
CREATING PROCEDURAL WINDOW BUILDING BLOCKS USING THE GENERATIVE
FACT LABELING METHOD

W. Thallera, R. Zmugga, U. Krispela, M. Poscha, S. Havemanna, D.W. Fellner a,b

a Institute of ComputerGraphics & KnowledgeVisualization (CGV), TU Graz, Austria
b TU Darmstadt & Fraunhofer IGD, Germany

KEY WORDS: Procedural Modeling, Neo-Classical Architecture, 3D-Reconstruction, Shape Grammars, Fact Labeling Method

ABSTRACT:

The generative surface reconstruction problem can be stated like this: Given a finite collection of 3D shapes, create a small set of
functions that can be combined to generate the given shapes procedurally. We propose generative fact labeling (GFL) as an attempt to
organize the iterative process of shape analysis and shape synthesis in a systematic way. We present our results for the reconstruction
of complex windows of neo-classical buildings in Graz, followed by a critical discussion of the limitations of the approach.

Figure 1: Reasons for the complexity of window modeling. Intri-
cacies of facade composition (left), vertical coherence (middle),
and horizontal coherence (right) between ajacent windows.

1 INTRODUCTION

Most digital urban reconstructions today suffer from bad win-
dows. There are two main sources of inaccuracy: Either the win-
dow is well modeled but does not match the original (because
it is selected from a set of pre-modeled assets), or the window
matches but is badly modeled (window texture). How can this
situation be improved? We opt for geometric reasoning.

Windows are among the most salient features of façades. In most
classical styles of architecture a window is not just a rectangular
hole in a wall, but rather a combination of different inter-related
design elements. They may derive from a long-standing architec-
tural tradition. Thus, when creating a 3D model of a façade, a
substantial part of the effort will be spent on modeling the win-
dows and the decorative elements that go with them. A library
of common pre-modeled windows can be used only for superfi-
cial reconstructions. When more accuracy is required, windows
from an asset library can at most be used as a starting point
for further manual modeling, or they must be camouflaged by
photo-texturing. Windows in different buildings are often simi-
lar but hardly ever identical. We must better understand this phe-
nomenon (Figures 1, 2) to produce more accurate reconstructions.

In this paper we propose a methodological approach to deal with
situations where a large number of highly structured, similar but
not identical shapes must be captured. Our generative fact label-
ing (GFL) method has three phases:

• Analysis phase: We have gathered a collection of 150 pho-
tographs of complex windows. We have structured them
into elements by assigning fact labels (see Section 3).

• Synthesis phase: We have produced a library of combine-
able procedural assets corresponding to the elements iden-
tified in the analysis phase (see Section 4).

• Verification phase: We have 3D-reconstructed several well-
chosen windows from this collection in order to assess the
usefulness of our procedural library (see Section 5).

We discuss strengths, weaknesses and limitations in Section 6.

1.1 Contribution

We introduce the mentioned concepts (fact label, attribute, ele-
ment, procedural asset, exemplar) as part of our generative fact
labeling (GFL) method, a simple conceptual framework to deal
with families of complex structured shapes. The goal of this
method is generative shape reconstruction, i.e., to produce a li-
brary of functions that allow not only reproducing the limited
number of given exemplars, but also the design space that is
spanned by them. Whenever factoring shapes into procedural ele-
ments or components, one must be aware that this factorization is
only an interpretation (speculation); there is no such thing as the
“best” procedural description. Elegance is related to simplicity,
but one can never be sure, e.g., to have found the shortest proce-
dural description1. Our method is a guideline how to find at least
a reasonable procedural explanation of a complex shape class.

1.2 Benefit

Procedural models have striking advantages over other types of
3D models (compact, editable, re-usable, scalable, meaningful
semantics), especially over 3D scans (sampling approach). Gen-
erating 3D models by varying a few high-level parameters is nice,
but it can be difficult to determine the parameters of a given real-
world shape (procedural shape fitting). Even more challenging,
and far from solved, is the aforementioned problem to determine
a suitable set of procedures for a given set of shape examplars
(also called inverse procedural modeling). The use case in this
paper shows how to approach such a complex problem.

