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ABSTRACT 
 
As a rule, image-based documentation of cultural heritage relies today on ordinary digital cameras and commercial software. As such 
projects often involve researchers not familiar with photogrammetry, the question of camera calibration is important. Freely available 
open-source user-friendly software for automatic camera calibration, often based on simple 2D chess-board patterns, are an answer to 
the demand for simplicity and automation. However, such tools cannot respond to all requirements met in cultural heritage conserva-
tion regarding possible imaging distances and focal lengths. Here we investigate the practical possibility of camera calibration from 
unknown planar objects, i.e. any planar surface with adequate texture; we have focused on the example of urban walls covered with 
graffiti. Images are connected pair-wise with inter-image homographies, which are estimated automatically through a RANSAC-based 
approach after extracting and matching interest points with the SIFT operator. All valid points are identified on all images on which 
they appear. Provided that the image set includes a ‘fronto-parallel’ view, inter-image homographies with this image are regarded as 
emulations of image-to-world homographies and allow computing initial estimates for the interior and exterior orientation elements. 
Following this initialization step, the estimates are introduced into a final self-calibrating bundle adjustment. Measures are taken to 
discard unsuitable images and verify object planarity. Results from practical experimentation indicate that this method may produce 
satisfactory results. The authors intend to incorporate the described approach into their freely available user-friendly software tool, 
which relies on chess-boards, to assist non-experts in their projects with image-based approaches. 
 
 

1. INTRODUCTION 
 
Recent CIPA symposia are witness to the importance of image-
based digital documentation, including both reconstruction and 
visualization, of cultural heritage. In practice, all such projects 
rely today on un-calibrated (off-the-shelf) digital cameras. Their 
images are, usually, processed with some commercial software, 
handled more than often by experts in other fields – architects, 
engineers, archaeologists or conservationists – who may not be 
familiar with photogrammetry. Thus, it is not surprising that the 
issue of camera calibration has been gaining in significance (in 
practical close-range photogrammetric tasks camera calibration 
is essentially synonymous with camera pre-calibration). Several 
methods for camera calibration have been reviewed in literature 
(e.g. Clarke & Fryer, 1998; Salvi et al., 2002; Villa-Uriol et al., 
2004; Zhang, 2004). The approaches differ regarding number of 
images involved; dimension (3D, 2D, 1D) of calibration objects 
used; adopted camera models; type of involved image features; 
linearity/non-linearity of employed algorithms, etc. 
 
From a user’s point of view, cameras should ideally be calibra-
ted in a totally automatic mode, exclusively from image sets of 
a possibly simple object acquired rapidly with unknown exterior 
orientations. A response to this demand is represented by freely 
available user-friendly tools for automatic camera calibration, 
which are usually based on structured 2D patterns (typically of 
the chess-board type); besides low cost and ease in construction, 
their contrast and pattern are particularly suitable for automatic 
feature extraction and, hence, establishment of point correspon-
dences. Such tools, by exploiting different views of chess-board 
patterns to determine interior and exterior camera parameters, 
have been originally inspired by the “plane-based calibration” 
approach (Sturm & Maybank, 1999; Zhang, 1999), a process re-
lying on the homographies between a world plane with known 
metric structure and its views. These 2D projective transforma-

tions give a linear system in the camera elements; the initializa-
tion step thus yields a closed-form solution for these parameters 
(lens distortion is generally not included). This step is typically 
followed by a non-linear refinement step (bundle adjustment). 
 
Among such functional tools, the Camera Calibration Toolbox 
for Matlab® of J.-Y. Bouguet, also implemented in C++ and in-
cluded in the Open Source Computer Vision library (distributed 
by Intel), is best known. We have also prepared the open-source 
free-access camera calibration toolbox FAUCCAL, which runs 
fully automatically as regards node extraction, establishment of 
image-to-pattern point correspondences and initialization, lead-
ing to the final solution (Douskos et al., 2009). It may be added 
that Prokos et al. (2012) have reported on stereo-camera calibra-
tion using ordinary chess-boards (one extra stereo pair of some 
scene is required to determine 2D epipolar geometry and exploit 
it for securing correct point correspondences). 
 
