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ABSTRACT:

The paper presents a robust version of a recent anisotropic orthogonal Procrustes algorithm that has been proposed to solve the so-
called camera exterior orientation problem in computer vision and photogrammetry. In order to identify outliers, that are common in
visual data, we propose an algorithm based on Least Median of Squares to detect a minimal outliers-free sample, and a Forward Search
procedure, used to augment the inliers set one sample at a time. Experiments with synthetic data demonstrate that, when the percentage
of outliers is greater than 30% or the data size is small, the proposed method is more accurate in detecting outliers than the customary
detection based on median absolute deviation.

1 INTRODUCTION

In a recent paper (Garro et al., 2012) a new method for the exte-
rior orientation problem solution of a calibrated camera has been
proposed. The method is fundamentally based on the anisotropic
extension of the Orthogonal Procrustes Analysis with different
scaling of the coordinate values for each point.

The problem of estimating the position and orientation of the
perspective point of a camera, given its intrinsic parameters and
a set of image and object correspondences, is very well known
in computer vision and photogrammetry. Many algorithms have
been proposed; these are mainly based on direct and indirect pro-
cedures. Direct procedures are usually faster but less accurate,
as they do not minimize a significant cost function (Fischler and
Bolles, 1981, Quan and Lan, 1999, Fiore, 2001, Ansar and Dani-
ilidis, 2003, Lepetit et al., 2009), whereas iterative methods, that
explicitly minimize a meaningful geometric error, are more ac-
curate but slower (Lowe, 1991, Haralick et al., 1989, Kumar and
Hanson, 1994, Horaud et al., 1997). The proposed method (Garro
et al., 2012) reaches the best trade-off between speed and accu-
racy and is easier to implement than its closest competing algo-
rithm (Hesch and Roumeliotis, 2011).

On the other hand, Orthogonal Procrustes Analysis (OPA) is a
very useful tool to perform the direct least squares solution of
similarity transformation problems in any dimensional space. At
first, it was used for the multidimensional rotation and scaling of
different matrix configuration pairs (Schönemann, 1966, Schöne-
mann and Carroll, 1970). Successively, the solution was gener-
alized for the simultaneous least squares matching of more than
two corresponding matrices (Gower, 1975, Ten Berge, 1977). In
photogrammetry OPA has been already applied for matching dif-
ferent 3D object models from images (Crosilla and Beinat, 2002)
and from 3D laser point clouds (Beinat and Crosilla, 2001) re-
spectively. In both cases the authors applied the so called gener-
alized version of the OPA problem to simultaneously match more
than two coordinate matrices of corresponding points expressed
in different reference systems.

Very recently, an interesting extension of the OPA analysis with
anisotropic scaling has been proposed (Bennani Dosse and Ten-
Berge, 2010), also in its generalized form (Bennani Dosse et al.,
2011). The algorithm operates with anisotropic scaling along
space dimension and is based on an iterative block relaxation
technique (de Leeuw, 1994) that starts with an uniform initial-
ization. The iterative algorithm proposed by (Garro et al., 2012)
applies instead anisotropic scaling for each measurement and is
based on the same kind of relaxation techniques. Although this
algorithm proved to reach a good trade-off between speed and
accuracy, it has the drawback of a Procrustes method, i.e. it is a
least squares estimation technique failing to cope with outliers.

To overcome this problem, we present a robust version of the
above mentioned algorithm, that can tolerate a minority of arbi-
trarily large outliers. At the beginning, Least Median of Squares
(LMedS) (Rousseeuw, 1984) is used in order to detect an initial
minimal subset of data, free from outliers. The initial subset is
then augmented one sample at a time with Forward Search (FS)
(Hadi and Simonoff, 1993, Atkinson and Riani, 2000), an itera-
tive scheme that proved to be effective in dealing with the well-
known masking and swamping problems that can occur when
multiple outliers are present in the data set. An empirical compar-
ison of FS against the customary classification based on the Me-
dian Absolute Deviation (MAD) scale estimation has been car-
ried out. It was noticed that, up to 20% outliers, MAD and FS
produce comparable results, but when the percentage of outliers
increases, FS becomes more reliable for outliers detection.

2 PROCRUSTEAN EXTERIOR IMAGE ORIENTATION

In this section we will briefly summarize the procrustean ap-
proach to the exterior image orientation problem presented in
(Garro et al., 2012). The reader is referred to the original paper
for more details.

Given a number of 2D-3D point correspondences mj ↔ Mj and
the intrinsic camera parameters K, the exterior image orientation
problem requires to find a rotation matrix R and a translation
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vector t (which specify attitude and position of the camera) such
that:

ζjm̃j = K[R|t]M̃j for all i. (1)

where ζj denotes the depth of Mj , and the˜denotes homogeneous
coordinates (with a trailing “1”).