The second benefit is that we invite all knowledgeable specialists
in the field of architecture to refine and specialialize our imper-
fect taxonomy (discussion in Section 6). In contrast to other tax-
onomies with mainly academic value, the purpose of ours is to
actually reproduce the shapes, i.e., it is a generative taxonomy.

1The Kolmogorov complexity KC(b) of a bit sequence b, the length
of the shortest computer program that (re-)produces b, is not computable.

235



Figure 2: Window exemplars. The full set contains 150 images of windows from neo-classical buildings erected in Graz, Austria, in
1860-1890 (Gründerzeit). The complexity and visual dominance of the windows pose challenges to any digital urban reconstruction.

2 RELATED WORK

Digital reconstruction of buildings and monuments was a promi-
nent topic throughout the years, and generative approaches on
architecture are a hype today. Already the first shape grammars
(Stiny and Gips, 1972, Stiny, 1980) were very useful for under-
standing the patterns of classical architecture. Hierarchical struc-
tures, such as façade layouts, are an ideal use case for shape gram-
mars; but it turns out that their value for windows is only limited.

One of the first applications of shape grammars not just to un-
derstand, but also to generate complex architecture was (Wonka
et al., 2003). Recent approaches on shape grammars for proce-
dural modeling of architecture (Müller et al., 2006, Hohmann et
al., 2010, Krecklau et al., 2010) usually focus on scripting as the
main method to achieve their stunning results. As an alternative
we have presented in (Zmugg et al., 2012) an approach where
scripted procedural assets and shape functions can be applied and
assembled interactively in order to reconstruct complicated archi-
tecture (e.g. the façade of the Louvre in Paris). The system pre-
sented in this paper follows the same approach. The result of the
modeling process can be described procedurally, but not as a box
grammar since we can perform more general shape operations.

For the analysis phase in our method (see Section 3) it is useful
to study the appropriate literature in the field of architecture; we
chose (Chitham, 2005, Mitchell, 1992, Schulze, 2008, Davies and
Jokiniemi, 2008). These books provide comprehensive informa-
tion about possible window element configurations, naming of
the individual parts, and how they were composed. A very im-
portant reference, in particular for windows in Graz (Austria), is
the work of August Ortwein (Ortwein and Scheffers, 1893). His
work on the German renaissance, consisting of nine volumes, is
still used as seminal compendium in building restoration due to
the high accuracy in the description of details. Ortwein had much
influence in Graz during the 19th century; he designed buildings
in the famous ”Sporgasse” as well as several churches.

Our interactive 3D modeling approach for the synthesis phase
(Section 5) is based on (Thaller et al., 2011). All 3D-models
shown in this paper are internally represented as a collection of
convex polyhedra. They support modeling operations that are
very useful for architecture, in particular cut operations and CSG.
These are the low level shape operations that were used to realize
the procedural window elements presented in Section 4.

3 WINDOW ANALYSIS

In the beginning we are confronted with an unordered set of about
150 exemplars of complex windows, a selection of which is de-
picted in Figure 2. The question now is, how do we synthesize
a function library that reproduces these windows? As outlined
before, the first step is the analysis described in the following.

3.1 The Generative Fact Labeling Method

The process of generative shape reconstruction starts generally
with a finite collection of exemplars, which are undisputable facts.
Each exemplar is then associated with a number (set) of observa-
tions, which are (human) interpretations of the facts. Observa-
tions from different exemplars are then grouped together, thereby
exploiting the structure of the observations. A first observation
could be that every window consists of a hole in a wall, and that
this hole can have different shapes. Hole shapes are mutually ex-
clusive, a hole is either round or rectangular, but not both. A set
of mutually exclusive observations leads to a set of alternatives
which are grouped together in a label group. A label group is
assigned a group label, for simplicity we use A, B, C, etc. Every
alternative is enumerated, leading to labels A1, A2, A3 etc. for
the label group A. We call the ensemble of observations, labels,
and label groups a classification of the exemplars.

Unfortunately, we cannot assume that the set of labels in each
group, nor the set of groups, will ever be exhaustive. We follow
the open world assumption that our set of exemplars may always
grow. Therefore we add two special labels for each group, namely
not applicable (A-), and other (A*) indicating that “something A-
ish is there” but none of the available alternatives apply.