Yet, despite their elegance and simplicity, calibration tools rely-
ing on 2D structured patterns of limited size cannot accommo-
date all cases encountered in cultural heritage conservation, as 
they cannot respond to all possible imaging distances and focal 
lengths or zooming possibilities. Consequently, self-calibration 
appears to be more adapted since no a priori object information 
but exclusively images of an unknown rigid object are needed. 
In principle, any scene can serve this purpose. The performance 
of such algorithms, however, is enhanced by the introduction of 
object space constraints, among which object planarity is most 
common (Menudet et al., 2008). Triggs (1998) has mentioned 
the advantages of plane-based self-calibration: planes abound 
in man-made environments, can be easily identifiable, are rather 
accurately planar; they are simple to process, they allow reliable 
and precise matching by fitting homographies between image 
pairs; they are naturally well adapted to the calibration of lens 
distortion. Furthermore, it is simpler in a planar case to provide 
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initial estimates for the parameter values. Thus, algorithms have 
been developed for the estimation of camera parameters from 
the homographies between images of the same unknown 2D ob-
ject. Since these inter-image homographies (collineations) are 
not independent, formulations have been reported for imposing 
geometric constraints in plane-based self-calibration to obtain 
reliable metric results from unknown 2D objects (Triggs, 1998; 
Malis & Cipolla, 2002; Menudet et al., 2008). 
 
In this contribution we implement and investigate, in a practi-
cable form, a version of ‘plane-based self-calibration’ which is 
performed directly by bundle adjustment. Walls covered with 
graffiti, which represent obvious choices of (practically) planar 
textured surfaces, have been used here. Images from the same 
camera are related pair-wise through inter-image homographies, 
established automatically (via a RANSAC-based approach) after 
interest points had been first extracted and matched by the SIFT 
operator. Points matched on any image pair are searched for on 
all images. The practical approach of Gurdjos & Sturm (2003) 
is employed, according to which one image should be (roughly) 
fronto-parallel against the planar object; therefore, inter-image 
homographies with this particular image may be seen as emula-
tions of world-to-image homographies and allow closed-form 
approximations of the interior/exterior parameter values. Using 
the initial estimates for exterior orientation, images with unfa-
vourable geometry are eliminated from the adjustment. Follow-
ing this initialization step, estimates are introduced into a self-
calibrating bundle adjustment. Solutions are constrained by en-
forcing object planarity within a tolerance. No assumptions are 
made regarding fronto-parallelism (inter-images homographies 
are only used for fixing correspondences and for initialization). 
 
Results from practical experimentation with different cameras 
indicate that (provided that ‘reasonable’ views have been used), 
this method leads to satisfactory results. In fact, the authors’ in-
tention is to incorporate this approach into their freely available 
user-friendly software tool to assist non-experts in photogram-
metry in projects in the field of cultural heritage documentation. 
 
 

2. STEPS OF THE CALIBRATION ALGORITHM  
 
2.1 Image acquisition 
 
Image acquisition must involve significantly different and non-
symmetric viewpoints of the scene; irregular geometric configu-
rations greatly help towards reliable results (Sturm & Maybank, 
1999). Triggs (1998) recommends an angular spread between 
cameras of at least 10–20°; referring to plane-based self-calibra-
tion, he states that the addition of images significantly increases 
reliability and accuracy, up to a total of about 10. Since it is not 
always easy to exactly plan image acquisition, we suggest that 
more images be taken (e.g. 20). This precaution allows checking 
the overall geometric configuration and discarding with no pro-
blem images which are similar to others. It is also recommended 
to include images with orthogonal roll angles which will loosen 
correlations between interior and exterior orientation elements. 
If a single camera is to be calibrated, focusing must remain con-
stant. Finally, as already mentioned, one image (a ‘key frame’) 
should be taken as roughly fronto-parallel to the world plane to 
emulate a reference metric structure. 
 
2.2 Inter-image homographies 
 
The relation between two images x and x′ which depict a planar 
object is known as their inter-image 2D projective transforma-
tion, or homography, which is an invertible transformation of 8 

degrees of freedom represented by a 3×3 matrix: 
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Using homogeneous coordinates in the P2 space, the mathemati-
cal expression of the homography becomes: 
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For computing the coefficients ≥4 point correspondences are re-
quired. For fully automating the procedure, correspondences are 
fixed using the well-known SIFT operator (Lowe, 2004; see also 
http://www.cs.ubc.ca/~lowe/keypoints/). The algorithm extracts 
distinctive image features from scale invariant keypoints on the 
images to perform robust matching between extracted corners, 
yielding a set of point correspondences between the two images. 
However, the results from SIFT will contain false matches. For 
fitting the homography model with best accuracy by rejecting 
such matches, we use the well-known model-fitting algorithm 
RANSAC of Fischler & Bolles (1981). For each subset of four 
points (minimum number of points required for solution), H is 
computed and all points of the whole set which are consistent 
with the homograhy, within a given threshold, form the group 
of inliers. The group with the most inliers produces the final ho-
mography matrix. The RANSAC algorithm has been used here as 
implemented by P. Kovesi (see cited website). Outcome of this 
step are point correspondences on all individual image pairs and 
the H matrices of the inter-image homographies which relate all 
available image pairs. 
 
