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ABSTRACT: 

 

This study was performed aiming to construct the scene geometry with a large set of unmanned aerial vertical (UAV) collections. By 

improving the popular structure from motion (SfM) algorithm, we focus on the efficiency improvement on procedures of both 

feature detection and image matching. Distinctive features are firstly detected with a CUDA based GPU accelerate technology under 

the basic of SIFT algorithm (CUDA-SIFT). And then, the image topological graph is computed by finding the conjunction 

relationship between UAV collections with the help of flight control data acquired by the UAV platform. Image matching will be 

guided by the computed image topological graph to solve the traversal matching problem. Experimental results show that CUDA-

SIFT performs much better than the original SIFT algorithm on both efficiency and feature amount. Also, the topological graph of 

computed image limits the searching range for feature similarity computation, resulting in dramatic speed up. A final bundler 

adjustment is implemented in the procedure of scene geometry reconstruction, and the structural geometry as well as the coverage 

completeness is far more comparable to the SfM method. 
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1. INTRODUCTION 

In the recent years, more and more applications of unmanned 

aerial vehicle system (UAVs) in the geomatics field became 

common. Aerial images acquired by a low attitude UAV that 

integrates high resolution, multi-view sensing, and large 

overlaps are useful for landscape surveying, disaster enhanced 

identification, as well as scene geometry reconstruction, etc. 

[1]-[3]. Image-based 3D modelling techniques have enabled 

creation of dense digital terrain models from a set of multi-view 

UAV optical collections [4]. This exciting development 

suggests the possibility of recovering the large scene from UAV 

optical sequences and video frames [5]-[7]. However, 

experimental study shows that the traditional method like the 

popular structure form motion (SfM) algorithm [8] usual 

emerge memory explosion when dealing with UAV collections 

which are of high resolution. Also, it is a computational 

procedure for the added images should search for all the 

candidates when matching images. The number of computations 

required to match feature points is quadratic in the amount of 

images, resulting in huge redundancy [9]. 

Scientists have made great efforts to solve the problems 

mentioned above. SfM scaling techniques like sub-sampling 

and hierarchical decomposition are suit for ordered video 

sequences that recover the scene geometry with sparse point 

cloud, which however may result in a low model accuracy [10]-

[11]. Further attempt like GPS-based matching [1] roughly 

position the images in space, thus limiting the set of possible 

matches. Identify the image conjunction with GPS only usually 

result in rough position because of both the positional accuracy 

and flight attitudes. Moreover, the GPU-based accelerate 

technology which is initially proposed to solve the big data 

problem are nowadays implemented to improve the efficiency 

of 3D modelling, and receives great achievements [12]. 

In our study, we improve the performance of scene geometry 

reconstruction with a CUDA-SIFT algorithm for feature 

detection, which is followed by an image topological graph 

guided strategy for image matching. The remainder of this paper 

is organized as follows. Section 2, the methodology is 

introduced specifically.  The performance of our proposed 

method is presented in Section 3. Conclusion remarks and 

future work are addressed in Section 4. 

 

2. METHODOLOGY 

2.1 CUDA-SIFT 

The Scale Invariant Feature Transform (SIFT) [13] is accepted 

as one of the best algorithms for distinctive feature detection. 

Distinctive features are identified by assigning orientations 

based on local image gradient directions. This procedure mainly 

consists of the following steps [13]: 

1. Scale-space extrema detection: this is the stage where the 

keypoints are detected. For this, the image is convolved with 
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Gaussian filters at different scales, and then the differences of 

successive Gaussian-blurred images are taken. Keypoints are 

then taken as maxima/minima of the Difference of Gaussians 

(DoG) that occur at multiple scales. Specifically, a DoG image 

( , , )D x y   is given by  

( , , ) ( , , ) ( , , )i jD x y L x y k L x y k            (1) 

Where ( , , )L x y k is the convolution of the original image 

( , )I x y  with the Gaussian blur ( , , )G x y k  at scale k , 

( , , ) ( , , ) ( , )L x y k G x y k I x y                (2) 

2. Keypoint localization: after the procedure of scale-space 

extrema detection, too many keypoints candidates, some of 

which are unstable. The following step allows points to be 

rejected that have low contrast which are sensitive to noise or 

are poorly localized along an edge.   