The fact labeling process typically proceeds in a coarse-to-fine
manner. We first determine rough structural units (window lay-
out) and then look at the parts in order to differentiate alternatives
more locally. This produces new label groups, which we still keep
in a flat list. Note that although we seek to decouple the labels we
do not assume any hierarchy in the labels; the relation between
the label groups (and the labels) can be quite complex, in fact.

The fact labeling approach as described so far is very generic
and applies to any effort to create a classification scheme. The
distinguishing property of generative fact labeling is the proce-
dural view: We seek to group our observations in such a way

236



Figure 3: Various fact labels applied to five example windows.
Refer to Table 1 and to Section 3.2 for explanations of the labels.

that they can be mapped to procedures that (re-)produce the ob-
served shapes (Sections 4, 5). This allows introducing a metric on
the produced classification: The better the procedures (software
engineering) and the better the results, the better is the classifica-
tion. This distinguishes our classifications from those produced
for academic reasons, e.g., in art history or history of architecture.

3.2 Generative fact labeling applied to windows

Consulting the relevant architectural literature was helpful in the
communication with experts who helped us making more relevant
observations. Broad prior knowledge is not mandatory, however,
and may even be distracting since the GFL method focuses ex-
clusively on the geometric aspects of architecture.

We started with more or less obvious observations such as “this
window has a sill” or “next to the window are pilasters”. After
some iterative refinement we arrived at the fact labels and label
groups shown in Table 1; labels not applicable (-) and other (*)
are omitted. Figure 3 shows some fact labels on example win-
dows. Note that each label group, i.e. each line in the table, can
be interpreted as a question that can be asked about a window:

A. count How many windows are there?
B. side Is the window framed at the side by columns or pilasters?

Alternatively, the decoration above the windows can be sym-
bolically supported by brackets at the side of the window.

C. sill Is there a sill below the window, or is there a sill with
additional decorations below it?

D. above Is there a cornice above the window, or a pediment, or
a combination of the two?

E. frieze Is there additional space, a frieze, or an architrave be-
low that cornice or pediment (Figure 4(a))?

F. layout The interaction between pillars at the side and the
frieze or architrave between the cornice and the opening.

G. shape The shape of the window opening itself.
H. frame Is there is an added frame around the opening? Does

that frame have a visible keystone at the top?
I. pediment The basic shape of the pediment.
J. pediment2 A systematic variation of pediment shape.
K. pediment3 Is there a open pediment, or a keystone?
L. cornice Is the cornice broken in the center?
M. below-cornice Are there brackets that symbolically support

the cornice? This does not include the ”side” brackets (B2).
N. below-sill Are there brackets that symbolically support the

window sill?

(a) (b) (c) (d)

Figure 4: Pilasters, brackets, friezes and architraves, and their
possible arrangements. A window with no side decoration but
with a frieze (yellow) is shown in (a). Pilasters (red) bypass the
frieze in (b). Pilasters can be reduced to smaller brackets that
support the cornice (c). Finally, pilasters end at the top of the
window opening and support an architrave (d).

Some of these questions depend directly on the answers to other
questions; if a window has been labeled as not having a cornice
or pediment (D-), all questions about the shape of the pediment
and cornice will have to be answered with not applicable as well.
Note that this hierarchical relation is not imposed from the out-
side; such dependencies emerge from the observations. Depen-
dencies between label provide only a hint for a possible hierarchi-
cal structure to be used in the generative reconstruction later on;
however, there need not be a simple one-to-one correspondence
since the fact labels do not form a strict hierarchy naturally.

4 WINDOW ELEMENTS

The window analysis from Section 3 must eventually lead to the
synthesis of three-dimensional window shapes described in Sec-
tion 5. The bridge in between is actually a software engineering
task, namely to factor the shapes to be produced into re-usable
procedures. We have identified, for example, in many parts the
necessity to apply mouldings; technically, this is a profile sweep
along certain edges of a shape. Other examples of re-usable pat-
terns that can be mapped to functions are circular partitions, circle
segments, and linear repetitions. These are the functions that are
then used to quickly obtain scripted building blocks for interac-
tive procedural modeling, in this case window elements.

A selection of the realized procedural window elements is illus-
trated in Figure 5, and some of the elements are described in some
detail in the following; an index like (a1) refers to an image in the
table of images in this Figure.