2.3 Final point correspondences 
 
Point correspondences on image pairs have now to be identified 
on all possible images. All points involved in correspondences 
found on any image pair are thus investigated, and valid cor-
responding points are accepted on all images on which they do 
exist. Whenever a conflict arises for some point (if it has been 
paired with different points on different images), all points in-
volved are discarded. This procedure results in establishing on 
all images all possible point homologies which conform to the 
inter-image homographies. Finally, in order to strengthen the 
stability of the adjustment, only points appearing on ≥ 3 images 
are kept. 
 
Even so, this step may produce very dense sets of image points. 
Therefore, they are decimated by defining a normal grid on each 
image and keeping only a specific number N of points in each 
cell (e.g. N = 1 if the grid is dense). If more points fall within a 
cell, selected are those N points which appear on more images. 
This allows choosing sufficient and possibly uniformly distribu-
ted points.  
 
2.4 Initialization 
 
Besides point correspondences, a self-calibrating bundle adjust-
ment requires initial values for the interior and exterior orienta-
tion parameters. Regarding the first, and particularly the camera 
constant, the adjustment does not appear as being very sensitive 
to initial values. However, automatic initialization is possible.  
 
The idea of plane-based calibration, using multiple views of a 
structured planar object, is to connect the coefficients of view-
to-object homography H with the image ω of the absolute co-
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nic, whose coefficients lead to the computation of the elements 
of interior orientation (Sturm & Maybank, 1999; Zhang, 1999). 
For obtaining initial estimates in the case of unstructured planar 
objects, Gurdjos & Sturm (2003) suggest use of a nearly fronto-
parallel view, which in fact approximates the affine structure of 
the world (for unknown aspect ratio). Inter-image homographies 
which map the fronto-parallel image to each view are computed, 
and the following linear equation is used: 
 

ଵࢎ
ଶࢎ்࣓

 ൌ 0 
 
where ࢎ௜

  is the ith column of H. For invariable camera constant, 
unknown principal point and aspect ratio, five inter-image ho-
mographies are needed; coefficients ߱ଵଵ, ߱ଶଶ, ߱ଵଷ, ߱ଶଷ, ߱ଷଷ are 
computed using Singular Value Decomposition. From them, the 
above camera parameters are determined. This solution ensures 
a linear computation of initial estimates of the interior orienta-
tion parameters.  
 
Assuming that the inter-image homographies between all other 
images and the fronto-parallel image approximate the view-to-
world homographies, it is possible to compute estimates for the 
exterior orientation parameters using the camera constant value 
estimated above. Here this is done by adopting a parameteriza-
tion attributed to Otto von Gruber (Bender, 1971), which allows 
estimating directly the remaining 8 interior and exterior orienta-
tion parameters (principal point and exterior orientation) from 
these homographies. The solution provides the rotation angles a 
(azimuth), t (tilt) and s (swing). Two values emerge for angle s, 
one of which corresponds to positive imaging distance and pro-
vides the correct estimates. A solution to this problem is given 
also in Sturm (2000). 
 
Clearly, the estimated parameter values refer to a ‘world’ plane 
represented by the fronto-parallel image. Hence, the position of 
the projection centre is expressed in pixel dimensions; recon-
struction of the object plane by the bundle adjustment will be in 
such a system. 
 
2.5 Selection of images 
 
When using all available images of the same planar object, it is 
not unexpected that a bundle adjustment may not converge. It is 
highly recommended to eliminate in advance images with very 
similar exterior orientation (to avoid small angles between inter-
secting rays). The bases of all possible image pairs are projected 
onto the XY plane of the ‘world’ system (as defined above); if a 
base is smaller than a given fraction of the image diagonal, one 
of these two images is discarded. Alternatively, this may be ex-
pressed as a threshold on base-to-distance ratio. Among images 
with similar exterior orientation, those having larger roll angles 
are retained. Finally, images with very small tilt (i.e. close to the 
fronto-parallel image) are also eliminated. 
 
2.6 Bundle adjustment 
 
Fixed point matches and initial estimates allow performing an 
iterative bundle adjustment, using the collinearity equations, to 
recover camera geometry. The adopted camera model involves 
the coefficients k1, k2 of symmetric radial lens distortion and the 
aspect ratio a, along with the three primary camera parameters 
(camera constant c and principal point location xo, yo). 
 