3. Orientation assignment: in this step, each keypoint is 

assigned one or more orientations based on local image gradient 

directions. First, the Gaussian-smoothed image ( , , )L x y   at 

the keypoint’s scale   is taken so that all computations are 

performed in a scale-invariant manner. For an image sample 

( , )L x y  at scale  , the gradient magnitude, ( , )m x y , and 

orientation, ( , )x y , are precomputed using pixel differences: 

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y        (3) 

1 ( , 1) ( , 1)
( , ) tan ( )

( 1, ) ( 1, )

L x y L x y
x y

L x y L x y
    


  

              (4) 

4. Keypoint descriptor: this step is performed to compute a 

descriptor vector for each keypoint which is highly distinctive 

and partially invariant to the remaining variations such as 

illumination, 3D viewpoint, etc. The descriptor is formed from a 

vector containing the values of all the orientation histogram, 

which are computed from magnitude and orientation values of 

samples in a 16 x 16 region around the keypoint such that each 

histogram contains samples from a 4 x 4 subregion of the 

original neighborhood region. The magnitudes are further 

weighted by a Gaussian function with   equal to one half the 

width of the descriptor window. The descriptor then becomes a 

vector of all the values of these histograms containing 128 

elements. 

Our experimental texts show that the procedure of scale-space 

extrema detection is much more time consuming, taking about 

30% to 50% of the whole workflow, keypoint localization takes 

about 10% to 20%, keypoint descriptor takes about 20% to 30%, 

while the orientation assignment takes the least. 

For better performance of the SIFT algorithm to deal with the 

UAV collections with high resolution, we focus on the 

following improvements. Fig.1 illustrates the workflow of our 

proposed CUDA-SIFT algorithm. Firstly, the UAV images are 

divided into blocks of equal size, leaving common features 

between blocks nearby, which will help to escape the problem 

of memory explosion. This procedure is conducted in the CPU 

memory, requiring little cost. And then, image blocks together 

with Gaussian parameters are delivered to GUP as texture 

memory and constant memory, separately. All the images blocks 

are processed with a same Gaussian parameter, as stored in the 

constant memory. Next, the blocks stored in the texture memory 

are further processed by individually detecting the distinctive 

features on the basic of SIFT algorithm, generating keypoint 

descriptors as outputs in each image block. Finally, keypoints in 

each block are transported back to the CPU memory and to be 

merged into a common coordinate with the pre-defined pixel 

indexes to generate the final keypoint file.  
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Fig. 1 Procedure of feature detection with CUDA-SIFT 

algorithm 

 

2.2 Image Topological Graph 

2.2.1 Flight control data acquired by the UAV system: 

with the development of GNSS/INS systems, it is necessary to 

navigate the UAV to the predefined acquisition points, 

recording the position and orientation of the platform at the 

time of camera exposure. Although the precision of navigation 

is not as accuracy as high quality GNSS/INS devices, it is good 

enough to help to identify the conjunction relationship between 

images nearby. 

2.2.2 Image Topology Analysis: Image topology is used to 

identify the conjunction relationship between UAV images and 

indexed for image matching. It is conducted through relative 

orientation with the support of flight-control data acquired by 

UAV platform. This procedure contains of the following steps. 

Step1. Transform the flight control data. Except for the position 

information, flight control system also records the attitude angle 

sensor for innovative marketing body coordinate system in the 

navigation of roll, pitch and yaw （Φ，Θ，Ψ）, which should 

be transformed to the photographical external angles （ψ，ω，
κ） for user coordinate in the pixel space coordinate. 

Step 2.  Compute the coordinates of the four vertexes for each 

of the UAV image through relative orientation referring to 

formula (5), (6). 

 
 

,1 , ,1 , ,1

, ,0 ,0

,3 , ,3 , ,3

i i j i i j i i

i j i i

i i j i i j i i

a Vx b Vy c f
X h X

a Vx b Vy c f

    
  

    
   (5) 

 
 
 

,2 , ,2 , ,2

, ,0 ,0

,3 , ,3 , ,3

i i j i i j i i

i j i i

i i j i i j i i

a Vx b Vy c f
Y h Y

a Vx b Vy c f

    
  

    
    (6) 

Where, 
, ,( , )i j i jX Y  represents the coordinate of vertex j in 

image i, 
,0ih represents the relative height above the ground and 

,0 ,0( , )i iX Y shows the position of camera i, ( , )Vx Vy  indicates 

the vertex coordinates in the pixel space, and ( , , )a b c are the 

external parameters. 