Cornice and Pediments We offer two basic shapes of pedi-
ments - triangular and round - with the possibility of adding some
customizations, including extended end parts (a1), open top sec-
tions (h1), the addition of a keystone (g1), or stepped designs
(e1). To realize open pediments an additional CSG-difference
operation is used. Keystones are inserted by extruding a part of
the pediment to the front as well as up and down. Stepped de-
signs for pediments, cornices and keystones can be achieved by
a separate extrusion step. Broken cornices (a1, c1) are supported
besides the regular ones. Mouldings can be applied to further
enhance the appearance of pediment and cornice (see below).

Window Shapes and Crossbars The most common window
shapes are supported in our system. These include the com-
mon rectangular shape (d2), round shape (c2), as well as several
arches; among these are the round arch (e2), segmental arch (a2)
and lancet arch (b2).

Crossbar assets (f2-h2) are realized independently of the shape of
the window itself. The crossbar rules adapt automatically to the
(convex) space that is provided for them.

237



L. LABEL GROUP 1 X 2 X 3 X
A count single window double window triple window
B side pilaster f3 big bracket
C sill simple sill a4 sill and decoration below
D above cornice e1 pediment a1 cornice and pediment b1
E frieze frieze/architrave
F layout pilasters/brackets beside frieze pilasters end below architrave crossing
G shape rectangular opening d2 round arch e2 segmental arch a2
H frame frame frame with keystone
I pediment triangle pediment b1 round arch pediment segmental arch pediment
J pediment2 horizontal cornice at the sides a1
K pediment3 open h1 keystone g1 stepped
L cornice broken c1 stepped e1
M below-cornice brackets at side a3 many brackets c3 centered brackets b2
N below-sill brackets at side c4 balustrade

Table 1: This labeling table is the result of the analysis phase (Section 3). Every label, e.g. A1, is associated with a set of observations
on the given facts (exemplars). Entries in the X-columns refer to the table of images of procedural assets in Figure 5.

Figure 5: Samples of procedural assets from the window part library: Cornices and pediments (first row, a1-h1), window shapes with
borders and crossbars (second row, a2-h2), friezes, panels and pilaster (third row, a3-h3), and window sill and decorations (bottom row,
a4-h4). All these assets adapt their size to the space they are inserted to.

Figure 6: Different mouldings on assets created by the frame
operation. Pediment and cornice are generated in a generic way
(upper left), the moulding is then applied using a specific profile
(lower left). The differnt mouldings (right) are defined indepen-
dently from the assets that they are applied to.

Frames and Mouldings Our system provides a frame oper-
ation that generates a frame for arbitrary convex shapes. This
operation is used for frames of the window pane (a2-e2) and to
generate the shape of the pediment (a1-d1, f1-h1). Additionally
we can create geometry along a poly-line to achieve certain ped-
iment shapes (a1).

The output of this operations can be refined further by applying
mouldings (see Figure 6). Moudlings apply an extrusion pro-
file along the course of the frame. This extrusion profile for the
moulding is generated independently from the asset it is applied
to. The cornice (e1), the architrave or the window sill (a4) can
also be refined by adding mouldings to them.

Pilaster and Brackets We have a round (f3-g3) and a rectangu-
lar pilaster (h3), equipped only with a basic capital and pedestal.
However, their usage can be very versatile - from being the es-
sential part of the balustrade, to various uses in friezes and other
decorative elements.

In most cases, pilasters can be exchanged with brackets. Since
their appearance can be quite diverse, we only provide a crude
approximation to give the basic idea of the real shape. Especially
friezes are often decorated with a multitude of brackets (a3-c3).
Two fundamental types can be identified, pillar-shaped brackets
(c4-e4) for which we use our pilaster assets, and brackets with a
slanted bottom part (a3-c3, f4-h4).

Frieze and Architrave Several decorative elements are placed
symmetrically in the frieze (a3-e3). We provide supporting ele-
ments like brackets and decorative panels (d3-e3). These panel
operations use the window shape and frame operations together
with extrude and bevel operations to obtain their look. Brackets
and panels are placed with a repeat operation that subdivides the
available space to place repetitive elements (a3-c3).