Since it is unknown “how planar” the object of each application 
actually is, the first solution does not include the planarity con-
straint. Adjustment is performed by fixing 7 object space para-
meters (the exterior orientation elements of the fronto-parallel 

image and model scale). A plane is fitted to all reconstructed 3D 
points; a threshold may be then used to evaluate the RMS devia-
tion of points from planarity. Based on practical experimenta-
tion, an upper limit of 0.5% of the mean imaging distance was 
regarded here as realistic. If an assumed object plane fails the 
test, the results of the initial solution can be kept; however, they 
cannot be considered as entirely trustworthy since they have not 
been subject to any geometric constraint. On the other hand, if 
the object passes the test the adjustment is repeated with the in-
troduction of a ‘soft’ constraint: coordinates Z = 0 of all object 
points are regarded as observations with large weight. The ulti-
mate criterion, however, for accepting solutions based on plana-
rity constraint is whether it strengthens the solution, in particu-
lar the precision of camera constant estimation. The next section 
presents practical applications which include examples for all 
different cases referred to here. 
 
 

3. PRACTICAL EVALUATION 
 
Three different walls, assumed as being planar and covered with 
graffiti, have been recorded on four image sets (2 Mpixel). The 
sets include images of wide, normal and narrow fields of view. 
 
• Image set 1. A total of 18 images have been taken, of which 5 
were automatically excluded (see Section 2.5). The images used 
are shown in Fig. 1. Following Section 2.4, the initial value for 
the camera constant was 1079, namely quite close to the final 
value; principal point was estimated at the location xo = −10.6, 
yo = −15.7, but (as in all cases) the principal point was initially 
set at the image centre. The RMS error of plane-fitting to points 
produced by bundle adjustment was 0.24% of the mean imaging 
distance and hence regarded as satisfactory (see Sec. 2.6). The 
results in Table 1 show that the planarity constraint plays here 
no significant role; it simply causes an (expected) increase of 
the error σο of adjustment, which slightly raises the uncertainty 
of the estimated values. In general, the precision of camera geo-
metry parameters is regarded as satisfactory. The standard error 
of the camera constant c, for instance, is 0.6‰. 
 

 
 

 

 

 

 

 
Figure 1. Image set 1 (the ‘fronto-parallel’ key frame is on top).  
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Table 1. Calibration results for image set 1 
(13 images, 941 object points) 

 without constraint with constraint 
 σο = 0.43 pixel σο = 0.51 pixel 
c (pixel) 998.25 ± 0.60 996.60 ± 0.63 
xo (pixel) 0.10 ± 0.40 −2.05 ± 0.44 
yo (pixel) −7.84 ± 0.32 −5.92 ± 0.35 
(1−a) (×10−3) −0.19 ± 0.08 −0.60 ± 0.08 
k1(×10−8) −8.63 ± 0.06 −8.58 ± 0.06 
k2(×10−14) 4.64 ± 0.06 4.50 ± 0.06 

 
• Image set 2. Here 11 images have been selected, seen in Fig. 
2. The RMS error of plane-fitting to reconstructed points was 
very small (0.05% of the mean imaging distance). Calibration 
results of Table 2 show that here the planarity constraint plays a 
somewhat more significant role. Despite the increase of σο, the 
standard error of the camera constant c is improved (the other 
parameters exhibit a milder decrease in precision). In general, 
the precision of camera geometry elements is again satisfactory 
(the standard error of the camera constant c is 0.4‰). 
 

  

  

  

  
Figure 2. Image set 2 (‘fronto-parallel’ is the first image).  
 

Table 2. Calibration results for image set 2 
(11 images, 754 object points) 

 without constraint with constraint 
 σο = 0.40 pixel σο = 0.47 pixel 
c (pixel) 2618.59 ± 1.23 2603.49 ± 1.09 
xo (pixel) 24.07 ± 0.58 22.92 ± 0.64 
yo (pixel) −8.99 ± 0.64 −6.23 ± 0.72 
(1−a) (×10−3) −3.11 ± 0.08 −3.23 ± 0.09 
k1(×10−9) −4.88 ± 0.42 −4.45 ± 0.46 
k2(×10−15) 6.09 ± 0.40 4.36 ± 0.43 

 
• Image set 3. The same pattern was imaged here, and 9 images 
were selected (Fig. 3). The RMS error of plane approximation 
was again small (0.11% of the mean imaging distance). In Table 
3 the calibration results indicate that the imposed planarity has a 
significant effect. The standard error of the camera constant c is 
improved, while the other calibration parameters have the same 
precision. The overall precision is again satisfactory (standard 

error of the camera constant c is less than 1.0‰). 
 