Step 3. Identify the topological relationship between one image 

and each vertex of other images. The topology between image P 

and vertex V is identified by computing the area of all the 

triangles composed with the vertex V and any other two vertex 

of P, as shown in Fig. 2, and the topology can be identified with 

formula (7). 
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Where, ( , ) 1T P V   means the vertex V is contained in image 

P, while ( , ) 0T P V   indicates the vertex V lies outside of 

image P. 

Step 4. Identify the topology between any pair of images. If 

none of the vertexes from any two images lies in each other, 

there are no common features between this image pair. The 

image topology is identified as formula (8). 

4 4

1 1

4 4

1 1

1, ( , ) ( , ) 0

( , )

0, ( , ) ( , ) 0

i lj l ij

j j

i l

i lj l ij

j j
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
 


 
  


 

 

       (8) 

Where, ( , )i lT P P  is the topological relationship between image 

iP  and lP . 

Step 5. Compute the topological graph of the UAV collections. 

Specifically, we consider the topological collections an image 

graph, with a node for every image, and two directed edges 

between any pair of images with common features. The graph 

is illustrated by point sets as V(G), edge sets as E(G) as follows: 

 1 2 3( ) , , ,..., nV G P P P P                (9) 

   ( ) , ( , ) 1,1 ,1 ,i jE G Pi Pj T P P i n j n       (10) 

Where, n means the number of the collections. 
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Fig. 2 Sketch map for image-vertex topology identification 

 

2.3 Image Matching 

For image matching, CUDA-SIFT features are first extracted 

from a set of reference images and stored in a database. A new 

image is matched by individually comparing each feature from 

the new image to this predetermined topological conjunction 

images and finding candidate matching features based on 

Euclidean distance of their feature vectors. The smaller the 

Euclidean distance the more likely the two points correspond 

[13]. That will results in quite many wrong correspondences, 

from which we can further identify the feasible ones. 

2
arg min ( ) ( )nn d df f n f c                  (11) 

Where 
nnf  is the minimum distance of potential common 

feature between the new image and the candidate image, whose 

Euclidean distance is ( )df n  and ( )df c , separately. 

For each point in the first image of an image pair we search for 

the best and second best candidates in the other image. In case 

of the ratio 
sec /ond bestr d d  of the certain measures for the 

second best to the best candidate is lower than a certain 

threshold, here 0.6r  , we accept it as feasible 

correspondence. 

 

2.3.1 Complexity analysis: to simply the case, we assume 

that all the images are with the maximum topology, as k. At the 

worst situation, the current image will match all the candidates 

when its index number is smaller than k. And other images, 

whose indexes are larger than k will match their corresponding 

k images only. Then the matching complexity will be 

formulized on image level as: 

  21

2 2

n

k

k k k k
k kn

  
                     (12) 

Where, k represents the maximum image topology and n means 

the number of UAV collections. 

 

2.4 Bundler Adjustment 

After the procedure of CUDA-SIFT matching, the Least Square 

Matching (LSM) is implemented to refine the correspondences 

for sub-pixel localization and to avoid inaccurate matches. 

Bundler adjustment is implemented with open source code, like 

Bundler [9], which is used here to automatically orient the 

images to finally recover the camera parameters and the scene 

geometry.  

 

3. RESULTS AND DISCUSSION 

Fig. 3 illustrates a sample of the comparison of feature matching 

with keypoint descriptors between SIFT and the proposed 

CUDA-SIFT algorithms. Corresponding features detected with 

both CUDA-SIFT and SIFT algorithms are fine matched, 

getting a stable result. As the difference-of-Gaussian function 

has a strong response along edges, more CUDA-SIFT features 

lie in the block edges are additionally detected compared with 

SIFT features. About 925 corresponding features are fine 

matched between the image pair with CUDA-SIFT, giving 

better performances in details than that of SIFT, with which 

there are 844 corresponding features fine matched. 