Architraves are often just decorated with a moulding that runs
across the width of the window. All the supported profiles for the
mouldings can be used to decorate the architrave.

Window Sill and Decoration beneath A window sill is an ex-
truded part that has often a moulding applied to it (a4). The space
beneath the window sill can be decorated like a frieze (c4-h4).
Brackets then support the sill instead of the cornice. This space
can also feature a balustrade. The same pillars as described be-
fore, just smaller, appear equally spaced below the sill. The re-
peat operation ensures that the number of pillars is adjusted ac-
cording to the available space.

238



5 WINDOW SYNTHESIS

To assess the usefulness of our approach we have reconstructed a
selection of window exemplars by combing the procedural assets
described in the previous section.

5.1 Interactive step-by-step example

A step-by-step illustration of a window reconstruction is shown
in Figure 7. The modeling process mostly follows the labeling
process. It can be understood to some extent as a shape grammar
since one part is selected and then replaced by one or more new
parts. However, with a shape grammar it is not possible to realize
crossings of vertical and horizontal structures and to snap to other
parts in different branches of the hierarchy, as we sometimes do.

Modeling a window proceeds by combining discrete assets; even
when this is done in a graphical user interface, it can still be seen
as interactive scripting. A script is generated in background that
will reproduce the model when executed. The main difference
to conventional interactive free-form modeling is that the mouse
is in fact only used as a selection tool in our system. Therefore,
the recorded script does not have to contain any tracked mouse
coordinates, only references to high-level assets.

The first step in the window creation process is to decide what
kind of window is to be created. Then different layouts are cho-
sen for the window elements, for example the window part is par-
titioned into a center and two pilaster parts to support the frieze.
All measurements and sizes of specific parts can be modified by
parameters, i.e., the vertical alignment of pilaster and brackets
can be adjusted manually. Asset insertion steps can be executed
in any order since each asset operates on a single selected part.

Although the number of different procedural assets appears to be
fairly limited, quite a variety of shapes can be achieved since el-
ements can be combined, nested and repeated sometimes in sur-
prising ways. The versatility of the procedural modeling tools
encourages us to believe that it will indeed be possible to achieve
eventually a good coverage of the architectural variety of the
given examplars by further extending the toolset.

5.2 Example reconstructions

Figure 8 shows reconstructions of five different windows from
exemplars, all with different layouts. Some of the decorations
where only approximated by manually placing variations of other
assets at certain positions. By manually adjusting certain dimen-
sions and exchanging a few assets several other (similar) win-
dows can be realized quickly. The benefit of our procedural ap-
proach is that the parts can adapt flexibly to a wide variety of
surroundings. It is therefore in most cases much more efficient to
adapt an existing window than to create a window from scratch;
so the re-use of models is encouraged by the system.

Figure 9 shows some variations of the two windows in red and
blue frames from Figure 8. Assets can be nested and combined
to realize also more complicated configurations (third variation
of the blue window). In terms of operations these windows are
’close’, which suggests that procedural distance could be a useful
shape similarity measure.

6 DISCUSSION

We discuss the limitations of our method on three levels. We first
present some challenging window exemplars that are hard to syn-
thesize with our current procedural library, then some shortcom-
ings of the classification, and then elaborate on whether or not
this invalidates the fact labeling approach. Finally, we discuss the
relation of our approach to shape grammars.

Figure 7: Interactive window modeling using procedural assets.
First, the layouts for the individual sections are chosen (row 1,
images (a), (b)), in this case a single window with decoration
above and below the hole. The order in the asset insertion steps
(row 1(c) to row 3(a)) is not important since assets can be inserted
independently from each other. The last step is to apply detail
mouldings to the window elements and to add the keystone (3(b)).

6.1 Challenging window exemplars

We have grouped the problematic windows (Fig. 10) into difficult
but feasible (left) and more fundamental problems (right). Win-
dows in the left group exhibit a feature that is not yet supported
but has a well-defined place in the classification of Table 1. They
can be synthesized when specific assets are added (missing fea-
ture issue), e.g., new opening shapes for windows (c), (d) and (j)
and new frame decoration styles for window (b). The intricate
decorations around windows (a) and (i) are out of scope since we
have limited ourselves to convex partitions; general ornamentary
requires a different shape modeling approach. The work-around
is to allow importing decorations as non-procedural pre-modeled
3D assets like in box grammar systems (Müller et al., 2006).

