The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XL-5/W1
https://doi.org/10.5194/isprsarchives-XL-5-W1-73-2013
https://doi.org/10.5194/isprsarchives-XL-5-W1-73-2013
13 Feb 2013
 | 13 Feb 2013

COMPARISON BETWEEN LASER SCANNING AND AUTOMATED 3D MODELLING TECHNIQUES TO RECONSTRUCT COMPLEX AND EXTENSIVE CULTURAL HERITAGE AREAS

F. Fassi, L. Fregonese, S. Ackermann, and V. De Troia

Keywords: Close Range Photogrammetry, Laser scanning, Cultural Heritage, Automated 3D modelling techniques

Abstract. In Cultural Heritage field, the necessity to survey objects in a fast manner, with the ability to repeat the measurements several times for deformation or degradation monitoring purposes, is increasing. In this paper, two significant cases, an architectonical one and an archaeological one, are presented. Due to different reasons and emergency situations, the finding of the optimal solution to enable quick and well-timed survey for a complete digital reconstruction of the object is required.

In both cases, two survey methods have been tested and used: a laser scanning approach that allows to obtain high-resolution and complete scans within a short time and a photogrammetric one that allows the three-dimensional reconstruction of the object from images. In the last months, several methodologies, including free or low cost techniques, have arisen. These kinds of software allow the fully automatically three-dimensional reconstruction of objects from images, giving back a dense point cloud and, in some case, a surfaced mesh model.

In this paper some comparisons between the two methodologies above mentioned are presented, using the example of some real cases of study. The surveys have been performed by employing both photogrammetry and laser scanner techniques. The methodological operational choices, depending on the required goal, the difficulties encountered during the survey with these methods, the execution time (that is the key parameter), and finally the obtained results, are fully described and examinated. On the final 3D model, an analytical comparison has been made, to analyse the differences, the tolerances, the possibility of accuracy improvement and the future developments.