 

 
SIFT features 

 
CUDA-SIFT features 

Fig. 3 Comparison of the matching performances between SIFT 

and the proposed CUDA-SIFT algorithms 
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To evaluate the efficiency of the CUDA-SIFT for feature 

detection, we compare its cost with that of SIFT algorithm by 

testing six data sets with different resolution and coverage 

complexity. For each data set we choose 10 images for feature 

detection. Results show that the performance of CUDA-SIFT 

keeps steady, which is little affected by the image resolution, 

whereas the cost of SIFT algorithm increases with image 

resolution, as indicted in Fig. 4. Fig. 5 displays the ratio of time 

consuming for SIFT to CUDA-SIFT in the process of feature 

detection from data sets motioned above. We can see that, the 

ratio increases from about 10 to 20 with image resolution from 

2560×1920 to 5616×3744 pixels. 

 

 
Fig. 4  Time-consuming of multiple images feature detection 

 

 
Fig. 5  Time-consuming ratio of multiple images feature 

detection 

 

To evaluate the performance of the image topological graph 

based matching strategy for large scene geometry recover from 

UAV optical collections, a fight experiment with a fixed-wing 

UAV was conducted at Caofeidian in Hebei Province of China. 

The flight was about 300 meters high above the ground, and be 

affected by level 5 wind speed, resulting in four irregular lines, 

covering 72 images taken with Canon EOS 5D MarkⅡ. The 

image resolution is about 5cm×5cm, with the size of 5616 

×3744 pixels. 

The image graphs generated with both the traversal matching 

strategy and the conjunction relationship are illustrated in Fig. 6 

and Fig. 7, separately. Here, the images are simplified as points, 

and any pair of images with common features is connected with 

a direct edge. The image topological graph looks sparser that 

helps to reduce the matching images to 1357 from the traversal 

strategy of 2556, improving approximate twice of the matching 

cost. 

 

 
Fig. 6 Image graph with a traversal matching strategy 

 

 
Fig. 7 Image topological graph computed with the conjunction 

relationship 

 

Evidently, for large, redundant collections, a much smaller set 

of images are sufficient to represent most of the information 

about the scene [14]. Consequently, with the image topology, 

further attempts could be taken to compute a reliable and 

skeletal graph that helps to recover the main information with 

minimum images. Our previous study has done some attempt to 

compute the image topology skeleton, leaving huge space to 

improve, further information is illustrated in [15]. 

The sparse 3D model of the study area is recovered with our 

proposed method, as shown in Fig. 8. The geometry of the main 

objects that contain stock dumps, vehicles as well as landscape 

with complex texture are well reconstructed, while objects with 

lower texture contrast and monotonous coverage are failed to be 

recovered, which is resulted from the limited features that could 

be used for matching. This study area is also reconstructed 

through a traversal matching strategy with open source, like 

Bunder that requires only images as input. The computed scene 

geometry is shown in Fig. 9, displaying little apparent 

difference from that of our proposed method on neither the 

structural geometry nor the coverage completeness, which on 

the other hand verifies the effectiveness of image topological 

graph. 
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Fig. 8. Sparse scene geometry of the study area recovered with 

image topology matching strategy 

 

 
Fig. 9. Sparse scene geometry of the study area recovered with 

traversal matching strategy 

 

4. CONCLUSION 

In this paper, we have proposed a CUDA-SIFT algorithm and 

conducted an image topological graph for improving the 

efficiency of scene geometry reconstruction. Various data sets 

with different resolution are used for CUDA-SIFT verification. 

The results verify its effectiveness for distinctive feature 

detection from UAV high resolution optical images, and also 

for the efficiency improvement and memory feasibility 

strengthen. A fight experiment is conducted with a fix-wing 

UAV, which is controlled automatically with a simple 

GPS/IMU system. And the image topological graph is 

computed by analysing the conjunction relationship between 

images nearby, as guidance for image matching. Experimental 

results show that, the image topological graph definitely limits 

the search range of images for similarity calculation between 

feature vectors, improving the matching efficiency dramaticlly, 

without losing completeness.  

For more efficiency, we may reduce the number of matching 

images together with the optimization of flight plan as next 

steps. 
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