The windows to the right in Figure 10 reveal problems of a slightly
more fundamental nature. Window (e) exhibits delicate tracery in
the top, leading to bar and hole shapes that require specific geo-
metric constructions which are not found elsewhere; the same ap-
plies to window (k) (general construction issue). Window (e) also
features a ledge that runs along the façade and crosses the window
on a horizontal bar, interacting with various structures of the win-
dow along the way (cross feature issue). Even more drastic is the
cross hierarchy issue; the seemingly innocent example is the top

239



Figure 8: Synthesis of example windows. The first exercise was to reconstruct five window exemplars with sufficiently different layouts
and decorations. The second task was the variation of the two windows in the red and blue frames (see Figure 9).

Figure 9: Variations of the two windows in red and blue frames from Figure 8. The variations are derived only by replacing assets and
manually adjusting proportions. Assets can be combined to realize also more challenging configurations (right group, third variation).

Figure 10: Windows that cannot be handled properly by our current system. The left group of windows could be handled by special-
purpose assets, the right group reveals more fundamental issues and problems. See Section 6.1 for an explanation.

240



Figure 11: Examples of a window with overlapping structures.
The pilaster (red) overlaps the architrave (yellow). In the over-
lapping area, the moulding of the architrave runs across a contin-
uation of the capital of the pilaster. In the window at the bottom,
a ledge that runs across the whole façade also serves the purpose
of a window sill.

of window (m) where the keystone not just protrudes downwards
and upwards, but actually bridges and breaks the circular profile,
then the horizontal frame, and finally becomes part of the frieze
in the top. Window (g) violates one of our implicit assumptions,
namely that window decorations are applied to planar façades.
The pediment and the structures at the sides of this circular win-
dow – which are vaguely reminiscent of ionic columns – are part
of the three-dimensional structure of this particular building (pla-
narity issue).

The holes of the multi-windows (h) and (n) are so tightly coupled
that the window classification is ambiguous. Apparently a larger
hole was partitioned by bars, so it makes no sense to treat the
sub-windows separately; but the bars are also so prominent the
windows are clearly separated. We have found so many exam-
ples of this ambiguity issue that we suspect that ambiguities are
introduced intentionally by architects. The issue is similar to the
repurpose issue of window (l), where the pediment is not on top
of the window, but the window is inside a triangle pediment.

6.2 Classification problems

The fact labeling approach allows making interdependencies ex-
plicit by assigning additional labels. We can, for instance, easily
state that in a given window, there are (i) pilasters that support
the cornice and pediment, and (ii) there is an architrave below
this cornice. We have then introduced an extra label group F that
describes how these two structures interact. The window in Fig-
ure 11 is labeled D3, as it has a cornice and pediment, and E1
because it has an architrave and frieze. Additionally, it receives
the label F3 because both structures overlap.

To generate geometry for this fact label F3, the assets must be
able to deal with the interaction of the architrave and the pilaster.
However, this interaction depends on the specific assets that are
used for the pilaster and the architrave; in the worst case, one
asset has to be defined for every possible combination of a pilaster
asset and an architrave/frieze asset. This is clearly not scalable.

Another example of problematic overlaps are ledges running hor-
izontally over the whole façade. Sometimes they do not interfere

with the windows, for example between storeys; in other cases
they are interrupted by a window. Sometimes, such a ledge is
re-used as a window sill. The most difficult case arises when
the ledge is modified slightly to accommodate the role of a win-
dow sill. The corresponding procedural asset for the window sill
would have to describe a window sill created by modifying an ex-
isting ledge in a certain way. By limiting our focus to individual
windows and their immediate surroundings, we have side-stepped
this feature in disguise problem for now.

6.3 Feasibility of the GFL approach

We have mentioned now so many issues and problems that we
need to examine the feasibility of the overall approach. The ques-
tion is, will the GFL method ever converge, and is there a realistic
chance to obtain in the end a reasonably small procedural func-
tion library that can synthesize for all examplars a 3D-model with
satisfactory detail resolution?