 

 

 
Figure 3. Image set 3 (‘fronto-parallel’ is the first image).  
 

Table 3. Calibration results for image set 3 
(9 images, 632 object points) 

 without constraint with constraint 
 σο = 0.31 pixel σο = 0.35 pixel 
c (pixel) 1480.79 ± 1.67 1466.35 ± 1.42 
xo (pixel) −3.45 ± 0.86 −2.17 ± 0.88 
yo (pixel) −0.95 ± 0.91 −2.62 ± 0.88 
(1−a) (×10−3) −0.14 ± 0.04 −0.13 ± 0.05 
k1(×10−08) 1.79 ± 0.09 1.85 ± 0.08 
k2(×10−14) −1.63 ± 0.12 −1.59 ± 0.12 

 

 
 

 

 

 

 
Figure 4. Image set 4 (the ‘fronto-parallel’ key frame is on top).  
 
• Image set 4. For this pattern 13 images were selected (Fig. 4). 
The RMS error of plane-fitting was in this case surprisingly high 
(0.85% of mean imaging distance). This is due to the fact that 
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the object actually consists of two intersecting planes (Fig. 5). 
 

Figure 5. Camera positions and reconstruction (image set 4). 
 
The calibration results in Table 4 show that when enforcing the 
planarity constraint the results, of course, deteriorate quite signi-
ficantly. This stresses the importance of a planarity check. The 
solution without constraint is acceptable (standard error of the 
camera constant c is 1.1‰). Nonetheless, it is advisable to avoid 
such cases. Although it was here possible to get a solution, the 
fact that the pattern is non-planar (as assumed) results in invalid 
inter-image homographies; besides, it is generally expected that 
a large number of correct correspondences will be eliminated by 
the RANSAC algorithm. Probably this is the reason why in this 
case relatively few matched points have been retained. 
 

Table 4. Calibration results for image set 4 
(13 images, 479 object points) 

 without constraint with constraint 
 σο = 0.40 pixel σο = 1.00 pixel 
c (pixel) 1888.92 ± 2.12 2036.74 ± 4.41 
xo (pixel) 11.30 ± 0.70 15.33 ± 1.86 
yo (pixel) 4.34 ± 0.78 7.43 ± 2.02 
(1−a) (×10−3) −0.23 ± 0.09 −0.05 ± 0.21 
k1(×10−08) −2.89 ± 0.06 −0.55 ± 0.13 
k2(×10−14) 1.81 ± 0.07 0.82 ± 0.17 

 
In general, calibration results indicate that precise solutions are 
possible with this approach. Introduction of the planarity con-
straint results in modifications, in some cases significant, of the 
estimated values of the parameters; it is assumed that the result-
ing geometry is closer to the actual geometry of image acquisi-
tion. Regarding parameter precision, the main effect of the geo-
metric constraint is the reduction in all cases of the standard er-
ror of the estimated camera constant.  
 
A last observation concerns the correlation among estimates of 
the parameters. Partly owing to the strong roll angles, correla-
tions between interior and exterior orientation parameters are 
generally weak. This is also true as regards correlations among 
interior orientation parameters. Exception is the correlation be-
tween the estimates of coefficients k1 and k2 of radial distortion 
(their correlation coefficient ranged between −0.86 and −0.92). 
Indeed, solutions only with coefficient k1 showed that, practical-
ly, it can fully describe radial distortion of the lenses used here. 
 

4. CONCLUSION 
 
Camera calibration, which is an indispensable intermediate step 
in several photogrammetric and computer vision tasks, may be 
conveniently performed in a fully automatic mode using various 
approaches. Perhaps the simplest among them is self-calibration 
based on recording unknown textured planar objects in several 
views. In this paper a practical implementation of this approach 
is presented. Points extracted and matched by the SIFT operator 
are filtered through inter-image homographies by employing the 
RANSAC algorithm. If a “fronto-parallel” image has been taken 
(after the suggestion of Gurdjos & Sturm, 2003), good estimates 
for interior and exterior orientation can be automatically found. 
These values allow discarding unsuitable images; they are then 
introduced into a bundle adjustment, in which all existing point 
matches participate. The reconstructed 3D points are tested for 
coplanarity to allow a final adjustment incorporating a planarity 
constraint. Satisfactory calibration results have been presented 
and discussed. The authors’ intention is to further elaborate this 
approach and incorporate it into their freely available software 
tool to assist non-experts in photogrammetry or computer vision 
in their projects in the field of cultural heritage documentation. 
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