After some rewriting, (1) becomes:264MT
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where p̃j = K−1m̃j , c = −RTt, and 1 is the unit vector. The
previous equation can be written more compactly in matrix form:

S = ZPR + 1cT (3)

where

P is the matrix by rows of (homogeneous) image coordi-
nates defined in the camera frame,

S is the matrix by rows of point coordinates defined in the
exterior system,

Z is the diagonal (positive) depth matrix,

c is the coordinate vector of the projection centre,

R is the orthogonal rotation matrix.

One can recognize an instance of an anisotropic OPA problem
with data scaling (Bennani Dosse and TenBerge, 2010), where
the usual (isotropic) scale factor is substituted by an anisotropic
scaling characterized by a diagonal matrix Z of different scale
factors.

Δ 3

Δ 2

Δ 1

M1

M2

M3

p1 p3
p2

c

Figure 1: The orientation of the camera and the depth of the
points are estimated in such a way to minimize the length of the
∆s for all the points, in a least squares sense.

To obtain the least squares solution for Eq. (3) – along the same
line as in (Schönemann and Carroll, 1970) – let us make explicit
the residual matrix ∆:

S = ZPR + 1cT + ∆. (4)

The geometric interpretation, with reference to Figure 1, is that
the estimated depth defines a 3D point along the optical ray of the

image point p, and the segment (perpendicular to the optical ray)
joining this point and the corresponding reference 3D point M is
the residual. Therefore, ∆ is a matrix whose rows are difference
vectors between reference 3D points (S) and the back-projected
2D points (P ) based on their estimated depths (Z) and the esti-
mated camera attitude and position (R, c).

The solution of the anisotropic OPA problem finds Z, R and c in
such a way to minimize the sum of squares of the residual ∆, i.e.,
the sum of the squared norm of the difference vectors mentioned
above. This can be written as

min‖∆‖2F subject to RTR = I (5)

The problem is equivalent to the minimization of the Lagrangian
function

F = tr
“
∆T∆

”
+ tr

“
L

“
RTR− I

””
(6)

where L is the matrix of Lagrangian multipliers. This can be
solved by setting to zero the partial derivatives of F with respect
to the unknowns R, c and the diagonal matrix Z. The derivation
of the formulae is reported in (Garro et al., 2012). It turns out that
in the anisotropic case the unknowns are entangled in such a way
that one must resort to the so called “block relaxation” scheme
(de Leeuw, 1994), where each variable is alternatively estimated
while keeping the others fixed. Algorithm 1 summarizes the pro-
cedure.

Algorithm 1 PROCRUSTEAN EXTERIOR ORIENTATION

Input: a set of 2D-3D correspondences (P, S)
Output: position c and attitude R of the camera

1. Start with Z = 0 (or any guess on the depth);

2. Compute R = Udiag
`
1,1,det(UV T)

´
V T

with UDV T = P TZ
`
I − 1 1T/n

´
S;

3. Compute c = (S − ZPR)T 1/n;

4. Compute Z = diag (PR(ST−c1T)) diag (PP T)
−1

;

5. Iterate over steps 2, 3, 4 until convergence.

In order to work toward the robust version of Algorithm 1, please
note that:

• step 2 can be seen as the solution of a simple OPA problem,
namely finding R such that ZP = R

`
I − 1 1T/n

´
S;

• step 3 is simply the mean along the columns of the matrix
S − ZPR.

We will return to this observation later.

3 ROBUST ESTIMATION TECHNIQUES

Almost inescapably image measurements contain gross errors (out-
liers) that may be arbitrarily large and cannot be “averaged out”,
as is typically done with small-scale noise. They lead to incorrect
results in parameter estimation; therefore robust estimation tech-
niques have been developed over the last years in both the com-
puter vision and the statistics literature (Ben-Gal, 2005, Stewart,
1999),
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Figure 2: The (s + 1)th residual (diamonds) and the value of the
threshold (t(1−α/2(s+1),s−k)σs) (red line) at each iteration of FS.
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Figure 3: Residuals at the last iteration of FS arranged in ascend-
ing order. The red horizontal line is the threshold that has been
exceeded.

The Least Median of Squares is a robust regression method that
achieves the maximum theoretical breakdown point of 0.5, i.e,
it can tolerate up to 50% percent of outliers in the data without
being affected. LMedS estimates the parameters of the model by
minimizing the median of the absolute residuals. Let X = {xi}
be a set of data points and let a be a k-dimensional parameter
vector to be estimated, while ri,a is the Euclidean distance be-
tween a point xi and the model determined by a. The LMedS
estimate is:

â = argmin
a

median
xi∈X

r2
i,a (7)

The value of a is determined using a random sampling technique.
A number of k-points subsets of the n data points is randomly
selected and a parameter vector aS is fitted to the points in each
subset S. Each aS is tested by calculating the squared residual
distance r2

i,aS
of each of the n−k points in X−S and finding the

median. The aS corresponding to the smallest median is chosen
as the estimate â. If n is the number of points in the initial set
of data, there are

`
n
k

´
different subsets of k points that should

be considered. In order to speed up the process, the number of
subsets to test can be reduced to

M =
log(1− p)

log(1− (1− ε)k
, (8)

where p is the probability of calculating the correct estimate and
ε is the percentage of outliers.