GFL produces a flat list of labels without any hierarchy or other
additional structure because the expectation is that such a struc-
ture shall in fact emerge during the exercise. However, since the
method makes no a priori assumptions whatsoever about any po-
tential structure or relation between the labels, the resulting la-
bels may be arbitrarily unorganized. A great danger of the GFL
method is over-specialization when more detailed analysis of the
exemplars produces an ever-growing number of observations, la-
bels and label groups. The only effective counter-measure is con-
tinuous re-iteration in order to identify similarities between labels
that can be merged and mapped to the same generative procedure.
We call this inductive reasoning process label reduction.

To illustrate the label reduction process, consider for example the
labels M (below-cornice) and N (below-sill) from Table 1. They
reveal striking similarities when comparing images (a3)-(c3) and
(c4)-(h4) in Figure 5. Consequently, both labels can certainly
share most of their procedures, and maybe even merge.

The main difficulty in label reduction is to ’factor out’ structural
ambiguities in a correct way. We have realized that it is in fact
a common situation that some architectural rule A allows or re-
quires an element X, and another architectural rule B allows or
requires a different element Y in approximately the same place.
One way for an architect to merge A and B is to make X resem-
ble Y in an creative way; and this is very difficult to schematize
and to map to common procedures. We suspect that this is an
important reason for the abundant variety of windows shapes.

6.4 Relation to Shape Grammars

It is interesting to note that “overdoing” the label reduction re-
sults in a procedural library that is indeed very simple, but cap-
tures shape interdependencies only insufficiently. The discussion
in the previous section has shown that although the list of label
groups A,B,C,... produced by the GFL method remains flat, the
relation between the individual labels can in fact become very in-
tricate and complicated. In order to reduce this complexity we
have intuitively taken the approach to decouple as much as possi-
ble the different labels. Label dependency is minimal when every
label depends only on a single other label. This leads to a linear
label refinement process and thus, eventually to a (context-free)
parametric shape grammar.

We had to realize that the result of our experiment is a procedu-
ral function library that is effectively such a shape grammar. The
implications are revealed by revisiting the step-by-step example
from Figure 7: The vertical separation (image 1(a)) nicely de-
couples the three window parts (top, mid, bottom) that can then

241



be independently refined into sub- and sub-sub-parts without any
side effects; but note that the window sill and the column bases
are contained in the bottom part, separated from the column tops.
Although the resulting columns look like coherent vertical struc-
tures (image 3(c)), they are composed of three independent parts;
and the middle part, the window sill, is in fact even a separating
horizontal structure cutting through both columns.

This model captures interdependencies insufficently because the
vertical integrity of the column cannot be preserved when the
three parts forming each column are varied horizontally. Con-
sequently, the apparent coherence is only a coincidence.

7 CONCLUSION AND FUTURE WORK

We have presented a fully manual method to obtain a library of
functions that is capable of re-generating procedurally a given
collection of non-trivial input shapes, as well as many variations
of these shapes. We propose an iterative process of grouping,
labeling and re-grouping of shape observations, followed by re-
flection and inductive reasoning to discover structures and sim-
ilarities that can then be exploited in the software development
process to produce a concise but powerful set of shape generat-
ing functions. We have integrated these functions as 3D modeling
tools in a simple graphical user interface, so that the actual shape
composition, which requires no programming but only straight-
forward function composition, can be carried out interactively.

As confirmed by our experiment with 150 windows of neo-classi-
cal buildings, several passes of this potentially very tedious pro-
cess are necessary in order to obtain satisfactory results. We ac-
knowledge the fact that procedural 3D modeling ultimately im-
plies shape programming, and our generative fact labeling method
is a first attempt to guide the development process in a systematic
way. Since the method is extremely generic, it can be applied in
any domain of man-made shape, from castles over buildings and
furniture to engineering and automotive design. Our conjecture
is that in fact any attempt to produce a library of shape generating
functions for a certain domain must apply this method, or at least
a variant of it. We admit, though, that this generality is also a
weakness since although the method is effective, much sophisiti-
cation is required for it to be also efficient.

