 1 2 0( ) , (s s )  g g g g g g , then the basic 

vectors at 1s  position is obtained by the following equation: 

 

 

 

2 2
0

0 0

1 1
sin ( ) ( )

 
   , 

(0)
1

20

0

1

1 ( )

L






 

(0)
3

20

0

1

1 ( )

L






 

(1) (0) 2 (0)
1 0 1

(0) (0) (0) (0) (0)
3 0 2 0 1 3

{1 (1 cos )[( ) 1]}

sin (1 cos )

L

L L

1

3L

     

     

g g

g g
    (8) 

      
(1) (0) (0) (0)
2 3 0 1 0 2

(0) (0)
1 0 3

sin cos

sin

L

L

      

 

g g

g

g

2

 

      
(1) (0) (0) (0) (0) (0)
3 0 1 3 1 1 0

(0) 2 (0)
0 3 3

(1 cos ) sin

{1 (1 cos )[( ) 1]}

L L L

L

      

    

g g

g

g
 

 

 

Where, the index in brackets is for spatial positions. For 

position ks  ( ), the general formulations are: 2N k 
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For higher precision, the re-sampling should be operation on 

raw data sets ( ,k k  ). As the curvature and torsion are much 

more smooth functions than 3D coordinators or basic vectors, 

the digital filter technology or least-square technology should 

be applied there. In fact, the best way is to measure and store 

the curvature and torsion data for complicated curve rather 

than to store their coordinators data in measurement 

coordinator system. It is expecting that: measure, store, and 

retrieve an arbitral curve in 1D manifold intrinsic coordinator 

(length coordinator) will get high precision and high 

efficiency in data processing. 

 

 

4. Why not Displacement Field 

 

For geospatial data, usually the geodesy coordinator system is 

taken as the standard reference. So, the starting point basic 

vectors ( (0) (0) (0)
1 2 3, ,g g g ) are expressed by the local geodesy 

basic vectors ( 0 0( ), ( )B 0( ),r Ls s see e ) in general form: 
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For a global curve, the local triple of curve  

should be expressed by local geodesy basic vectors 

( ) ( ) ( )
1 2 3, ,k k kg g g

( ), ( ), ( )r k L k B ks s se e e

( )

. Therefore, after obtaining the curve 

expressed by 0 0, ( ), ( )r L B 0s s see e  (repeating use the 

finite element equations), they should be converted into the 

local geodesy basic vectors. This can be achieved by theoretic 

equation: 
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Where, the tensors and are known or given quantities.  a b

In geometrical field theory, it has proven that, for 

displacement field ( ) measured in local standard 

rectangular coordinator system (

, ,u v w

, ,x y z ), the local rotation 

angle   is related with displacement gradient in form: 
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Such a non-linear form denies the possibility to only use 

displacement field ( ) directly, except that their 

gradient is known quantities. In data management sense, for a 

point on curve, the displacement field (3 components) and 

their gradients (9 components) take up 12 data addresses, 

while the curvature and torsion take up 2 data addresses. This 

topic is too broad for this paper 

, ,u v w

[4], so our discussion will be 

limited as above. 

 

 

5. Conclusion 

 

The finite element formula of Frenet equations are obtained 

in this paper for an arbitral curve in 3D space. The research 

shows that: 1) the basic way to retrieve a complicated curve 

in 3D space is to tore its curvature and torsion as functions of 

curve length; 2) by a set of given initial triple at a length point, 

the triples on whole curve are determined by the finite 

element formulation in this paper; 3) the displacement field 

(or spatial position variation) is not suitable for the 

description of complicated curve as it requires too dense data 

for exact calculation of curve triples. The problem of how to 

exactly represent or retrieve a complicated curve with finite 

data sets as a theoretic and practical engineering problem in 

geospatial technology is answered. 
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