Since LMedS is known to have a low statistical efficiency, it is
important to refine the fit on a “clean” (i.e., outliers-free) set of
data point. This is customarily done by computing a robust scale
estimate σ∗ based on the median absolute deviation (MAD):

σ∗ = 1/φ−1(0.75)(1 +
5

n− k
)
r

median
xi∈X−Ŝ

ri,â2 (9)

where Ŝ is the subset used to calculate â, φ−1 is the inverse of the
cumulative normal distribution, and 1+5/(n−k) is a correction
factor. Then â is refined with a least squares estimate using only
the data points such that:

r2
i,â < (θσ∗)2 (10)

where θ is a constant that depends on the confidence level chosen
for the test (typically around 2 or 3).

According to the taxonomy set forth in (Davies and Gather, 1993),
this is a univariate single-step outlier detection procedure, that
will be referred to as MAD in the following. Sequential proce-
dures, on the contrary, perform successive elimination or addition
of points. In particular, inward testing starts with the whole set of
data points and iteratively test the point with the highest residual

for being an outlier; it stops when the first inlier is encountered.
On the contrary, outward testing starts with an outlier-free set of
points and iteratively tests the remaining points for inclusion in
the clean subset, based on statistics computed on the clean subset;
it stops when all the points have been processed.

Forward Search (FS) (Hadi and Simonoff, 1993, Atkinson and
Riani, 2000) is an outlier detection method of the latter category.
The algorithm starts from an initial subset of observations of size
m < n that is known to be outlier free. In our case this is the
set Ŝ from LMedS, and m = k. Then the iterative process starts
and at every ith iteration the s samples (s = m + i− 1) with the
lowest residual are used to estimate the parameters of the model
as and the s + 1 residual rs+1,as is monitored to detect the point
when the iteration starts including outliers.

Several monitoring heuristics have been proposed in literature.
We consider here one of the simplest, that dates back to (Hadi
and Simonoff, 1993); the forward search stops when:

r2
s+1,as

≥ (t(1−α/2(s+1),s−k)σs)
2 (11)

where t(1−α/2(s+1),s−k) the 1 − α/2(s + 1) quantile of the t-
distribution with s−k degrees of freedom, and σs is the standard
deviation of the least s residuals (the residual divided by σs is
also called “studentized” residual).

Figure 2 plots the (s+1)th residual at each iteration: please note
how the threshold adapts to the variance of the clean subset and
how the residual of the first outlier pops out. Same analysis can
be made on Figure 3, which plots the ordered residuals of the
whole point set: the outliers are clearly separated and well above
the threshold.

The ith iteration of the algorithm can be summarized as follows:

1. Estimate the parameters of the model as using the s = m+
i− 1 points in the clean subset;

2. Calculate the residuals rs+1,as of all the n points and ar-
range them in ascending order;

3. Test the (s + 1)th residual:

If r2
s+1,as

≥ (t(1−α/2(s+1),s−k)σs)
2 then declare all

the remaining n− s observations as outliers and stop.

Otherwise increment i (include the (s + 1)th point in
the inliers).

4. If m + i− 1 = n, then stop, otherwise go to step 1.
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4 ROBUST PROCRUSTEAN EXTERIOR IMAGE
ORIENTATION

Resuming to the observations at the end of Section 2, one can
immediately figure out that the procrustean exterior image orien-
tation algorithm can be made robust against outliers by substitut-
ing:

• step 2 with a robust solution (e.g., LMedS) to the problem
of finding the rotation between the two point sets ZP and`
I − 1 1T/n

´
S;

• step 3 with the median instead of the mean along the columns
of S − ZPR.

This works pretty straightforward, and being an iterative process,
convergence can be improved by re-using the estimate of the in-
liers set from one iteration to the next. As customary, we used a
threshold based on MAD (as described in Sec. 3) to reject outliers
at each iteration.

However this simple strategy cannot recover the inlier set with
high reliability for every condition. There are cases where FS,
albeit more computationally expensive, should be used because
of its superior accuracy, as experiments will show. Therefore we
propose to refine the clean subset produced by the LMedS proce-
dure with FS; the resulting robust procrustean exterior orientation
procedure is summarized in Algorithm 2.