We see mainly three avenues for further research. First, it is in-
teresting to note that the labeling method gives rise to a very
straightforward string encoding of the exemplars. Mentioning
only relevant labels, the windows from Figure 3 can be encoded
as follows using our very simple labeling from Table 1:

A1_C2_D1_E1_G2_H1_N2
A1_B1_C2_D1_E1_F2_G2_H2_N1
A1_B2_C2_D3_E1_F1_G1_I1
A1_C2_D3_E1_G1_H2_I3_K2_M1_N*
A2_B1_C2_D3_E1_F2_G1_H1_I1_J1_N1

The great value of such a shape formalization is that it provides an
interface to bridge the gap between shape analysis and shape syn-
thesis. Although this is only a very rough encoding, it could al-
ready be useful, e.g., as feature vectors for training shape analysis
and machine learning algorithms. And even without any dimen-
sions, more faithful window geometry can be produced already
from this encoding. An obvious area for further research is how
to extend this encoding when more structure has been found.

The second research question is whether the tedious label pro-
duction and reduction process can be supported with algorithms,

e.g., to check an observation for consistency with the exemplars
(“how many windows have a triangle pediment?”). Such checks
are obviously required very often; but manual checking is very
tedious, which limits both label production and reduction. There
are many interesting quantifiable measures to assess observation
and label quality, such as relevance, coverage, conflicts, etc.

The third research challenge is whether this method might even-
tually lead, after experiments in various different shape domains,
to a more general understanding of shape ontologies. Our conjec-
ture is that the observations on how shapes interact in one shape
domain will not be fundamentally different from the observations
in other domains. If this is true, then it should be possible to iden-
tify a few central concepts of a “Conceptual Reference Model”
for shape, that can then be mapped to specific shape domains via
subclassing (specialization). The proof that such an endeavour
can eventually lead to success was given by CIDOC-CRM for
the equally complex problem of creating a small vocabulary for
encoding facts in cultural heritage (Crofts et al., 2005).

REFERENCES

Chitham, R., 2005. The Classical Orders of Architecture. second
edn, Architectural Press.

Crofts, N., Doerr, M., Gill, T., Stead, S. and Stiff, M., 2005. Def-
inition of the CIDOC Conceptual Reference Model. Version 4.2
edn, CIDOC Documentation Standards Working Group. (ISO
21127).

Davies, N. and Jokiniemi, E., 2008. Dictionary of Architecture
and Building Construction. Architectural Press.

Hohmann, B., Havemann, S., Krispel, U. and Fellner, D., 2010. A
gml shape grammar for semantically enriched 3d building mod-
els. Computers & Graphics 34(4), pp. 322 – 334.

Krecklau, L., Pavic, D. and Kobbelt, L., 2010. Generalized use
of non-terminal symbols for procedural modeling. Computer
Graphics Forum 29(8), pp. 2291–2303.

Mitchell, W.-J., 1992. The Logic of Architecture. The MIT Press.

Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool, L.,
2006. Procedural modeling of buildings. ACM Trans. Graph.
25(3), pp. 614–623.

Ortwein, A. and Scheffers, A., 1893. Deutsche Renaissance Band
1,. 2nd edn, Seemann Verlag.

Schulze, J., 2008. Wie man um 1874 Fenster baute. In: Fenster
im Baudenkmal, Lukas Verlag.

Stiny, G., 1980. Introduction to shape and shape grammars. En-
vironment and Planning B 7(3), pp. 343–351.

Stiny, G. and Gips, J., 1972. Shape Grammars and the Generative
Specification of Painting and Sculpture. In: C. V. Friedman (ed.),
Information Processing ’71, Amsterdam, pp. 1460–1465.

Thaller, W., Krispel, U., Havemann, S., Redi, I., Redi, A. and
Fellner, D., 2011. Developing parametric building models - the
GANDIS use case. In: F. Remondino and S. El-Hakim (eds),
Proc. ISPRS Workshop 3D-ARCH 2011, ISPRS.

Wonka, P., Wimmer, M., Sillion, F. and Ribarsky, W., 2003. In-
stant architecture. ACM Trans. Graph. 22(3), pp. 669–677.

Zmugg, R., Krispel, U., Thaller, W., Havemann, S., Pszeida, M.
and Fellner, D. W., 2012. A new approach for interactive proce-
dural modelling in cultural heritage. In: Proc. Computer Appli-
cations & Quantitative Methods in Archaeology (CAA 2012).

242