Algorithm 2 ROBUST PROCRUSTEAN EXTERIOR ORIENTA-
TION

Input: a set of 2D-3D correspondences (P, S)
Output: position c and attitude R of the camera

• Find a clean subset of three points1:

1. Start with Z = 0 (or any guess on the depth);

2. Compute R s. t. P TZ = R
`
I − 1 1T/n

´
S using

LMedS (on current inliers);

3. Compute c = meaninliers((S − ZPR))T;

4. Compute Z = diag (PR(ST−c1T)) diag (PP T)
−1

;

5. Declare as inliers points that pass the test of Eq. (10);

6. Iterate over steps 2, 3, 4, 5 until convergence;

• Refine inliers estimate using FS;

• Compute R, c, Z (algorithm (1)) considering the set of
points determined in the previous step.

5 EXPERIMENTAL VALIDATION

We run synthetic experiments, using n = {20, 40, 60, 80, 100}
3D points. The image coordinates obtained from the projection
of the points have been perturbed with gaussian noise with stan-
dard deviation σ = 2.0 and different percentages of outliers

1Exterior orientation requires at least three points.

{10%, 20%, 30%, 40%, 50%} have been added to the data. Out-
liers are generated by adding a random value with uniform dis-
tribution in [0, 100] to both coordinates of a point. The focal
length of the camera was set to 500 pixel and the image size is
≈ 600 × 600 (Figure 4 shows an example of synthetic image).
For each value of n and percentage of outliers the test has been
run 100 times.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Figure 4: An example of the synthetic image data. The green
squares are the inliers, the red stars are the outliers.

First we tested the first part of the algorithm, the one responsible
for extracting a clean subset, based on LMedS, and, as expected,
it provides a clean subset (with up to 50% of outliers) in most of
the cases (76%). The percentage reaches 92% if one considers
only a maximum of 40% of outliers. Figure 5 reports the false
negative rate (see below) for the first part of the algorithm.
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Figure 5: False negative rate vs percentage of outliers and number
of points for the first part of the algorithm.

Then we compared empirically the robust procrustean exterior
orientation method (with FS) against the baseline method with
the MAD-based test only, in order to assess whether FS brings
some advantage in detecting outliers.

The outlier detection stage post LMedS can be considered as a
classification task, where each point has to be labelled as inlier or
outlier (i.e., we test the null hypothesis that a point is an outlier)
θ and α were set to 2.0 and 0.0001 respectively, so as to yield
a similar rejection threshold for a chosen reference case, corre-
sponding to 100 points, 10% outliers, σ = 2.0.

Let c be the number of false negatives, i.e., actual outliers that
are erroneously deemed as inlier (type I error), a be the number
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Figure 6: Top row: false negative rate vs percentage of outliers and number of points for MAD (left) and FS (right). Bottom row:
accuracy vs percentage of outliers and number of points for MAD (left) and FS (right). Gaussian noise has σ = 2.0.

of true positives, i.e., outliers that are correctly detected and d
be the number of true negatives, i.e., inliers that are correctly
detected.

In order to compare the two algorithms, we monitored two figures
of merit:

- the false negative rate defined as c/(a + c), and

- the accuracy, defined as (a + d)/n.

Please note that false negatives (type I error) are way more dan-
gerous than false positives, as they may skew the final least squares
estimate, whereas false positives (type II error) can only impact
on the statistical efficiency, as they reduce the number of “good”
measurements that are considered in the final least squares es-
timate. For this reason, the main indicator is the false negative
rate, which should be as small as possible. The accuracy indeed
is monitored in order to check that the method is not achieving
a low false negative rate by being too “fussy”, i.e, rejecting too
many samples as outliers.

Results are reported in Fig. 6. The bar corresponding to 20 points
and 50% outliers can be considered as an extreme case and should
probably left out from general considerations. The opposite case,
corresponding to 100 points and 10% outliers, is the “easy” one.

The rundown of the experiments is that with a fairly large set
of point (> 60) and moderate outliers contamination (≤ 30%)

MAD and FS produce comparable results, but when the size of
the data is smaller or the contamination increases, FS performs
better than MAD with respect to all the indicators. This makes
sense, as one could expect that the advantage of a meticulous
analysis as the FS should be more noticeable on smaller samples.

Both methods are fairly unstable and produces mixed results when
n < 20 (results not shown here), because any statistical analysis
is ineffective on such small samples.

Comparison with Fig. 5 reveals that shortfall of FS is mostly due
to the first part of the algorithm failing to produce a clean subset.
It also shows that FS almost never worsen the false negative rate
of the clean subset and achieves high accuracy, showing that the
initial clean subset has been actually extended and (almost) no
outliers have been added.

6 CONCLUSIONS

We presented a robust version of a procrustean exterior orienta-
tion algorithm based on LMedS and Forward Search. Our exper-
iments show that FS is highly effective and accurate in detecting
outliers even in difficult cases corresponding to small data size or
high outliers contamination.
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